Advertisement

Circular Integrated Optical Microresonators: Analytical Methods and Computational Aspects

  • Kirankumar Hiremath
  • Manfred Hammer
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 156)

Abstract

This chapter discusses an ab initio frequency domain model of circular microresonators, built on the physical notions that commonly enter the description of the resonator functioning in terms of interaction between fields in the circular cavity with the modes supported by the straight bus waveguides. Quantitative evaluation of this abstract model requires propagation constants associated with the cavity/bend segments, and scattering matrices, that represent the wave interaction in the coupler regions. These quantities are obtained by an analytical (2-D) or numerical (3-D) treatment of bent waveguides, along with spatial coupled mode theory (CMT) for the couplers. The required CMT formulation is described in detail. Also, quasi-analytical approximations for fast and accurate computation of the resonator spectra are discussed. The formalism discussed in this chapter provides valuable insight into the functioning of the resonators, and it is suitable for practical device design.

Keywords

Cavity Mode Transverse Electric Finite Difference Time Domain Couple Mode Theory Slab Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was carried out as a part of the project “NAIS” (IST-2000-28018), funded by the European Commission. K. R. Hiremath also acknowledges support by the DFG (German Research Council) Research Training Group “Analysis, Simulation and Design of Nanotechnological Processes,” University of Karlsruhe. The authors thank R. Stoffer for his hard work on the 3-D simulations. They are grateful to H. J. W. M. Hoekstra, E. van Groesen, and their colleagues in the NAIS project for many fruitful discussions.

References

  1. 1.
    Vahala, K. Optical microcavities. World Scientific Singapore (2004)Google Scholar
  2. 2.
    Michelotti, F., Driessen, A., et al. (eds.) Microresonators as building blocks for VLSI photonics, volume 709 of AIP conference proceedings (2004)Google Scholar
  3. 3.
    Heebner, J., Grover, R., et al. Optical micro-resonators: Theory, fabrication, and applications. Springer (2007)Google Scholar
  4. 4.
    Landobasa, Y. M., Darmawan, S., et al. Matrix analysis of 2-D microresonator lattice optical filters. IEEE J. Quantum Electron. 41, 1410–1418 (2005)CrossRefGoogle Scholar
  5. 5.
    Popović, M. A., Manolatou, C., et al. Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters. Opt. Express 14, 1208–1222 (2006)CrossRefGoogle Scholar
  6. 6.
    Stokes, L. F., Chodorow, M., et al. All single mode fiber resonator. Opt. Lett. 7, 288–290 (1982)CrossRefGoogle Scholar
  7. 7.
    Yariv, A. Universal relations for coupling of optical power between microresonators and dielectric waveguides. IEE Electron. Lett. 36, 321–322 (2000)CrossRefGoogle Scholar
  8. 8.
    Hammer, M., Hiremath, K.R., et al. Analytical approaches to the description of optical microresonator devices. In Michelotti, F., Driessen, A., et al. (eds.), Microresonators as building blocks for VLSI photonics, volume 709 of AIP conference proceedings, 48–71 (2004)Google Scholar
  9. 9.
    Okamoto, K. Fundamentals of Optical Waveguides. Academic Press, USA (2000)Google Scholar
  10. 10.
    Klunder, D.J.W., Krioukov, E., et al. Vertically and laterally waveguide-coupled cylindrical microresonators in Si 3 N 4 on SiO 2 technology. Appl. Phys. B. 73, 603–608 (2001)CrossRefGoogle Scholar
  11. 11.
    Klunder, D.J.W., Balistreri, M.L.M., et al. Detailed analysis of the intracavity phenomena inside a cylindrical microresonator. IEEE J. Lightwave Technol. 20, 519–529 (2002)CrossRefGoogle Scholar
  12. 12.
    Rowland, D.R., Love, J.D. Evanescent wave coupling of whispering gallery modes of a dielectric cylinder. IEE Proc.: Optoelectron. 140, 177–188 (1993)CrossRefGoogle Scholar
  13. 13.
    Chin, M.K., Ho, S.T. Design and modeling of waveguide coupled single mode microring resonator. IEEE J. Lightwave Technol. 16, 1433–1446 (1998)CrossRefGoogle Scholar
  14. 14.
    Cusmai, G., Morichetti, F., et al. Circuit-oriented modelling of ring-resonators. Opt. Quantum Electron. 37, 343–358 (2005)CrossRefGoogle Scholar
  15. 15.
    Vassallo, C. Optical waveguide concepts. Elsevier, Amsterdam (1991)Google Scholar
  16. 16.
    Hall, D.G., Thompson, B.J., (eds.) Selected papers on coupled-mode theory in guided-wave optics, volume MS 84 of SPIE milestone series. SPIE Optical Engineering Press, Bellingham, Washington USA (1993)Google Scholar
  17. 17.
    Hiremath, K.R., Stoffer, R., et al. Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory. Opt. Commun. 257, 277–297 (2006)CrossRefGoogle Scholar
  18. 18.
    Stoffer, R., Hiremath, K.R., et al. Cylindrical integrated optical microresonators: Modeling by 3-D vectorial coupled mode theory. Opt. Commun. 256, 46–67 (2005)CrossRefGoogle Scholar
  19. 19.
    Hiremath, K.R., Hammer, M., et al. Analytic approach to dielectric optical bent slab waveguides. Opt. Quantum Electron. 37, 37–61 (2005)CrossRefGoogle Scholar
  20. 20.
    Prkna, L., Hubálek, M., et al. Field modeling of circular microresonators by film mode matching. IEEE J. Sel. Top. Quantum Electron. 11, 217–223 (2005)CrossRefGoogle Scholar
  21. 21.
    Stoffer, R., Hiremath, K.R., et al. Comparison of coupled mode theory and FDTD simulations of coupling between bent and straight optical waveguides. In Michelotti, F., Driessen, A., et al. (eds.), Microresonators as building blocks for VLSI photonics, volume 709 of AIP conference proceedings, 366–377 (2004)Google Scholar
  22. 22.
    Van, V., Absil, P., et al. Propagation loss in single-mode GaAs-AlGaAs microring resonators: measurement and model. IEEE J. Lightwave Technol. 19, 1734–1739 (2001)CrossRefGoogle Scholar
  23. 23.
    Absil, P.P., Hryniewicz, J.V., et al. Compact microring notch filters. IEEE Photonics Technol. Lett. 14, 398–400 (2000)CrossRefGoogle Scholar
  24. 24.
    Chu, S.T., Little, B.E., et al. Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters. IEEE Photonics Technol. Lett. 11, 1423–1425 (1999)CrossRefGoogle Scholar
  25. 25.
    Yariv, A., Xu, Y., et al. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999)CrossRefGoogle Scholar
  26. 26.
    Little, B.E., Chu, S.T., et al. Microring resonator channel dropping filters. IEEE J. Lightwave Technol. 15, 998–1005 (1997)CrossRefGoogle Scholar
  27. 27.
    Grover, R., Van, V., et al. Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters. IEEE J. Lightwave Technol. 20, 900–905 (2002)CrossRefGoogle Scholar
  28. 28.
    Hryniewicz, J.V., Absil, P.P., et al. Higher order filter response in coupled microring resonators. IEEE Photonics Technol. Lett. 12, 320–322 (2000)CrossRefGoogle Scholar
  29. 29.
    Chu, S.T., Little, B.E., et al. An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid. IEEE Photonics Technol. Lett. 11, 691–693 (1999)CrossRefGoogle Scholar
  30. 30.
    Little, B. E., Chu, S. T., et al. Microring resonator arrays for VLSI photonics. IEEE Photonics Technol. Lett. 12, 323–325 (2000)CrossRefGoogle Scholar
  31. 31.
    Manolatou, C., Khan, M. J., et al. Coupling of modes analysis of resonant channel add drop filters. IEEE J. Quantum Electron. 35, 1322–1331 (1999)CrossRefGoogle Scholar
  32. 32.
    Prkna, L., Čtyroký, J., et al. Ring microresonator as a photonic structure with complex eigenfrequency. Opt. Quantum Electron. 36, 259–269 (2004)CrossRefGoogle Scholar
  33. 33.
    Taflove, A., Hagness, S.C. Computational electrodynamis: The finite difference time domain method. Artech House, Norwood, MA, USA, 2nd edition (2000)MATHGoogle Scholar
  34. 34.
    Hagness, S.C., Rafizadeh, D., et al. FDTD microcavity simulations: Design and experimental realization of waveguide coupled single mode ring and whispering gallery mode disk resonator. IEEE J. Lightwave Technol. 15, 2154–2165 (1997)CrossRefGoogle Scholar
  35. 35.
    Koos, C., Fujii, M., et al. FDTD-modelling of dispersive nonlinear ring resonators: Accuracy studies and experiments. IEEE J. Quantum Electron. 42, 1215–1223 (2006)CrossRefGoogle Scholar
  36. 36.
    Sacks, Z.S., Lee, J.-F. A finite-element time-domain method using prism elements for microwave cavities. IEEE Trans. Electromagn. Compat. 37, 519–527 (1995)CrossRefGoogle Scholar
  37. 37.
    Carpes Jr., W.P., Pichon, L., et al. Efficient analysis of resonant cavities by finite element method in the time domain. IEE Proc. Microw. Antennas Propag. 147, 53–57 (2000)CrossRefGoogle Scholar
  38. 38.
    Ji, X., Lu, T., et al. Discontinuous galerkin time domain (DGTD) methods for the study of 2-D waveguide-coupled microring resonators. IEEE J. Lightwave Technol. 23, 3864 – 3874 (2005)CrossRefGoogle Scholar
  39. 39.
    Boriskina, S.V., Benson, T.M., et al. Effect of a layered environment on the complex natural frequencies of two-dimensional WGM dielectric-ring resonators. IEEE J. Lightwave Technol. 20, 1563–1572 (2002)CrossRefGoogle Scholar
  40. 40.
    Boriskina, S.V., Benson, T.M., et al. Highly efficient design of spectrally engineered whispering-gallery-mode microlaser resonators. Opt. Quantum Electron. 35, 545–559 (2003)CrossRefGoogle Scholar
  41. 41.
    Boriskina, S.V., Nosich, A.I. Radiation and absorption losses of the whispering-gallery-mode dielectric resonators excited by a dielectric waveguide. IEEE Trans. Microw. Theory Tech. 47, 224–231 (1999)CrossRefGoogle Scholar
  42. 42.
    Jackson, J.D. Classical electrodynamics. John Wiley and Sons, Inc., 3rd edition (1998)Google Scholar
  43. 43.
    Lewin, L., Chang, D.C., et al. Electromagnetic waves and curved structures. Peter Peregrinus Ltd. (On behalf of IEE), Stevenage, England (1977)Google Scholar
  44. 44.
    Pennings, E.C.M. Bends in optical ridge waveguides, modelling and experiment. Ph.D. thesis, Delft University, The Netherlands (1990)Google Scholar
  45. 45.
    Abramowitz, M., Stegun, I.A. Handbook of mathematical functions (applied mathematics Series 55). National Bureau of Standards, Washington, DC (1964)Google Scholar
  46. 46.
    Press, W.H., Teukolsky, S.A., et al. Numerical recipes in C. Cambridge University Press, 2nd edition (1992)Google Scholar
  47. 47.
    Hiremath, K.R. Coupled mode theory based modeling and analysis of circular optical microresonators. Ph.D. thesis, University of Twente, The Netherlands (2005)Google Scholar
  48. 48.
    Stoffer, R. Uni- and Omnidirectional simulation tools for integrated optics. Ph.D. thesis, University of Twente, Enschede, The Netherlands (2001)Google Scholar
  49. 49.
    Sudbø, A.S. Film mode matching: a versatile numerical method for vector mode fields calculations in dielectric waveguides. Pure Appl. Opt. 2, 211–233 (1993)CrossRefGoogle Scholar
  50. 50.
    Prkna, L., Hubálek, M., et al. Vectorial eigenmode solver for bent waveguides based on mode matching. IEEE Photonics Technol. Lett. 16, 2057–2059 (2004)CrossRefGoogle Scholar
  51. 51.
    Hiremath, K.R., Hammer, M. Modeling of tuning of microresonator filters by perturbational evaluation of cavity mode phase shifts. IEEE J. Lightwave Technol. 25, 3760–3765 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2010

Authors and Affiliations

  1. 1.Department of Mathematics, Institute for Scientific Computing and Mathematical ModelingUniversity of KarlsruheKarlsruheGermany
  2. 2.Department of Applied Mathematics, MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations