Advertisement

Series-Coupled and Parallel-Coupled Add/Drop Filters and FSR Extension

  • Yasuo Kokubun
  • Tomoyuki Kato
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 156)

Abstract

The shape of the filter response can be controlled by a combination of ring resonators, such as series coupling, parallel coupling, and cascade topology. In particular series coupling is effective to realize box-like spectrum responses, which are required for wavelength filtering in WDM systems for photonic networks. In this chapter, the transfer function of series-coupled ring resonators is derived using the matrix method, and the optimum conditions for coupling coefficients to realize the box-like filter response are described. In addition, the free spectral range (FSR) extension method using the Vernier effect in series-coupled ring resonators with dissimilar radii will be discussed. Last, the transfer function of parallel-coupled ring resonators is derived and an application to interleaving is introduced.

Keywords

Spectrum Response Coupling Efficiency Ring Resonator Resonant Wavelength Free Spectral Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kokubun, Y. Vertically coupled micro-ring resonator filter for integrated add/drop node. IEICE Trans. Electron. E88C, 349–362 (2005)CrossRefGoogle Scholar
  2. 2.
    Kokubun, Y. High index contrast optical waveguides and their applications to microring filter circuit and wavelength selective switch. IEICE Trans. Electron. E90-C, 1037–1045 (2007)CrossRefGoogle Scholar
  3. 3.
    Hryniewicz, J.V., Absil, P.P., et al. Higher order filter response in coupled microring resonators. IEEE Photon. Technol. Lett. 12, 320–322 (2000)CrossRefGoogle Scholar
  4. 4.
    Little, B.E., Chu, S.T., et al. Very high-order microring resonator filters for WDM applications. IEEE Photon. Technol. Lett. 16, 2263–2265 (2004)CrossRefGoogle Scholar
  5. 5.
    Yanagase, Y., Suzuki, S., et al. Box-like filter response and expansion of FSR by vertically triple coupled microring resonator filter. J. Lightwave Technol. 20, 1525–1529 (2002)CrossRefGoogle Scholar
  6. 6.
    Barwicz, T., Popovic, M.A., et al. Fabrication of add-drop filter based on frequency-matched microring resonators. J. Lightwave Technol. 24, 2207–2218 (2006)CrossRefGoogle Scholar
  7. 7.
    Barbarossa, G., Matteo, A.M., et al. Theoretical analysis of triple-coupler ring-based optical guided-wave resonator. J. Lightwave Technol. 13, 148–156, (1995)CrossRefGoogle Scholar
  8. 8.
    Orta, R., Savi, P., et al. Synthesis of multiple-ring-resonator filters for optical systems. IEEE Photon. Technol. Lett. 7, 1447–1449 (1995)CrossRefGoogle Scholar
  9. 9.
    Madsen, C.K., Zhao, J.H. A general planar waveguide autoregressive optical filter. IEEE J. Lightwave Technol. 14, 437–447 (1996)CrossRefGoogle Scholar
  10. 10.
    Lee, H.S., Choi, C.H., et al. A nonunitary transfer matrix method for practical analysis of racetrack microresonator waveguide. IEEE Photon. Technol. Lett. 16, 1086–1088 (2004)CrossRefGoogle Scholar
  11. 11.
    Poon, J.K.S., Sheuer, J., et al. Matrix analysis of microring coupled-resonator optical waveguides. Opt. Express 12, 90–103 (2004)CrossRefGoogle Scholar
  12. 12.
    Goebuchi, Y., Kato, T., et al. Optimum arrangement of high-order series coupled microring resonator for crosstalk reduction. Jpn. J. Appl. Phys. 45, 5769–5574 (2006)Google Scholar
  13. 13.
    Chen, W., Wang, Z., et al. General ring resonator analysis and characterization by characteristic matrix. IEEE J. Lightwave Technol. 23, 915–922 (2005)MATHCrossRefGoogle Scholar
  14. 14.
    Kato, T., Kokubun, Y. Optimum coupling coefficients in second-order series-coupled ring resonator for non-blocking wavelength channel switch. IEEE J. Lightwave Technol. 24, 991–999 (2006)CrossRefGoogle Scholar
  15. 15.
    Yariv, A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photon. Technol. Lett. 14, 483–485 (2002)CrossRefGoogle Scholar
  16. 16.
    Little, B.E., Chu, S.T., et al. Microring resonator channel dropping filters. IEEE J. Lightwave Technol. 15, 998–1005 (1997)CrossRefGoogle Scholar
  17. 17.
    Yariv, A. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett. 36, 321–322 (2000)CrossRefGoogle Scholar
  18. 18.
    Menon, V.M., Tong, W., et al. Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier. IEEE Photon. Technol. Lett. 16, 1343–1345 (2004)CrossRefGoogle Scholar
  19. 19.
    Kokubun, Y., Hatakeyama, Y., et al. Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultra-compact ring radius. IEEE J. Sel. Top. Quant. Electron. 11, 4–10 (2005)CrossRefGoogle Scholar
  20. 20.
    Hatakeyama, Y., Hanai, T., et al. Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter. IEEE Photon. Technol. Lett. 16, 473–475 (2004)CrossRefGoogle Scholar
  21. 21.
    Schwelb, O., Frigyes, I. Vernier operation of series coupled optical microring resonator filters. Microwave Opt. Technol. 39, 257–261 (2003)CrossRefGoogle Scholar
  22. 22.
    Suzuki, S., Kokubun, Y., et al. Ultra-short optical pulse transmission characteristics of vertically coupled microring resonator add/drop filter. IEEE J. Lightwave Technol. 19, 266–271 (2001)CrossRefGoogle Scholar
  23. 23.
    Schwelb, O. Transmission, group delay and dispersion characteristics of single-ring optical resonators and add/drop filters – A tutorial overview. IEEE J. Lightwave Technol. 22, 1380–1394 (2004)CrossRefGoogle Scholar
  24. 24.
    Kato, T., Kokubun, Y. Bessel-Thompson filter using double-series-coupled microring resonator. IEEE J. Lightwave Technol. 26, 3694–3698 (2008)CrossRefGoogle Scholar
  25. 25.
    Ito, T., Kokubun, Y. Fabrication of 1 × 2 interleaver by parallel-coupled microring resonator. Electron. Commun. Japan (John Wiley) 89, 56–64 (2006)CrossRefGoogle Scholar
  26. 26.
    Little, B.E., Chu, S.T., et al. Filter synthesis for periodically coupled microring resonators. Opt. Lett. 25, 344–346 (2000)CrossRefGoogle Scholar
  27. 27.
    Griffel, G. Vernier effect in asymmetrical ring resonator arrays. IEEE Photon. Technol. Lett. 12, 1642–1644 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2010

Authors and Affiliations

  1. 1.Graduate School of EngineeringYokohama National UniversityYokohamaJapan
  2. 2.Photonics Laboratory, Network Systems LaboratoriesFujitsu Laboratories Ltd.KawasakiJapan

Personalised recommendations