Skip to main content

Photonic Molecules and Spectral Engineering

  • Chapter
  • First Online:
Book cover Photonic Microresonator Research and Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 156))

Abstract

This chapter reviews the fundamental optical properties and applications of photonic molecules (PMs) – photonic structures formed by electromagnetic coupling of two or more optical microcavities (photonic atoms). Controllable interaction between light and matter in photonic atoms can be further modified and enhanced by the manipulation of their mutual coupling. Mechanical and optical tunability of PMs not only adds new functionalities to microcavity-based optical components but also paves the way for their use as testbeds for the exploration of novel physical regimes in atomic physics and quantum optics. Theoretical studies carried on for over a decade yielded novel PM designs that make possible lowering thresholds of semiconductor microlasers, producing directional light emission, achieving optically induced transparency, and enhancing sensitivity of microcavity-based bio-, stress-, and rotation sensors. Recent advances in material science and nano-fabrication techniques make possible the realization of optimally tuned PMs for cavity quantum electrodynamic experiments, classical and quantum information processing, and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vahala, K.J. Optical microcavities. Nature 424, 839–846 (2003)

    Article  Google Scholar 

  2. Vahala, K.J. Optical Microcavities. World Scientific, Singapore (2004)

    Google Scholar 

  3. Benson, T.M., Boriskina, S.V., et al. Micro-optical resonators for microlasers and integrated optoelectronics. In: Frontiers in Planar Lightwave Circuit Technology, pp. 39–70. Springer, Berlin (2006)

    Book  Google Scholar 

  4. Matsko, A.B., Ilchenko, V.S. Optical resonators with whispering-gallery modes-part I: basics. IEEE J. Select. Top. Quant. Electron. 12, 3–14 (2006)

    Article  Google Scholar 

  5. Ilchenko, V.S., Matsko, A.B. Optical resonators with whispering-gallery modes-part II: applications. IEEE J. Select. Top. Quant. Electron. 12, 15–32 (2006)

    Article  Google Scholar 

  6. Chang, R.K., Campillo, A.J. Optical processes in microcavities. World Scientific, Singapore (1996)

    Google Scholar 

  7. Bayer, M., Gutbrod, T., et al. Optical modes in photonic molecules. Phys. Rev. Lett. 81, 2582 (1998)

    Article  Google Scholar 

  8. Boriskina, S.V., Benson, T.M., et al. Photonic molecules made of matched and mismatched microcavities: new functionalities of microlasers and optoelectronic components. In: Laser Resonators and Beam Control IX, San Jose, CA, USA (2007)

    Google Scholar 

  9. Lin, B.S. Variational analysis for photonic molecules: Application to photonic benzene waveguides. Phys. Rev. E. 68, 036611 (2003)

    Article  Google Scholar 

  10. Yariv, A., Xu, Y., et al. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999)

    Article  Google Scholar 

  11. Melloni, A., Morichetti, F., et al. Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures. Opt. Quant. Electron. 35, 365–379 (2003)

    Article  Google Scholar 

  12. Xia, F., Sekaric, L., et al. Ultracompact optical buffers on a silicon chip. Nat. Photon. 1, 65–71 (2007)

    Article  Google Scholar 

  13. Poon, J.K.S., Scheuer, J., et al. Designing coupled-resonator optical waveguide delay lines. J. Opt. Soc. Am. B. 21, 1665–1673 (2004)

    Article  Google Scholar 

  14. Armitage, A., Skolnick, M.S., et al. Optically induced splitting of bright excitonic states in coupled quantum microcavities. Phys. Rev. B. 57, 14877 (1998)

    Article  Google Scholar 

  15. Ishii, S., Baba, T.: Bistable lasing in twin microdisk photonic molecules. Appl. Phys. Lett. 87, 181102–181103 (2005)

    Article  Google Scholar 

  16. Atlasov, K.A., Karlsson, K.F., et al. Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities. Opt. Express. 16, 16255–16264 (2008)

    Article  Google Scholar 

  17. Moller, B.M., Woggon, U., et al. Photonic molecules doped with semiconductor nanocrystals. Phys. Rev. B. 70, 115323–115325 (2004)

    Article  Google Scholar 

  18. Rakich, P.T., Popovic, M.A., et al. Trapping, corralling and spectral bonding of optical resonances through optically induced potentials. Nat. Photon. 1, 658–665 (2007)

    Article  Google Scholar 

  19. Ilchenko, V.S., Gorodetsky, M.L., et al. Coupling and tunability of optical whispering-gallery modes: a basis for coordinate meter. Opt. Comm. 107, 41–48 (1994)

    Article  Google Scholar 

  20. Lu, T.-W., Lee, P.-T. Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity. Opt. Express. 17, 1518–1526 (2009)

    Article  Google Scholar 

  21. Peng, C., Li, Z., et al. Optical gyroscope based on a coupled resonator with the all-optical analogous property of electromagnetically induced transparency. Opt. Express. 15, 3864–3875 (2007)

    Article  Google Scholar 

  22. Scheuer, J., Yariv, A. Sagnac effect in coupled-resonator slow-light waveguide structures. Phys. Rev. Lett. 96, 053901–053904 (2006)

    Article  Google Scholar 

  23. Steinberg, B.Z., Boag, A. Splitting of microcavity degenerate modes in rotating photonic crystals: the miniature optical gyroscopes. J. Opt. Soc. Am. B. 24, 142–151 (2007)

    Article  MathSciNet  Google Scholar 

  24. Francois, A., Himmelhaus, M. Optical biosensor based on whispering gallery mode excitations in clusters of microparticles. Appl. Phys. Lett. 92, 141107–141103 (2008)

    Google Scholar 

  25. Boriskina, S.V. Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis. J. Opt. Soc. Am. B. 23, 1565–1573 (2006)

    Article  Google Scholar 

  26. Hryniewicz, J.V., Absil, P.P., et al. Higher order filter response in coupled microring resonators. IEEE Photon. Technol. Lett. 12, 320–322 (2000)

    Article  Google Scholar 

  27. Mario, L.Y., Lim, D.C.S., et al. Proposal for an ultranarrow passband using two coupled rings. IEEE Photon. Technol. Lett. 19, 1688–1690 (2007)

    Article  Google Scholar 

  28. Chremmos, I., Uzunoglu, N. Reflective properties of double-ring resonator system coupled to a waveguide. IEEE Photon. Technol. Lett. 17, 2110–2112 (2005)

    Article  Google Scholar 

  29. Xia, F., Rooks, M., et al. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt. Express. 15, 11934–11941 (2007)

    Article  Google Scholar 

  30. Savchenkov, A.A., Ilchenko, V.S., et al. High-order tunable filters based on a chain of coupled crystalline whispering gallery-mode resonators. IEEE Photon. Technol. Lett. 17, 136–138 (2005)

    Article  Google Scholar 

  31. Xiao, Y.-F., Gaddam, V., et al. Coupled optical microcavities: an enhanced refractometric sensing configuration. Opt. Express. 16, 12538–12543 (2008)

    Article  Google Scholar 

  32. Passaro, V.M.N., De Leonardis, F. Modeling and design of a novel high-sensitivity electric field silicon-on-insulator sensor based on a whispering-gallery-mode resonator. IEEE J. Select. Top. Quant. Electron. 12, 124–133 (2006)

    Article  Google Scholar 

  33. Boriskina, S.V. Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules. Opt. Lett. 31, 338–340 (2006)

    Article  Google Scholar 

  34. Boriskina, S.V., Benson, T.M., et al. Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures. IEEE J. Select. Top. Quant. Electron. 12, 1175–1182 (2006)

    Article  Google Scholar 

  35. Smotrova, E.I., Nosich, A.I., et al. Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes. Opt. Lett. 31, 921–923 (2006)

    Article  Google Scholar 

  36. Shang, L., Liu, L., et al. Single-frequency coupled asymmetric microcavity laser. Opt. Lett. 33, 1150–1152 (2008)

    Article  Google Scholar 

  37. Cuthbertson, B.D., Tobar, M.E., et al. Sensitivity and optimization of a high-Q sapphire dielectric motion-sensing transducer. IEEE Trans. Ultrason. Ferroelect. Freq. Control. 45, 1303–1313 (1998)

    Article  Google Scholar 

  38. Annino, G., Cassettari, M., et al. Analysis of ‘stacked’ whispering gallery dielectric resonators for submillimeter ESR spectroscopy. Chem. Phys. Lett. 281, 306–311 (1997)

    Google Scholar 

  39. Xiao Hu, J., Guillon, P., et al. Whispering-Gallery modes of dielectric structures: applications to millimeter-wave bandstop filters. IEEE Trans. Microwave Theory Tech. 35, 1169–1175 (1987)

    Article  Google Scholar 

  40. Pance, K., Viola, L., et al. Tunneling proximity resonances: interplay between symmetry and dissipation. Phys. Lett. A. 268, 399–405 (2000)

    Article  Google Scholar 

  41. Heiss, W.D. Repulsion of resonance states and exceptional points. Phys. Rev. E. 61, 929 (2000)

    Article  Google Scholar 

  42. Hartmann, M.J., Brandão, F.G.S.L., et al. Quantum many-body phenomena in coupled cavity arrays. Laser Photon. Rev. 2, 527–556 (2008)

    Article  Google Scholar 

  43. Hartmann, M.J., Brandao, F.G.S.L., et al. Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006)

    Article  Google Scholar 

  44. Gerace, D., Tureci, H.E., et al. The quantum-optical Josephson interferometer. Nat Phys. 5, 281–284 (2009)

    Article  Google Scholar 

  45. Angelakis, D.G., Santos, M.F., et al. A proposal for the implementation of quantum gates with photonic-crystal waveguides. Phys. Lett. A. 362, 377–380 (2007)

    Article  Google Scholar 

  46. Greentree, A.D., Tahan, C., et al. Quantum phase transitions of light. Nat. Phys. 2, 856–861 (2006)

    Article  Google Scholar 

  47. Cho, J., Angelakis, D.G., et al. Heralded generation of entanglement with coupled cavities. Phys. Rev. A. 78, 022323–0422324 (2008)

    Article  Google Scholar 

  48. Nordlander, P., Oubre, C., et al. Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004)

    Article  Google Scholar 

  49. Miyazaki, H., Jimba, Y. Ab initio tight-binding description of morphology-dependent resonance in a bisphere. Phys. Rev. B. 62, 7976 (2000)

    Article  Google Scholar 

  50. Smotrova, E.I., Nosich, A.I., et al. Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing. IEEE J. Select. Top. Quant. Electron. 12, 78–85 (2006)

    Article  Google Scholar 

  51. Smith, D.D., Chang, H., et al. Whispering-gallery mode splitting in coupled microresonators. J. Opt. Soc. Am. B. 20, 1967–1974 (2003)

    Article  Google Scholar 

  52. Rakovich, Y.P., Donegan, J.F., et al. Fine structure of coupled optical modes in photonic molecules. Phys. Rev. A. 70, 051801–051804 (2004)

    Article  Google Scholar 

  53. Nakagawa, A., Ishii, S., et al. Photonic molecule laser composed of GaInAsP microdisks. Appl. Phys. Lett. 86, 041112–041113 (2005)

    Article  Google Scholar 

  54. Deych, L.I., Schmidt, C., et al. Optical coupling of fundamental whispering-gallery modes in bispheres. Phys. Rev. A. 77, 051801–051804 (2008)

    Article  Google Scholar 

  55. Mukaiyama, T., Takeda, K., et al. Tight-binding photonic molecule modes of resonant bispheres. Phys. Rev. Lett. 82, 4623 (1999)

    Article  Google Scholar 

  56. Preu, S., Schwefel, H.G.L., et al. Coupled whispering gallery mode resonators in the Terahertz frequency range. Opt. Express. 16, 7336–7343 (2008)

    Article  Google Scholar 

  57. Ryu, J.-W., Lee, S.-Y., et al. Directional interacting whispering-gallery modes in coupled dielectric microdisks. Phys. Rev. A. 74, 013804–013807 (2006)

    Article  Google Scholar 

  58. Rakovich, Y.P., Gerlach, M., et al. Spontaneous emission from semiconductor nanocrystals in coupled spherical microcavities. Phys. Stat. Sol. (c). 2, 858–861 (2005)

    Article  Google Scholar 

  59. Rakovich, Y.P., Gerlach, M., et al. Confined optical modes in small photonic molecules with semiconductor nanocrystals. J. Appl. Phys. 96, 6761–6765 (2004)

    Article  Google Scholar 

  60. Naweed, A., Farca, G., et al. Induced transparency and absorption in coupled whispering-gallery microresonators. Phys. Rev. A. 71, 043804 (2005)

    Article  Google Scholar 

  61. Li, J.-J., Wang, J.-X., et al. Mode coupling between first- and second-order whispering-gallery modes in coupled microdisks. Opt. Lett. 32, 1563–1565 (2007)

    Article  Google Scholar 

  62. Deych, L.I., Roslyak, O. Photonic band mixing in linear chains of optically coupled microspheres. Phys. Rev. E. 73, 036606–036612 (2006)

    Article  Google Scholar 

  63. Bayer, M., Gutbrod, T., et al. Optical demonstration of a crystal band structure formation. Phys. Rev. Lett. 83, 5374 (1999)

    Article  Google Scholar 

  64. Deych, L., Schmidt, C., et al. Propagation of the fundamental whispering gallery modes in a linear chain of microspheres. Appl. Phys. B. 93, 21–30 (2008)

    Article  Google Scholar 

  65. Hara, Y., Mukaiyama, T., et al. Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres. Phys. Rev. Lett. 94, 203905 (2005)

    Article  Google Scholar 

  66. Möller, B.M., Woggon, U., et al. Coupled-resonator optical waveguides doped with nanocrystals. Opt. Lett. 30, 2116–2118 (2005)

    Article  Google Scholar 

  67. Happ, T.D., Kamp, M., et al. Two-dimensional photonic crystal coupled-defect laser diode. Appl. Phys. Lett. 82, 4–6 (2003)

    Article  Google Scholar 

  68. Notomi, M., Kuramochi, E., et al. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nat. Photon. 2, 741–747 (2008)

    Article  Google Scholar 

  69. Poon, J., Scheuer, J., et al. Matrix analysis of microring coupled-resonator optical waveguides. Opt. Express. 12, 90–103 (2004)

    Article  Google Scholar 

  70. Altug, H., Vuckovic, J. Photonic crystal nanocavity array laser. Opt. Express. 13, 8819–8828 (2005)

    Article  Google Scholar 

  71. Chremmos, I., Uzunoglu, N. Modes of the infinite square lattice of coupled microring resonators. J. Opt. Soc. Am. A. 25, 3043–3050 (2008)

    Article  Google Scholar 

  72. Boriskina, S.V. Spectral engineering of bends and branches in microdisk coupled-resonator optical waveguides. Opt. Express. 15, 17371–17379 (2007)

    Article  Google Scholar 

  73. Smith, D.D., Chang, H., et al. Coupled-resonator-induced transparency. Phys. Rev. A. 69, 063804 (2004)

    Article  Google Scholar 

  74. Xu, Q., Sandhu, S., et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96, 123901–123904 (2006)

    Article  Google Scholar 

  75. Maleki, L., Matsko, A.B., et al. Tunable delay line with interacting whispering-gallery-mode resonators. Opt. Lett. 29, 626–628 (2004)

    Article  Google Scholar 

  76. Totsuka, K., Kobayashi, N., et al. Slow light in coupled-resonator-induced transparency. Phys. Rev. Lett. 98, 213904-4 (2007)

    Google Scholar 

  77. Boriskina, S.V. Coupling of whispering-gallery modes in size-mismatched microdisk photonic molecules. Opt. Lett. 32, 1557–1559 (2007)

    Article  Google Scholar 

  78. Ishii, S., Nakagawa, A., et al. Modal characteristics and bistability in twin microdisk photonic molecule lasers. IEEE J. Select. Top. Quant. Electron. 12, 71–77 (2006)

    Article  Google Scholar 

  79. Tomita, M., Totsuka, K., et al. Tunable Fano interference effect in coupled-microsphere resonator-induced transparency. J. Opt. Soc. Am. B. 26, 813–818 (2009)

    Article  Google Scholar 

  80. Ashili, S.P., Astratov, V.N., et al. The effects of inter-cavity separation on optical coupling in dielectric bispheres. Opt. Express. 14, 9460–9466 (2006)

    Article  Google Scholar 

  81. Kanaev, A.V., Astratov, V.N., et al. Optical coupling at a distance between detuned spherical cavities. Appl. Phys. Lett. 88, 111111–111113 (2006)

    Article  Google Scholar 

  82. Povinelli, M., Johnson, S., et al. High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators. Opt. Express. 13, 8286–8295 (2005)

    Article  Google Scholar 

  83. Taniyama, H., Notomi, M., et al. Strong radiation force induced in two-dimensional photonic crystal slab cavities. Phys. Rev. B. 78, 165129-7 (2008)

    Google Scholar 

  84. Ng, J., Chan, C.T. Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes. Appl. Phys. Lett. 92, 251109–3 (2008)

    Google Scholar 

  85. Rakovich, Y.P., Boland, J.J., et al. Tunable photon lifetime in photonic molecules: a concept for delaying an optical signal. Opt. Lett. 30, 2775–2777 (2005)

    Article  Google Scholar 

  86. Fuller, K.A. Optical resonances and two-sphere systems. Appl. Opt. 30, 4716–4731 (1991)

    Article  Google Scholar 

  87. Mackowski, D.W. Calculation of total cross sections of multiple-sphere clusters. J. Opt. Soc. Am. A. 11, 2851–2861 (1994)

    Article  Google Scholar 

  88. Xu, Y.-l. Electromagnetic scattering by an aggregate of spheres. Appl. Opt. 34, 4573–4588 (1995)

    Article  Google Scholar 

  89. Pishko, S.V., Sewell, P.D., et al. Efficient analysis and design of low-loss whispering-gallery-mode coupled resonator optical waveguide bends. J. Lightwave Technol. 25, 2487–2494 (2007)

    Article  Google Scholar 

  90. Chremmos, I., Uzunoglu, N. Integral equation analysis of microring and microdisk coupled-resonator optical waveguides. IEEE Photon. Technol. Lett. 18, 1173–1175 (2006)

    Article  Google Scholar 

  91. Guttroff, G., Bayer, M., et al. Isomeric photonic molecules formed from coupled microresonators. Phys. Rev. E. 63, 036611 (2001)

    Article  Google Scholar 

  92. Boriskina, S.V., Benson, et al. Highly efficient design of spectrally engineered whispering-gallery-mode microlaser resonators. Opt. Quantum Electron. 35, 545–559 (2003)

    Article  Google Scholar 

  93. Boriskina, S.V., Benson, T.M., et al. Spectral shift and Q change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness. J. Opt. Soc. Am. B. 21, 1792–1796 (2004)

    Article  Google Scholar 

  94. Boriskina, S.V., Benson, T.M., et al. Effect of a layered environment on the complex natural frequencies of two-dimensional WGM dielectric-ring resonators. J. Lightwave Technol. 20, 1563 (2002)

    Article  Google Scholar 

  95. Smotrova, E.I., Nosich, A.I., et al. Ultralow lasing thresholds of pi-type supermodes in cyclic photonic molecules composed of submicron disks with monopole and dipole modes. IEEE Photon. Technol. Lett. 18, 1993–1995 (2006)

    Article  Google Scholar 

  96. Oda, K., Takato, N., et al. A wide-FSR waveguide double-ring resonator for optical FDM transmission systems. J. Lightw. Technol. 9, 728–736 (1991)

    Article  Google Scholar 

  97. Wu, X., Li, H., et al. Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser. Appl. Phys. Lett. 93, 081105-3 (2008)

    Google Scholar 

  98. Chern, G.D., Tureci, H.E., et al. Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars. Appl. Phys. Lett. 83, 1710–1712 (2003)

    Article  Google Scholar 

  99. Gerlach, M., Rakovich, Y.P., et al. Nanojets and directional emission in symmetric photonic molecules. Opt. Express. 15, 17343–17350 (2007)

    Article  Google Scholar 

  100. Khurgin, J.B., Tucker, R.S. Slow light: science and applications. CRC Press, Boca Raton, FL (2008)

    Book  Google Scholar 

  101. Chen, Z., Taflove, A., et al. Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres. Opt. Lett. 31, 389–391 (2006)

    Article  Google Scholar 

  102. Mitsui, T., Wakayama, Y., et al. Observation of light propagation across a 90° corner in chains of microspheres on a patterned substrate. Opt. Lett. 33, 1189–1191 (2008)

    Article  Google Scholar 

  103. Möller, B.M., Woggon, U., et al. Band formation in coupled-resonator slow-wave structures. Opt. Express. 15, 17362–17370 (2007)

    Article  Google Scholar 

  104. Wang, C.-L., Chuang, Y.-H., et al. Two-wavelength interferometer based on a two-color laser-diode array and the second-order correlation technique. Opt. Lett. 20, 1071 (1995)

    Article  Google Scholar 

  105. Wang, C.-L., Pan, C.-L. Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array. Opt. Lett. 20, 1292–1294 (1995)

    Article  Google Scholar 

  106. Gusev, D.G., Soboleva, I.V., et al. Enhanced second-harmonic generation in coupled microcavities based on all-silicon photonic crystals. Phys. Rev. B. 68, 233303 (2003)

    Article  Google Scholar 

  107. Michler, P., Hilpert, M., et al. Dynamics of dual-wavelength emission from a coupled semiconductor microcavity laser. Appl. Phys. Lett. 70, 2073–2075 (1997)

    Article  Google Scholar 

  108. Carlin, J.F., Stanley, R.P., et al. The dual wavelength Bi-vertical cavity surface-emitting laser. Appl. Phys. Lett. 75, 908–910 (1999)

    Article  Google Scholar 

  109. Pellandini, P., Stanley, R.P., et al. Dual-wavelength laser emission from a coupled semiconductor microcavity. Appl. Phys. Lett. 71, 864–866 (1997)

    Article  Google Scholar 

  110. Vlasov, Y., Green, W.M.J., et al. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat. Photon. 2, 242–246 (2008)

    Article  Google Scholar 

  111. Ilchenko, V.S., Savchenkov, A.A., et al. Whispering-gallery-mode electro-optic modulator and photonic microwave receiver. J. Opt. Soc. Am. B. 20, 333–342 (2003)

    Article  MathSciNet  Google Scholar 

  112. Emelett, S.J., Soref, R. Design and simulation of silicon microring optical routing switches. J. Lightwave Technol. 23, 1800 (2005)

    Article  Google Scholar 

  113. Shopova, S., Sun, Y., et al. Highly sensitive tuning of coupled optical ring resonators by microfluidics. Microfluid. Nanofluid. 6, 425–429 (2009)

    Article  Google Scholar 

  114. Mario, L.Y., Darmawan, S., et al. Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching. Opt. Express. 14, 12770–12781 (2006)

    Article  Google Scholar 

  115. Chao, C.-Y., Guo, L.J. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett. 83, 1527–1529 (2003)

    Article  Google Scholar 

  116. Jokerst, N., Royal, M., et al. Chip scale integrated microresonator sensing systems. J. Biophoton. 2, 212–226 (2009)

    Article  Google Scholar 

  117. Blanco, F.J., Agirregabiria, M., et al. Microfluidic-optical integrated CMOS compatible devices for label-free biochemical sensing. J. Micromechan. Microeng. 16, 1006–1016 (2006)

    Article  Google Scholar 

  118. Karl, M., Li, S., et al. Localized and delocalized modes in coupled optical micropillar cavities. Opt. Express. 15, 8191–8196 (2007)

    Article  Google Scholar 

  119. Benyoucef, M., Kiravittaya, S., et al. Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances. Phys. Rev. B. 77, 035108–5 (2008)

    Google Scholar 

  120. Skolnick, M.S., Astratov, V.N., et al. Exciton polaritons in single and coupled microcavities. J. Luminescence. 87–89, 25–29 (2000)

    Article  Google Scholar 

  121. Ochiai, T., Inoue, J.-I., et al. Spontaneous emission from a two-level atom in a bisphere microcavity. Phys. Rev. A. 74, 063818–063819 (2006)

    Article  Google Scholar 

  122. Ogden, C.D., Irish, E.K., et al. Dynamics in a coupled-cavity array. Phys. Rev. A. 78, 063805–063809 (2008)

    Article  Google Scholar 

  123. Skarja, M., Mankoc Borstnik, N., et al. Quantum interference and atom-atom entanglement in a two-mode, two-cavity micromaser. Phys. Rev. A. 60, 3229 (1999)

    Article  Google Scholar 

  124. Bose, S., Angelakis, D.G., et al. Transfer of a polaritonic qubit through a coupled cavity array. J. Mod. Opt. 54 (2007)

    Google Scholar 

  125. Hartmann, M.J., Brandao, F.G.S.L., et al. Effective spin systems in coupled microcavities. Phys. Rev. Lett. 99, 160501–160504 (2007)

    Article  Google Scholar 

  126. Xiao, Y.-F., Gao, J., et al. Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations. New J. Phys. 10 (2008)

    Google Scholar 

  127. Kippenberg, T.J., Vahala, K.J. Cavity optomechanics. Opt. Express. 15, 17172–17205 (2007)

    Article  Google Scholar 

  128. Kippenberg, T.J., Vahala, K.J. Cavity optomechanics: back-action at the mesoscale. Science. 321, 1172–1176 (2008)

    Article  Google Scholar 

  129. Li, M., Pernice, W.H.P., et al. Tunable bipolar optical interactions between guided lightwaves. Arxiv preprint arXiv:0903.5117 (2009)

    Google Scholar 

  130. Eichenfield, M., Michael, et al. Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces. Nat Photon. 1, 416–422 (2007)

    Article  Google Scholar 

  131. Huang, M.C.Y., Zhou, Y., et al. A nanoelectromechanical tunable laser. Nat Photon. 2, 180–184 (2008)

    Article  Google Scholar 

  132. Li, M., Pernice, et al. Harnessing optical forces in integrated photonic circuits. Nature. 456, 480–484 (2008)

    Article  Google Scholar 

  133. Arnold, S., Keng, D., et al. Whispering gallery mode carousel: a photonic mechanism for enhanced nanoparticle detection in biosensing. Opt. Express. 17, 6230–6238 (2009)

    Article  Google Scholar 

  134. Guzatov, D.V., Woggon, U. Coupled microsphere clusters for detecting molecule’s dipole moment orientation. Appl. Phys. Lett. 94, 241104-3 (2009)

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Vladimir Ilchenko, Dr. Frank Vollmer, Dr. Sunil Sainis, Prof. Vasily Astratov, and Prof. Kerry Vahala for useful discussions. Support from the EU COST Action MP0702 ‘Towards functional sub-wavelength photonic structures’ and from the NATO Collaborative Linkage Grant CBP.NUKR.CLG 982430 ‘Micro- and nano-cavity structures for imaging, biosensing and novel materials’ is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana V. Boriskina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Boriskina, S.V. (2010). Photonic Molecules and Spectral Engineering. In: Chremmos, I., Schwelb, O., Uzunoglu, N. (eds) Photonic Microresonator Research and Applications. Springer Series in Optical Sciences, vol 156. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1744-7_16

Download citation

Publish with us

Policies and ethics