Skip to main content

Microresonators for Communication and Signal Processing Applications

  • Chapter
  • First Online:
Photonic Microresonator Research and Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 156))

Abstract

Photonic microresonators exhibit a great potential for various advanced functions for communication and signal processing applications. In this chapter, we briefly review recent advances in achieving space-, power-, and spectrally efficient chip-scale optical devices and subsystems using microresonators. With an emphasis on signal integrity and system performance, we describe microresonator-based channel adding/dropping in time-division-multiplexing systems, signal generation and demodulation for advanced optical data formats, and frequency comb generation for arbitrary waveform generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaminow, I.P., Li, T., et al. Optical fiber telecommunications. 5th Edition. Academic Press, Elsevier, San Diego (2008)

    Google Scholar 

  2. Ishikawa, H. Ultrafast all-optical signal processing devices. John Wiley & Sons, New Jersey (2008)

    Google Scholar 

  3. Kobrinsky, M. J., Block, B.A., et al. On-chip optical interconnects. Intel Technol. J. 8, 129–142 (2004)

    Google Scholar 

  4. Barwicz, T., Byun, H., et al. Silicon photonics for compact, energy-efficient interconnects. J. Opt. Networking 6, 63–73 (2007)

    Article  Google Scholar 

  5. Shacham, A., Bergman, K. Building ultralow-latency interconnection networks using photonic integration. IEEE Micro. 27, 6–20 (2007)

    Article  Google Scholar 

  6. Beausoleil, R.G., Ahn, J., et al. A nanophotonic interconnect for high-performance many-core computation. IEEE LEOS Newsletter 22, 15–22 (2008)

    Google Scholar 

  7. Krishnamoorthy, A.V., Zheng, X., et al. Optical interconnects for present and future high-performance computing systems. Proceed. 16th annual IEEE symposium on high-performance interconnects, no. 4618590, 175–177 (2008)

    Google Scholar 

  8. McCall, S.L., Levi, A.F.J., et al. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992)

    Article  Google Scholar 

  9. Choi, S.J., Djordjev, K., et al. Microdisk lasers vertically coupled to output waveguides. IEEE Photon. Technol. Lett. 15, 1330–1332 (2003)

    Article  Google Scholar 

  10. Scheuer, J., Green, W.M.J., et al. Low-threshold two-dimensional annular Bragg lasers. Opt. Lett. 29, 2641–2643 (2004)

    Article  Google Scholar 

  11. Lee, J.Y., Luo, X., et al. Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiral-shaped microdisk resonators. Opt. Express 15, 14650–14666 (2007)

    Article  Google Scholar 

  12. Barrios, C.A., Lipson, M. Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration. J. Appl. Phys. 96, 6008–6015 (2004)

    Article  Google Scholar 

  13. Sadagopan, T., Choi, S.J., et al. Carrier-induced refractive index changes in InP based circular microresonators for low-voltage high-speed modulation. IEEE Photon. Technol. Lett. 17, 414–416 (2005)

    Article  Google Scholar 

  14. Xu, Q., Schmidt, B., et al. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005)

    Article  Google Scholar 

  15. Kekatpure, R.D., Brongersma, M.L., et al. Design of a silicon-based field-effect electro-optic modulator with enhanced light–charge interaction. Opt. Lett. 30, 2149–2151 (2005)

    Article  Google Scholar 

  16. Li, C., Zhou, L., et al. Silicon microring carrier-injection based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling. Opt. Express 15, 5069–5076 (2007)

    Article  Google Scholar 

  17. Little, B.E., Chu, S.T., et al. Microring resonator channel dropping filters. J. Lightw. Technol. 15, 998–1005 (1997)

    Article  Google Scholar 

  18. Popovíc, M. A., Barwicz, T., et al. Multistage high-order microring-resonator add-drop filters. Opt. Lett. 31, 2571–2573 (2006)

    Article  Google Scholar 

  19. Van, V. Dual-mode microring reflection filters. J. Lightw. Technol. 25, 3142–3150 (2007)

    Article  Google Scholar 

  20. Xiao, S., Khan, M.H., et al. A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion. Opt. Express 15, 14765–14771 (2007)

    Article  Google Scholar 

  21. Rabus, D.G., Hamacher, M., et al. High-Q channel-dropping filters using ring resonators with integrated SOAs. IEEE Photon. Technol. Lett. 14, 1442–1444 (2002)

    Article  Google Scholar 

  22. Amarnath, K., Grover, R., et al. Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation. IEEE Photon. Technol. Lett. 17, 2280–2282 (2005)

    Article  Google Scholar 

  23. Mookherjea, S. Using gain to tune the dispersion relation of coupled-resonator optical waveguides. IEEE Photon. Technol. Lett. 18, 715–717 (2006)

    Article  Google Scholar 

  24. Poon, J. K. S., Yariv, A. Active coupled-resonator optical waveguides. I. Gain enhancement and noise. J. Opt. Soc. Am. B 24, 2378–2388 (2007)

    Article  MathSciNet  Google Scholar 

  25. Soref, R.A., Little, B.E. Proposed N-wavelength M-fiber WDM crossconnect switch using active microring resonators. IEEE Photon. Technol. Lett. 10, 1121–1123 (1998)

    Article  Google Scholar 

  26. Van, V., Ibrahim, T.A., et al. All-optical nonlinear switching in GaAs-AlGaAs microring resonators. IEEE Photon. Technol. Lett. 14, 74–76 (2002)

    Article  Google Scholar 

  27. Vlasov, Y., Green, W. M. J., et al. High-throughput silicon nanophotonic deflection switch for on-chip optical networks. Nat. Photon. 2, 242–246 (2008)

    Article  Google Scholar 

  28. Van, V., Ibrahim, T.A., et al. Optical signal processing using nonlinear semiconductor microring resonators. IEEE J. Sel. Top. Quant. Electron. 8, 705–713 (2002)

    Article  MATH  Google Scholar 

  29. Xu, Q., Lipson, M. All-optical logic based on silicon micro-ring resonators. Opt. Express 15, 924–929 (2007)

    Article  Google Scholar 

  30. Mikroulis, S., Simos, H., et al. 40-Gb/s NRZ and RZ operation of an all-optical AND logic gate based on a passive InGaAsP/InP microring resonator. J. Lightw. Technol. 24, 1159–1164 (2006)

    Article  Google Scholar 

  31. Preble, S.F., Xu, Q., et al. Changing the color of light in a silicon resonator. Nat. Photon. 1, 293–296 (2007)

    Article  Google Scholar 

  32. Turner, A.C., Foster, M.A., et al. Ultra-low power parametric frequency conversion in a silicon microring resonator. Opt. Express 16, 4881–4887 (2008)

    Article  Google Scholar 

  33. Li, Q., Zhang, Z., et al. Dense wavelength conversion and multicasting in a resonance-split silicon microring. Appl. Phys. Lett. 93, 081113 (2008)

    Article  Google Scholar 

  34. Poon, J.K.S., Scheuer, J., et al. Designing coupled-resonator optical waveguide delay lines. J. Opt. Soc. Am. B 21, 1665–1673 (2004)

    Article  Google Scholar 

  35. Xu, Q., Sandhu, S., et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96, 123901 (2006)

    Article  Google Scholar 

  36. Madsen, C.K., Lenz, G., et al. Multistage dispersion compensator using ring resonators. Opt. Lett. 24, 1555–1557 (1999)

    Article  Google Scholar 

  37. Hossein-Zadeh, M., Vahala, K.J. Importance of intrinsic-Q in microring-based optical filters and dispersion-compensation devices. IEEE Photon. Technol. Lett. 19, 1045–1047 (2008)

    Article  Google Scholar 

  38. Zhang, L., Song, M., et al. A compact chromatic dispersion compensator using unequal and mutually-coupled microring resonators. Integrated Photonics and Nanophotonics Research and Applications (IPNRA), paper IWA3 (2008)

    Google Scholar 

  39. Zhang, L., Yang, J.-Y., et al. Microring-based modulation and demodulation of DPSK signal. Opt. Express 15, 11564–11569 (2007)

    Article  Google Scholar 

  40. Zhang, L., Yang, J.-Y., et al. Monolithic modulator and demodulator of DQPSK signals based on silicon microrings. Opt. Lett. 33, 1428–1430 (2008)

    Article  Google Scholar 

  41. Lu, Y., Liu, F., et al. All-optical format conversions from NRZ to BPSK and QPSK based on nonlinear responses in silicon microring resonators. Opt. Express 15, 14275–14282 (2007)

    Article  Google Scholar 

  42. Blair, S., Chen, Y. Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities. Appl. Opt. 40, 570–582 (2001)

    Article  Google Scholar 

  43. Boyd, R.W., Heebner, J. E. Sensitive disk resonator photonic biosensor. Appl. Opt. 40, 5742–5747 (2001)

    Article  Google Scholar 

  44. Yalcin, A., Popat, K.C., et al. Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Top. Quant. Electron. 12, 148–154 (2006)

    Article  Google Scholar 

  45. Armani, A., Vahala, K., et al. Heavy water detection using ultra-high-Q microcavities. Opt. Lett. 31, 1896–1898 (2006)

    Article  Google Scholar 

  46. De Vos, K., Bartolozzi, I., et al. Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Opt. Express 15, 7610–7615 (2007)

    Article  Google Scholar 

  47. Geisler, D.J., Fontaine, N.K., et al. Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation. Opt. Express 17, 15911–15925 (2009)

    Article  Google Scholar 

  48. Liu, A., Jones, R., et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2004)

    Article  Google Scholar 

  49. Liu, A., Samara-Rubio, D., et al. Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator. IEEE J. Sel. Top. Quant. Electron. 11, 367–372 (2005)

    Article  Google Scholar 

  50. Barrios, C.A. Electrooptic modulation of multisilicon-on-insulator photonic wires. J. Lightw. Technol. 24, 2146–2155 (2006)

    Article  Google Scholar 

  51. Passaro, V.M.N., Dell’Olio, F. Scaling and optimization of MOS optical modulators in nanometer SOI waveguides. IEEE Trans. Nanotechnol. 7, 401–408 (2008)

    Article  Google Scholar 

  52. Gardes, F.Y., Reed, G.T., et al. A sub-micron depletion-type photonic modulator in silicon on insulator. Opt. Express 13, 8845–8854 (2005)

    Article  Google Scholar 

  53. A. Liu, L. Liao et al. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15, 660–668 (2007)

    Article  Google Scholar 

  54. Watts, M. R., Trotter, D. C., et al. Ultralow power silicon microdisk modulators and switches. Proceed. 5th IEEE Int. Conf. Group IV Photonics, 4–6 (2008)

    Google Scholar 

  55. Png, C.E., Chan, S. P., et al. Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI). J. Lightw. Technol. 22, 1573–1582 (2004)

    Article  Google Scholar 

  56. Gan, F., Kartner, F.X. High-speed silicon electrooptic modulator design. IEEE Photon. Technol. Lett. 17, 1007–1009 (2005)

    Article  Google Scholar 

  57. Xu, Q., Schmidt, B., et al. Cascaded silicon micro-ring modulators for WDM optical interconnection. Opt. Express 14, 9430–9435 (2006)

    Google Scholar 

  58. Xu, Q., Manipatruni, S., et al. 12.5 Gbit/s carrier-injection-based silicon microring silicon modulators. Opt. Express. 15, 430–436 (2007)

    Article  Google Scholar 

  59. Green, W.M.J., Rooks, M.J., et al. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Express 15, 17106–17113 (2007)

    Article  Google Scholar 

  60. Soref, R.A., Bennett, B.R. Electrooptical effects in silicon. IEEE J. Quant. Electron. QE-23, 123–129 (1987)

    Article  Google Scholar 

  61. Lockwood, D.J., Pavesi, L. Silicon photonics. Springer-Verlag GmbH, Heidelberg (2004)

    Google Scholar 

  62. Rabiei, P., Steier, W. H., et al. Polymer micro-ring filters and modulators. J. Lightw. Technol. 20, 1968–1975 (2002)

    Article  Google Scholar 

  63. Baehr-Jones, T., Hochberg, M., et al. Optical modulation and detection in slotted Silicon waveguides. Opt. Express 13, 5216–5226 (2005)

    Article  Google Scholar 

  64. Haus, H.A. Waves and fields in optoelectronics. Prentice-Hall, Inc. Englewood Cliffs, New Jersey 07632, 197–206 (1984)

    Google Scholar 

  65. Akahane, Y., Asano, T., et al. Two-dimensional photonic-crystal-slab channel drop filter with flat-top response. Opt. Express 13, 2512–2530 (2005)

    Article  Google Scholar 

  66. Li, Y., Zhang, L., et al. Coupled-ring-resonator-based silicon modulator for enhanced performance. Opt. Express 16, 13342–13348 (2008)

    Article  Google Scholar 

  67. Sacher, W.D., Poon, J.K.S. Dynamics of microring resonator modulators. Opt. Express 16, 15741–15753 (2008)

    Article  Google Scholar 

  68. Zhang, L., Song, M., et al. Embedded ring resonators for micro-photonic applications, Opt. Letters 33, 1978–1980 (2008)

    Article  Google Scholar 

  69. Green, W.M.J., Rooks, M.J., et al. Optical modulation using anti-crossing between paired amplitude and phase resonators. Opt. Express 15, 17264–17272 (2007)

    Article  Google Scholar 

  70. Song, M., Zhang, L., et al. Nonlinear distortion in a silicon microring-based electro-optic modulator for analog optical links. IEEE J. Sel. Top. Quant. Electron., to be published Jan./Feb. 2010.

    Google Scholar 

  71. Heebner, J.E., Wong, V., et al. Optical transmission characteristics of fiber ring resonators. IEEE J. Quant. Electron. 40, 726–730 (2004)

    Article  Google Scholar 

  72. Stapleton, A., Farrell, S., et al. Optical phase characterization of active semiconductor microdisk resonators in transmission. Appl. Phys. Lett. 88, 031106 (2006)

    Article  Google Scholar 

  73. Zhang, L., Li, Y., et al. Silicon-based single ring resonator modulators for intensity modulation, IEEE J. Sel. Top. Quant. Electron., to be published Jan./Feb. 2010.

    Google Scholar 

  74. Almeida, V.R., Barrios, C.A., et al. All-optical switching on a silicon chip. Opt. Lett. 29, 2867–2869 (2004)

    Article  Google Scholar 

  75. Downie, J.D. Relationship of Q penalty to eye-closure penalty for NRZ and RZ signals with signal-dependent noise. J. Lightw. Technol. 23, 2031–2038 (2005)

    Article  Google Scholar 

  76. Spirit, D.M., Ellis, A.D., et al. Optical time division multiplexing: Systems and networks. IEEE Commun. Mag. 32, 56–62 (1994)

    Article  Google Scholar 

  77. Hansryd, J., Andrekson, P.A., et al. Fiber-based optical parametric amplifiers and their applications IEEE J. Sel. Top. Quant. Electron. 8, 506–520 (2002)

    Google Scholar 

  78. Igarashi, K., Kikuchi, K. Optical signal processing by phase modulation and subsequent spectral filtering aiming at applications to ultrafast optical communication systems. IEEE J. Sel. Top. Quant. Electron. 14, 551–565 (2008)

    Article  Google Scholar 

  79. Yariv, A. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett. 36, 321 (2000)

    Article  Google Scholar 

  80. Gnauck, A.H., Winzer, P.J. Optical phase-shift-keyed transmission. J. Lightw. Technol. 23, 115–130 (2005)

    Article  Google Scholar 

  81. Winzer, P.J., Essiambre, R.-J. Advanced optical modulation formats. Proceed. of IEEE 94, 952–985 (2006)

    Article  Google Scholar 

  82. Ciaramella, E., Contestabile, G., et al. A novel scheme to detect optical DPSK signals. IEEE Photon. Technol. Lett. 16, 2138–2140 (2004)

    Article  Google Scholar 

  83. Lyubomirsky, I., Chien, C. DPSK demodulator based on optical discriminator filter. IEEE Photon. Technol. Lett. 17, 492–494 (2005)

    Article  Google Scholar 

  84. Christen, L., Lize, Y. K., et al. Fiber Bragg grating balanced DPSK demodulation. Proceed. of IEEE LEOS Annual Meeting, 563–564 (2006)

    Google Scholar 

  85. Van, V., Ding, T.-N., et al. Group delay enhancement in circular arrays of microring resonators. IEEE Photon. Technol. Lett. 20, 997–999 (2008)

    Article  Google Scholar 

  86. Xia, F., Sekaric, L., et al. Ultra-compact optical buffers on a silicon chip. Nat. Photon. 1, 65–71 (2007)

    Article  Google Scholar 

  87. Xu, Q., Fattal, D., et al. Silicon microring resonators with 1.5-μm radius. Opt. Express 16, 4309–4315 (2008)

    Article  Google Scholar 

  88. Zhang, L., Yang, J.-Y., et al. Monolithic modulator and demodulator of DQPSK signals based on silicon microrings. Opt. Lett. 33, 1428–1430 (2008)

    Article  Google Scholar 

  89. Zhang, L., Song, M., et al. Generating spectral-efficient duobinary data format from silicon ring resonator modulators. ECOC paper Tu.3.C.4. (2008)

    Google Scholar 

  90. Udem, T., Holzwarth, R., et al. Optical frequency metrology. Nature 416, 233–237 (2002)

    Article  Google Scholar 

  91. Cundiff, S.T., Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003)

    Article  Google Scholar 

  92. Diddams, S.A., Jones, D.J., et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84, 5102–5105 (2000)

    Article  Google Scholar 

  93. Thorpe, M.J., Moll, K.D., et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006)

    Article  Google Scholar 

  94. Murphy, M.T., Udem, Th., et al. High-precision wavelength calibration with laser frequency combs. Mon. Not. R. Astron. Soc. 380, 839–847 (2007)

    Article  Google Scholar 

  95. Weiner, A.M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000)

    Article  Google Scholar 

  96. Jiang, Z., Huang, C., et al. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat. Photon. 1, 463–467 (2007)

    Article  Google Scholar 

  97. Kippenberg, T.J., Spillane, S.M., et al. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004)

    Article  Google Scholar 

  98. Del’Haye, P., Schliesser, A., et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007)

    Article  Google Scholar 

  99. Dulkeith, E., Xia, F., et al. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express 14, 3853–3863 (2006)

    Article  Google Scholar 

  100. Turner, A.C., Manolatou, C., et al. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express 14, 4357–4362 (2006)

    Article  Google Scholar 

  101. Liu, X.P., Green, W.M.J., et al. Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires. Opt. Lett. 33, 2889–2891 (2008)

    Article  Google Scholar 

  102. Zhang, L., Yue, Y., et al. Achieving uniform chromatic dispersion over a wide wavelength range in highly nonlinear slot waveguides. Frontiers in Optics 2009, paper FThE2 (OSA, Oct. 11–15, 2009, San Jose, CA, USA).

    Google Scholar 

Download references

Acknowledgment:

The authors would like to thank Dr. Raymond G Beausoleil, Dr. Muping Song, Jeng-Yuan Yang, and Yunchu Li for helpful discussions. This work was sponsored by HP Laboratories and the DARPA SPAWAR program (San Diego) with contract number N66001-08-1-2058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Zhang, L., Willner, A.E. (2010). Microresonators for Communication and Signal Processing Applications. In: Chremmos, I., Schwelb, O., Uzunoglu, N. (eds) Photonic Microresonator Research and Applications. Springer Series in Optical Sciences, vol 156. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1744-7_19

Download citation

Publish with us

Policies and ethics