MEMS-Tuned Microresonators

  • Ming-Chang M. Lee
  • Ming C. Wu
  • David Leuenberger
Part of the Springer Series in Optical Sciences book series (SSOS, volume 156)


Micro-electro-mechanical systems (MEMS) is a key enabling technology to realize scalable and reconfigurable optical components. Since Peterson (1982) demonstrated the first MEMS scanning mirror, many free-space optical MEMS including digital micromirror devices (DMD), micromirror switches, and optical scanners have been accomplished. In guided-wave optics, MEMS have demonstrated the ability for controlling evanescent and butt coupling between waveguides. This chapter investigates the integration of MEMS actuators with optical microresonators and introduces a new family of tunable photonic devices.

Most tunable microresonators rely on electro-optics, thermo-optics, free-carrier dispersion or gain/loss control to vary the index of refraction, which can be classified as “material modulation.” For MEMS-tuned microresonators, however, tunability comes from the structure or the configuration of microresonators modified by mechanical actuation, which is termed as “configuration modulation.” Using MEMS to alter the configuration of microresonators has various advantages. First, the functionality of photonic devices based on the resonators is adjustable or tunable. Second, unintentional variation of spacing between components after fabrication may be ameliorated by fine-tuning the configuration.

The content of this chapter is organized as follows. Section 1 introduces control factors to implement tunable microresonators and the model of corresponding optical transfer functions. A summary of the state-of-the-art tuning mechanisms is also given. Section 2 demonstrates MEMS variable couplers for tunable microdisk resonators. Several functions, including tunable coupling regimes, tunable slow light, dynamic add-drop filters, and dynamic bandwidth (BW) allocation, are presented. Section 3 shows that the quality factor of microresonators can be reduced by attaching an absorber through MEMS actuators. A wavelength switch is demonstrated. Section 4 gives an example of that the resonant wavelength tuned through varying the cavity length of microresonators. Based on this idea, tunable filters and lasers are accomplished by incorporating MEMS actuators.


Amplify Spontaneous Emission Resonant Wavelength Distribute Bragg Reflector Coupling Ratio Optical Transfer Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge Prof. A. Uskov from the P.N. Lebedev Physical Institute, Moscow, for helpful discussions and the support of DARPA for the work on tunable slow light. Furthermore they would like to acknowledge the contribution by Dr. B. Zhang and Prof. A.E. Willner from USC in the experiment of bandwidth-tunable filters.


  1. 1.
    Little, B.E., Chu, S.T., et al. Microring resonator channel dropping filters. J. Lightw. Technol. 15, 998–1005 (1997)CrossRefGoogle Scholar
  2. 2.
    Chu, S.T., Little, B.E., et al. Second-order filter response from parallel coupled glass microring resonators. IEEE Photon. Technol. Lett. 11, 1426–1428 (1999)CrossRefGoogle Scholar
  3. 3.
    Little, B.E., Chu, S.T., et al. Microring resonator arrays for VLSI photonics. IEEE Photon. Technol. Lett. 12, 323–325 (2000)CrossRefGoogle Scholar
  4. 4.
    Lenz, G., Eggleton, B.J., et al. Dispersive properties of optical filters for WDM systems. IEEE J. Quant. Electron. 34, 1390–1402 (1998)CrossRefGoogle Scholar
  5. 5.
    Xu, Q., Manipatruni, S., et al. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Exp. 15, 430–436 (2007)CrossRefGoogle Scholar
  6. 6.
    Sadagopan, T., Choi, S.J., et al. Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation. IEEE Photon. Technol. Lett. 17, 414–416 (2005)CrossRefGoogle Scholar
  7. 7.
    Djordjev, K., Choi, S.J., et al. Gain trimming of the resonant characteristics in vertically coupled InP microdisk switches. Appl. Phys. Lett. 80, 3467–3469 (2002)CrossRefGoogle Scholar
  8. 8.
    Djordjev, K., Choi, S.J., et al. Vertically coupled InP microdisk switching devices with electroabsorptive active regions. IEEE Photon. Technol. Lett. 14, 1115–1117 (2002)CrossRefGoogle Scholar
  9. 9.
    Liu, A., Jones, R., et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427, 615–618 (2004)CrossRefGoogle Scholar
  10. 10.
    Rabiei, P., Steier, W.H., et al. Polymer micro-ring filters and modulators. IEEE J. Lightw. Technol. 20, 1968–1975 (2002)CrossRefGoogle Scholar
  11. 11.
    Djordjev, K., Choi, S.J., et al. Microdisk tunable resonant filters and switches. IEEE Photon. Technol. Lett. 14, 828–830 (2002)CrossRefGoogle Scholar
  12. 12.
    Madsen, C.K., Walker, J.A., et al. Tunable dispersion compensating MEMS all-pass filter. IEEE Photon. Technol. Lett. 12, 651–653 (2000)CrossRefGoogle Scholar
  13. 13.
    Lee, M.C.M., Wu, M.C. MEMS-actuated microdisk resonators with variable power coupling ratios. IEEE Photon. Technol. Lett. 17, 1034–1036 (2005)CrossRefGoogle Scholar
  14. 14.
    Lee, M.C.M., Wu, M.C. Tunable coupling regimes of silicon microdisk resonators using MEMS actuators. Opt. Exp. 14, 4703–4712 (2006)CrossRefGoogle Scholar
  15. 15.
    Lee, M.C.M., Wu, M.C. Thermal annealing in hydrogen for 3D profile transformation on silicon-on-insulator and sidewall roughness reduction. J. Microelectromech. Syst. 15, 338–343 (2006)CrossRefGoogle Scholar
  16. 16.
    Yao, J., Leuenberger, D., et al. Silicon microtoroidal resonators with integrated MEMS tunable coupler. IEEE J. Select. Topics Quant. Electron. 13, 202–208 (2007)CrossRefGoogle Scholar
  17. 17.
    Tucker, R.S., Ku, P.C., et al. Slow-light optical buffers: Capabilities and fundamental limitations. J. Lightw. Technol. 23, 4046–4066 (2005)CrossRefGoogle Scholar
  18. 18.
    Hau, L.V., et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999)CrossRefGoogle Scholar
  19. 19.
    Bigelow, M.S., Lepeshkin, N.N., et al. Superluminal and slow light propagation in a room-temperature solid. Science 301, 200–202 (2003)CrossRefGoogle Scholar
  20. 20.
    J. HegartyEffects of hole burning on pulse-propagation in GaAs quantum wells. Phys. Rev. B 25, 4324–4326 (1982)Google Scholar
  21. 21.
    Heebner, J.E., Chak, P., et al. Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. J. Opt. Soc. Am. B; Opt. Phys. 21, 1818–1832 (2004)CrossRefGoogle Scholar
  22. 22.
    Zhao, X., Palinginis, P., et al. Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier. Opt. Exp. 13, 7899–7904 (2005)CrossRefGoogle Scholar
  23. 23.
    Sharping, J.E., Okawachi, Y., et al. All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion. Opt. Express 13, 7872–7877 (2005)CrossRefGoogle Scholar
  24. 24.
    Pereira, S., Sipe, J.E., et al. Gap solitons in a two-channel microresonator structure. Opt. Lett. 27, 536–538 (2002)CrossRefGoogle Scholar
  25. 25.
    Poon, J.K.S., Zhu, L., et al. Transmission and group delay of microring coupled-resonator optical waveguides. Opt. Lett. 31, 456–458 (2006)CrossRefGoogle Scholar
  26. 26.
    Notomi, M., Kuramochi, E., et al. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nature Photon. 2, 741–747 (2008)CrossRefGoogle Scholar
  27. 27.
    Chu, S.T., Little, B.E., et al. Eight-channel add-drop filter using vertically coupled microring resonators over a cross grid. IEEE Photon. Technol. Lett. 11, 691–693 (1999)CrossRefGoogle Scholar
  28. 28.
    Lee, M.C.M., Wu, M.C. Variable bandwidth of dynamic add-drop filters based on coupling-controlled microdisk resonators. Opt. Lett. 31, 2444–2446 (2006)CrossRefGoogle Scholar
  29. 29.
    Zhang, B., Leuenberger, D., et al. Experimental demonstration of dynamic bandwidth allocation using a MEMS-actuated bandwidth-tunable microdisk resonator filter. IEEE Photon. Technol. Lett. 19, 1508–1510 (2007)CrossRefGoogle Scholar
  30. 30.
    Nielson, G.N., Seneviratne, D., et al. Integrated wavelength-selective optical MEMS switching using ring resonator filters. IEEE Photon. Technol. Lett. 17, 1190–1192 (2005)CrossRefGoogle Scholar
  31. 31.
    Irmer, S., Daleiden, J., et al. Ultralow biased widely continuously tunable Fabry-Perot filter. IEEE Photon. Technol. Lett. 15, 434–436 (2003)CrossRefGoogle Scholar
  32. 32.
    Aziz, M., Meissner, P. et al. WDM system integration of micromachined tunable two-chip Fabry-Perot filters. Opt. Comm. 208, 61–68 (2002)CrossRefGoogle Scholar
  33. 33.
    Correia, J.H., Bartek, M., et al. Bulk-micromachined tunable Fabry-Perot microinterferometer for the visible spectral range. Sensor Actuators A 76, 191–196 (1999)CrossRefGoogle Scholar
  34. 34.
    Peerlings, J., Dehé, A., et al. Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter. IEEE Photon. Technol. Lett. 9, 1235–1237 (1997)CrossRefGoogle Scholar
  35. 35.
    Spisser, A., Ledantec, R., et al Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications. IEEE Photon. Technol. Lett. 10, 1259–1261 (1998)CrossRefGoogle Scholar
  36. 36.
    Vail, E.C., Li, G.S., et al. High performance and novel effects of micromechanical tunable vertical-cavity lasers. IEEE J. Select. Topics Quant. Electron. 3, 691–697 (1997)CrossRefGoogle Scholar
  37. 37.
    Huang, M.C.Y., Zhou, Y., et al. Nano electro-mechanical optoelectronic tunable VCSEL. Opt. Exp. 15, 1222–1227 (2007)CrossRefGoogle Scholar
  38. 38.
    Huang, M.C.Y., Zhou, Y., et al. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nature Photon. 1, 119–122 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2010

Authors and Affiliations

  • Ming-Chang M. Lee
    • 1
  • Ming C. Wu
    • 2
  • David Leuenberger
    • 3
  1. 1.Department of Electrical Engineering and Institute of Photonics TechnologiesNational Tsing Hua UniversityHsinChuTaiwan
  2. 2.Department of Electrical Engineering & Computer SciencesUniversity of CaliforniaBerkeleyUSA
  3. 3.CSEM Centre Suisse d’Electronique et de Microtechnique SAZürichSwitzerland

Personalised recommendations