Photonic Molecules and Spectral Engineering

  • Svetlana V. Boriskina
Part of the Springer Series in Optical Sciences book series (SSOS, volume 156)


This chapter reviews the fundamental optical properties and applications of photonic molecules (PMs) – photonic structures formed by electromagnetic coupling of two or more optical microcavities (photonic atoms). Controllable interaction between light and matter in photonic atoms can be further modified and enhanced by the manipulation of their mutual coupling. Mechanical and optical tunability of PMs not only adds new functionalities to microcavity-based optical components but also paves the way for their use as testbeds for the exploration of novel physical regimes in atomic physics and quantum optics. Theoretical studies carried on for over a decade yielded novel PM designs that make possible lowering thresholds of semiconductor microlasers, producing directional light emission, achieving optically induced transparency, and enhancing sensitivity of microcavity-based bio-, stress-, and rotation sensors. Recent advances in material science and nano-fabrication techniques make possible the realization of optimally tuned PMs for cavity quantum electrodynamic experiments, classical and quantum information processing, and sensing.


Electromagnetically Induce Transparency Fano Resonance Whisper Gallery Mode Optical Force Microring Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank Dr. Vladimir Ilchenko, Dr. Frank Vollmer, Dr. Sunil Sainis, Prof. Vasily Astratov, and Prof. Kerry Vahala for useful discussions. Support from the EU COST Action MP0702 ‘Towards functional sub-wavelength photonic structures’ and from the NATO Collaborative Linkage Grant CBP.NUKR.CLG 982430 ‘Micro- and nano-cavity structures for imaging, biosensing and novel materials’ is gratefully acknowledged.


  1. 1.
    Vahala, K.J. Optical microcavities. Nature 424, 839–846 (2003)CrossRefGoogle Scholar
  2. 2.
    Vahala, K.J. Optical Microcavities. World Scientific, Singapore (2004)Google Scholar
  3. 3.
    Benson, T.M., Boriskina, S.V., et al. Micro-optical resonators for microlasers and integrated optoelectronics. In: Frontiers in Planar Lightwave Circuit Technology, pp. 39–70. Springer, Berlin (2006)CrossRefGoogle Scholar
  4. 4.
    Matsko, A.B., Ilchenko, V.S. Optical resonators with whispering-gallery modes-part I: basics. IEEE J. Select. Top. Quant. Electron. 12, 3–14 (2006)CrossRefGoogle Scholar
  5. 5.
    Ilchenko, V.S., Matsko, A.B. Optical resonators with whispering-gallery modes-part II: applications. IEEE J. Select. Top. Quant. Electron. 12, 15–32 (2006)CrossRefGoogle Scholar
  6. 6.
    Chang, R.K., Campillo, A.J. Optical processes in microcavities. World Scientific, Singapore (1996)Google Scholar
  7. 7.
    Bayer, M., Gutbrod, T., et al. Optical modes in photonic molecules. Phys. Rev. Lett. 81, 2582 (1998)CrossRefGoogle Scholar
  8. 8.
    Boriskina, S.V., Benson, T.M., et al. Photonic molecules made of matched and mismatched microcavities: new functionalities of microlasers and optoelectronic components. In: Laser Resonators and Beam Control IX, San Jose, CA, USA (2007)Google Scholar
  9. 9.
    Lin, B.S. Variational analysis for photonic molecules: Application to photonic benzene waveguides. Phys. Rev. E. 68, 036611 (2003)CrossRefGoogle Scholar
  10. 10.
    Yariv, A., Xu, Y., et al. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999)CrossRefGoogle Scholar
  11. 11.
    Melloni, A., Morichetti, F., et al. Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures. Opt. Quant. Electron. 35, 365–379 (2003)CrossRefGoogle Scholar
  12. 12.
    Xia, F., Sekaric, L., et al. Ultracompact optical buffers on a silicon chip. Nat. Photon. 1, 65–71 (2007)CrossRefGoogle Scholar
  13. 13.
    Poon, J.K.S., Scheuer, J., et al. Designing coupled-resonator optical waveguide delay lines. J. Opt. Soc. Am. B. 21, 1665–1673 (2004)CrossRefGoogle Scholar
  14. 14.
    Armitage, A., Skolnick, M.S., et al. Optically induced splitting of bright excitonic states in coupled quantum microcavities. Phys. Rev. B. 57, 14877 (1998)CrossRefGoogle Scholar
  15. 15.
    Ishii, S., Baba, T.: Bistable lasing in twin microdisk photonic molecules. Appl. Phys. Lett. 87, 181102–181103 (2005)CrossRefGoogle Scholar
  16. 16.
    Atlasov, K.A., Karlsson, K.F., et al. Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities. Opt. Express. 16, 16255–16264 (2008)CrossRefGoogle Scholar
  17. 17.
    Moller, B.M., Woggon, U., et al. Photonic molecules doped with semiconductor nanocrystals. Phys. Rev. B. 70, 115323–115325 (2004)CrossRefGoogle Scholar
  18. 18.
    Rakich, P.T., Popovic, M.A., et al. Trapping, corralling and spectral bonding of optical resonances through optically induced potentials. Nat. Photon. 1, 658–665 (2007)CrossRefGoogle Scholar
  19. 19.
    Ilchenko, V.S., Gorodetsky, M.L., et al. Coupling and tunability of optical whispering-gallery modes: a basis for coordinate meter. Opt. Comm. 107, 41–48 (1994)CrossRefGoogle Scholar
  20. 20.
    Lu, T.-W., Lee, P.-T. Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity. Opt. Express. 17, 1518–1526 (2009)CrossRefGoogle Scholar
  21. 21.
    Peng, C., Li, Z., et al. Optical gyroscope based on a coupled resonator with the all-optical analogous property of electromagnetically induced transparency. Opt. Express. 15, 3864–3875 (2007)CrossRefGoogle Scholar
  22. 22.
    Scheuer, J., Yariv, A. Sagnac effect in coupled-resonator slow-light waveguide structures. Phys. Rev. Lett. 96, 053901–053904 (2006)CrossRefGoogle Scholar
  23. 23.
    Steinberg, B.Z., Boag, A. Splitting of microcavity degenerate modes in rotating photonic crystals: the miniature optical gyroscopes. J. Opt. Soc. Am. B. 24, 142–151 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Francois, A., Himmelhaus, M. Optical biosensor based on whispering gallery mode excitations in clusters of microparticles. Appl. Phys. Lett. 92, 141107–141103 (2008)Google Scholar
  25. 25.
    Boriskina, S.V. Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis. J. Opt. Soc. Am. B. 23, 1565–1573 (2006)CrossRefGoogle Scholar
  26. 26.
    Hryniewicz, J.V., Absil, P.P., et al. Higher order filter response in coupled microring resonators. IEEE Photon. Technol. Lett. 12, 320–322 (2000)CrossRefGoogle Scholar
  27. 27.
    Mario, L.Y., Lim, D.C.S., et al. Proposal for an ultranarrow passband using two coupled rings. IEEE Photon. Technol. Lett. 19, 1688–1690 (2007)CrossRefGoogle Scholar
  28. 28.
    Chremmos, I., Uzunoglu, N. Reflective properties of double-ring resonator system coupled to a waveguide. IEEE Photon. Technol. Lett. 17, 2110–2112 (2005)CrossRefGoogle Scholar
  29. 29.
    Xia, F., Rooks, M., et al. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt. Express. 15, 11934–11941 (2007)CrossRefGoogle Scholar
  30. 30.
    Savchenkov, A.A., Ilchenko, V.S., et al. High-order tunable filters based on a chain of coupled crystalline whispering gallery-mode resonators. IEEE Photon. Technol. Lett. 17, 136–138 (2005)CrossRefGoogle Scholar
  31. 31.
    Xiao, Y.-F., Gaddam, V., et al. Coupled optical microcavities: an enhanced refractometric sensing configuration. Opt. Express. 16, 12538–12543 (2008)CrossRefGoogle Scholar
  32. 32.
    Passaro, V.M.N., De Leonardis, F. Modeling and design of a novel high-sensitivity electric field silicon-on-insulator sensor based on a whispering-gallery-mode resonator. IEEE J. Select. Top. Quant. Electron. 12, 124–133 (2006)CrossRefGoogle Scholar
  33. 33.
    Boriskina, S.V. Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules. Opt. Lett. 31, 338–340 (2006)CrossRefGoogle Scholar
  34. 34.
    Boriskina, S.V., Benson, T.M., et al. Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures. IEEE J. Select. Top. Quant. Electron. 12, 1175–1182 (2006)CrossRefGoogle Scholar
  35. 35.
    Smotrova, E.I., Nosich, A.I., et al. Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes. Opt. Lett. 31, 921–923 (2006)CrossRefGoogle Scholar
  36. 36.
    Shang, L., Liu, L., et al. Single-frequency coupled asymmetric microcavity laser. Opt. Lett. 33, 1150–1152 (2008)CrossRefGoogle Scholar
  37. 37.
    Cuthbertson, B.D., Tobar, M.E., et al. Sensitivity and optimization of a high-Q sapphire dielectric motion-sensing transducer. IEEE Trans. Ultrason. Ferroelect. Freq. Control. 45, 1303–1313 (1998)CrossRefGoogle Scholar
  38. 38.
    Annino, G., Cassettari, M., et al. Analysis of ‘stacked’ whispering gallery dielectric resonators for submillimeter ESR spectroscopy. Chem. Phys. Lett. 281, 306–311 (1997)Google Scholar
  39. 39.
    Xiao Hu, J., Guillon, P., et al. Whispering-Gallery modes of dielectric structures: applications to millimeter-wave bandstop filters. IEEE Trans. Microwave Theory Tech. 35, 1169–1175 (1987)CrossRefGoogle Scholar
  40. 40.
    Pance, K., Viola, L., et al. Tunneling proximity resonances: interplay between symmetry and dissipation. Phys. Lett. A. 268, 399–405 (2000)CrossRefGoogle Scholar
  41. 41.
    Heiss, W.D. Repulsion of resonance states and exceptional points. Phys. Rev. E. 61, 929 (2000)CrossRefGoogle Scholar
  42. 42.
    Hartmann, M.J., Brandão, F.G.S.L., et al. Quantum many-body phenomena in coupled cavity arrays. Laser Photon. Rev. 2, 527–556 (2008)CrossRefGoogle Scholar
  43. 43.
    Hartmann, M.J., Brandao, F.G.S.L., et al. Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006)CrossRefGoogle Scholar
  44. 44.
    Gerace, D., Tureci, H.E., et al. The quantum-optical Josephson interferometer. Nat Phys. 5, 281–284 (2009)CrossRefGoogle Scholar
  45. 45.
    Angelakis, D.G., Santos, M.F., et al. A proposal for the implementation of quantum gates with photonic-crystal waveguides. Phys. Lett. A. 362, 377–380 (2007)CrossRefGoogle Scholar
  46. 46.
    Greentree, A.D., Tahan, C., et al. Quantum phase transitions of light. Nat. Phys. 2, 856–861 (2006)CrossRefGoogle Scholar
  47. 47.
    Cho, J., Angelakis, D.G., et al. Heralded generation of entanglement with coupled cavities. Phys. Rev. A. 78, 022323–0422324 (2008)CrossRefGoogle Scholar
  48. 48.
    Nordlander, P., Oubre, C., et al. Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004)CrossRefGoogle Scholar
  49. 49.
    Miyazaki, H., Jimba, Y. Ab initio tight-binding description of morphology-dependent resonance in a bisphere. Phys. Rev. B. 62, 7976 (2000)CrossRefGoogle Scholar
  50. 50.
    Smotrova, E.I., Nosich, A.I., et al. Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing. IEEE J. Select. Top. Quant. Electron. 12, 78–85 (2006)CrossRefGoogle Scholar
  51. 51.
    Smith, D.D., Chang, H., et al. Whispering-gallery mode splitting in coupled microresonators. J. Opt. Soc. Am. B. 20, 1967–1974 (2003)CrossRefGoogle Scholar
  52. 52.
    Rakovich, Y.P., Donegan, J.F., et al. Fine structure of coupled optical modes in photonic molecules. Phys. Rev. A. 70, 051801–051804 (2004)CrossRefGoogle Scholar
  53. 53.
    Nakagawa, A., Ishii, S., et al. Photonic molecule laser composed of GaInAsP microdisks. Appl. Phys. Lett. 86, 041112–041113 (2005)CrossRefGoogle Scholar
  54. 54.
    Deych, L.I., Schmidt, C., et al. Optical coupling of fundamental whispering-gallery modes in bispheres. Phys. Rev. A. 77, 051801–051804 (2008)CrossRefGoogle Scholar
  55. 55.
    Mukaiyama, T., Takeda, K., et al. Tight-binding photonic molecule modes of resonant bispheres. Phys. Rev. Lett. 82, 4623 (1999)CrossRefGoogle Scholar
  56. 56.
    Preu, S., Schwefel, H.G.L., et al. Coupled whispering gallery mode resonators in the Terahertz frequency range. Opt. Express. 16, 7336–7343 (2008)CrossRefGoogle Scholar
  57. 57.
    Ryu, J.-W., Lee, S.-Y., et al. Directional interacting whispering-gallery modes in coupled dielectric microdisks. Phys. Rev. A. 74, 013804–013807 (2006)CrossRefGoogle Scholar
  58. 58.
    Rakovich, Y.P., Gerlach, M., et al. Spontaneous emission from semiconductor nanocrystals in coupled spherical microcavities. Phys. Stat. Sol. (c). 2, 858–861 (2005)CrossRefGoogle Scholar
  59. 59.
    Rakovich, Y.P., Gerlach, M., et al. Confined optical modes in small photonic molecules with semiconductor nanocrystals. J. Appl. Phys. 96, 6761–6765 (2004)CrossRefGoogle Scholar
  60. 60.
    Naweed, A., Farca, G., et al. Induced transparency and absorption in coupled whispering-gallery microresonators. Phys. Rev. A. 71, 043804 (2005)CrossRefGoogle Scholar
  61. 61.
    Li, J.-J., Wang, J.-X., et al. Mode coupling between first- and second-order whispering-gallery modes in coupled microdisks. Opt. Lett. 32, 1563–1565 (2007)CrossRefGoogle Scholar
  62. 62.
    Deych, L.I., Roslyak, O. Photonic band mixing in linear chains of optically coupled microspheres. Phys. Rev. E. 73, 036606–036612 (2006)CrossRefGoogle Scholar
  63. 63.
    Bayer, M., Gutbrod, T., et al. Optical demonstration of a crystal band structure formation. Phys. Rev. Lett. 83, 5374 (1999)CrossRefGoogle Scholar
  64. 64.
    Deych, L., Schmidt, C., et al. Propagation of the fundamental whispering gallery modes in a linear chain of microspheres. Appl. Phys. B. 93, 21–30 (2008)CrossRefGoogle Scholar
  65. 65.
    Hara, Y., Mukaiyama, T., et al. Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres. Phys. Rev. Lett. 94, 203905 (2005)CrossRefGoogle Scholar
  66. 66.
    Möller, B.M., Woggon, U., et al. Coupled-resonator optical waveguides doped with nanocrystals. Opt. Lett. 30, 2116–2118 (2005)CrossRefGoogle Scholar
  67. 67.
    Happ, T.D., Kamp, M., et al. Two-dimensional photonic crystal coupled-defect laser diode. Appl. Phys. Lett. 82, 4–6 (2003)CrossRefGoogle Scholar
  68. 68.
    Notomi, M., Kuramochi, E., et al. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nat. Photon. 2, 741–747 (2008)CrossRefGoogle Scholar
  69. 69.
    Poon, J., Scheuer, J., et al. Matrix analysis of microring coupled-resonator optical waveguides. Opt. Express. 12, 90–103 (2004)CrossRefGoogle Scholar
  70. 70.
    Altug, H., Vuckovic, J. Photonic crystal nanocavity array laser. Opt. Express. 13, 8819–8828 (2005)CrossRefGoogle Scholar
  71. 71.
    Chremmos, I., Uzunoglu, N. Modes of the infinite square lattice of coupled microring resonators. J. Opt. Soc. Am. A. 25, 3043–3050 (2008)CrossRefGoogle Scholar
  72. 72.
    Boriskina, S.V. Spectral engineering of bends and branches in microdisk coupled-resonator optical waveguides. Opt. Express. 15, 17371–17379 (2007)CrossRefGoogle Scholar
  73. 73.
    Smith, D.D., Chang, H., et al. Coupled-resonator-induced transparency. Phys. Rev. A. 69, 063804 (2004)CrossRefGoogle Scholar
  74. 74.
    Xu, Q., Sandhu, S., et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96, 123901–123904 (2006)CrossRefGoogle Scholar
  75. 75.
    Maleki, L., Matsko, A.B., et al. Tunable delay line with interacting whispering-gallery-mode resonators. Opt. Lett. 29, 626–628 (2004)CrossRefGoogle Scholar
  76. 76.
    Totsuka, K., Kobayashi, N., et al. Slow light in coupled-resonator-induced transparency. Phys. Rev. Lett. 98, 213904-4 (2007)Google Scholar
  77. 77.
    Boriskina, S.V. Coupling of whispering-gallery modes in size-mismatched microdisk photonic molecules. Opt. Lett. 32, 1557–1559 (2007)CrossRefGoogle Scholar
  78. 78.
    Ishii, S., Nakagawa, A., et al. Modal characteristics and bistability in twin microdisk photonic molecule lasers. IEEE J. Select. Top. Quant. Electron. 12, 71–77 (2006)CrossRefGoogle Scholar
  79. 79.
    Tomita, M., Totsuka, K., et al. Tunable Fano interference effect in coupled-microsphere resonator-induced transparency. J. Opt. Soc. Am. B. 26, 813–818 (2009)CrossRefGoogle Scholar
  80. 80.
    Ashili, S.P., Astratov, V.N., et al. The effects of inter-cavity separation on optical coupling in dielectric bispheres. Opt. Express. 14, 9460–9466 (2006)CrossRefGoogle Scholar
  81. 81.
    Kanaev, A.V., Astratov, V.N., et al. Optical coupling at a distance between detuned spherical cavities. Appl. Phys. Lett. 88, 111111–111113 (2006)CrossRefGoogle Scholar
  82. 82.
    Povinelli, M., Johnson, S., et al. High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators. Opt. Express. 13, 8286–8295 (2005)CrossRefGoogle Scholar
  83. 83.
    Taniyama, H., Notomi, M., et al. Strong radiation force induced in two-dimensional photonic crystal slab cavities. Phys. Rev. B. 78, 165129-7 (2008)Google Scholar
  84. 84.
    Ng, J., Chan, C.T. Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes. Appl. Phys. Lett. 92, 251109–3 (2008)Google Scholar
  85. 85.
    Rakovich, Y.P., Boland, J.J., et al. Tunable photon lifetime in photonic molecules: a concept for delaying an optical signal. Opt. Lett. 30, 2775–2777 (2005)CrossRefGoogle Scholar
  86. 86.
    Fuller, K.A. Optical resonances and two-sphere systems. Appl. Opt. 30, 4716–4731 (1991)CrossRefGoogle Scholar
  87. 87.
    Mackowski, D.W. Calculation of total cross sections of multiple-sphere clusters. J. Opt. Soc. Am. A. 11, 2851–2861 (1994)CrossRefGoogle Scholar
  88. 88.
    Xu, Y.-l. Electromagnetic scattering by an aggregate of spheres. Appl. Opt. 34, 4573–4588 (1995)CrossRefGoogle Scholar
  89. 89.
    Pishko, S.V., Sewell, P.D., et al. Efficient analysis and design of low-loss whispering-gallery-mode coupled resonator optical waveguide bends. J. Lightwave Technol. 25, 2487–2494 (2007)CrossRefGoogle Scholar
  90. 90.
    Chremmos, I., Uzunoglu, N. Integral equation analysis of microring and microdisk coupled-resonator optical waveguides. IEEE Photon. Technol. Lett. 18, 1173–1175 (2006)CrossRefGoogle Scholar
  91. 91.
    Guttroff, G., Bayer, M., et al. Isomeric photonic molecules formed from coupled microresonators. Phys. Rev. E. 63, 036611 (2001)CrossRefGoogle Scholar
  92. 92.
    Boriskina, S.V., Benson, et al. Highly efficient design of spectrally engineered whispering-gallery-mode microlaser resonators. Opt. Quantum Electron. 35, 545–559 (2003)CrossRefGoogle Scholar
  93. 93.
    Boriskina, S.V., Benson, T.M., et al. Spectral shift and Q change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness. J. Opt. Soc. Am. B. 21, 1792–1796 (2004)CrossRefGoogle Scholar
  94. 94.
    Boriskina, S.V., Benson, T.M., et al. Effect of a layered environment on the complex natural frequencies of two-dimensional WGM dielectric-ring resonators. J. Lightwave Technol. 20, 1563 (2002)CrossRefGoogle Scholar
  95. 95.
    Smotrova, E.I., Nosich, A.I., et al. Ultralow lasing thresholds of pi-type supermodes in cyclic photonic molecules composed of submicron disks with monopole and dipole modes. IEEE Photon. Technol. Lett. 18, 1993–1995 (2006)CrossRefGoogle Scholar
  96. 96.
    Oda, K., Takato, N., et al. A wide-FSR waveguide double-ring resonator for optical FDM transmission systems. J. Lightw. Technol. 9, 728–736 (1991)CrossRefGoogle Scholar
  97. 97.
    Wu, X., Li, H., et al. Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser. Appl. Phys. Lett. 93, 081105-3 (2008)Google Scholar
  98. 98.
    Chern, G.D., Tureci, H.E., et al. Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars. Appl. Phys. Lett. 83, 1710–1712 (2003)CrossRefGoogle Scholar
  99. 99.
    Gerlach, M., Rakovich, Y.P., et al. Nanojets and directional emission in symmetric photonic molecules. Opt. Express. 15, 17343–17350 (2007)CrossRefGoogle Scholar
  100. 100.
    Khurgin, J.B., Tucker, R.S. Slow light: science and applications. CRC Press, Boca Raton, FL (2008)CrossRefGoogle Scholar
  101. 101.
    Chen, Z., Taflove, A., et al. Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres. Opt. Lett. 31, 389–391 (2006)CrossRefGoogle Scholar
  102. 102.
    Mitsui, T., Wakayama, Y., et al. Observation of light propagation across a 90° corner in chains of microspheres on a patterned substrate. Opt. Lett. 33, 1189–1191 (2008)CrossRefGoogle Scholar
  103. 103.
    Möller, B.M., Woggon, U., et al. Band formation in coupled-resonator slow-wave structures. Opt. Express. 15, 17362–17370 (2007)CrossRefGoogle Scholar
  104. 104.
    Wang, C.-L., Chuang, Y.-H., et al. Two-wavelength interferometer based on a two-color laser-diode array and the second-order correlation technique. Opt. Lett. 20, 1071 (1995)CrossRefGoogle Scholar
  105. 105.
    Wang, C.-L., Pan, C.-L. Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array. Opt. Lett. 20, 1292–1294 (1995)CrossRefGoogle Scholar
  106. 106.
    Gusev, D.G., Soboleva, I.V., et al. Enhanced second-harmonic generation in coupled microcavities based on all-silicon photonic crystals. Phys. Rev. B. 68, 233303 (2003)CrossRefGoogle Scholar
  107. 107.
    Michler, P., Hilpert, M., et al. Dynamics of dual-wavelength emission from a coupled semiconductor microcavity laser. Appl. Phys. Lett. 70, 2073–2075 (1997)CrossRefGoogle Scholar
  108. 108.
    Carlin, J.F., Stanley, R.P., et al. The dual wavelength Bi-vertical cavity surface-emitting laser. Appl. Phys. Lett. 75, 908–910 (1999)CrossRefGoogle Scholar
  109. 109.
    Pellandini, P., Stanley, R.P., et al. Dual-wavelength laser emission from a coupled semiconductor microcavity. Appl. Phys. Lett. 71, 864–866 (1997)CrossRefGoogle Scholar
  110. 110.
    Vlasov, Y., Green, W.M.J., et al. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat. Photon. 2, 242–246 (2008)CrossRefGoogle Scholar
  111. 111.
    Ilchenko, V.S., Savchenkov, A.A., et al. Whispering-gallery-mode electro-optic modulator and photonic microwave receiver. J. Opt. Soc. Am. B. 20, 333–342 (2003)MathSciNetCrossRefGoogle Scholar
  112. 112.
    Emelett, S.J., Soref, R. Design and simulation of silicon microring optical routing switches. J. Lightwave Technol. 23, 1800 (2005)CrossRefGoogle Scholar
  113. 113.
    Shopova, S., Sun, Y., et al. Highly sensitive tuning of coupled optical ring resonators by microfluidics. Microfluid. Nanofluid. 6, 425–429 (2009)CrossRefGoogle Scholar
  114. 114.
    Mario, L.Y., Darmawan, S., et al. Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching. Opt. Express. 14, 12770–12781 (2006)CrossRefGoogle Scholar
  115. 115.
    Chao, C.-Y., Guo, L.J. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett. 83, 1527–1529 (2003)CrossRefGoogle Scholar
  116. 116.
    Jokerst, N., Royal, M., et al. Chip scale integrated microresonator sensing systems. J. Biophoton. 2, 212–226 (2009)CrossRefGoogle Scholar
  117. 117.
    Blanco, F.J., Agirregabiria, M., et al. Microfluidic-optical integrated CMOS compatible devices for label-free biochemical sensing. J. Micromechan. Microeng. 16, 1006–1016 (2006)CrossRefGoogle Scholar
  118. 118.
    Karl, M., Li, S., et al. Localized and delocalized modes in coupled optical micropillar cavities. Opt. Express. 15, 8191–8196 (2007)CrossRefGoogle Scholar
  119. 119.
    Benyoucef, M., Kiravittaya, S., et al. Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances. Phys. Rev. B. 77, 035108–5 (2008)Google Scholar
  120. 120.
    Skolnick, M.S., Astratov, V.N., et al. Exciton polaritons in single and coupled microcavities. J. Luminescence. 87–89, 25–29 (2000)CrossRefGoogle Scholar
  121. 121.
    Ochiai, T., Inoue, J.-I., et al. Spontaneous emission from a two-level atom in a bisphere microcavity. Phys. Rev. A. 74, 063818–063819 (2006)CrossRefGoogle Scholar
  122. 122.
    Ogden, C.D., Irish, E.K., et al. Dynamics in a coupled-cavity array. Phys. Rev. A. 78, 063805–063809 (2008)CrossRefGoogle Scholar
  123. 123.
    Skarja, M., Mankoc Borstnik, N., et al. Quantum interference and atom-atom entanglement in a two-mode, two-cavity micromaser. Phys. Rev. A. 60, 3229 (1999)CrossRefGoogle Scholar
  124. 124.
    Bose, S., Angelakis, D.G., et al. Transfer of a polaritonic qubit through a coupled cavity array. J. Mod. Opt. 54 (2007)Google Scholar
  125. 125.
    Hartmann, M.J., Brandao, F.G.S.L., et al. Effective spin systems in coupled microcavities. Phys. Rev. Lett. 99, 160501–160504 (2007)CrossRefGoogle Scholar
  126. 126.
    Xiao, Y.-F., Gao, J., et al. Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations. New J. Phys. 10 (2008)Google Scholar
  127. 127.
    Kippenberg, T.J., Vahala, K.J. Cavity optomechanics. Opt. Express. 15, 17172–17205 (2007)CrossRefGoogle Scholar
  128. 128.
    Kippenberg, T.J., Vahala, K.J. Cavity optomechanics: back-action at the mesoscale. Science. 321, 1172–1176 (2008)CrossRefGoogle Scholar
  129. 129.
    Li, M., Pernice, W.H.P., et al. Tunable bipolar optical interactions between guided lightwaves. Arxiv preprint arXiv:0903.5117 (2009)Google Scholar
  130. 130.
    Eichenfield, M., Michael, et al. Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces. Nat Photon. 1, 416–422 (2007)CrossRefGoogle Scholar
  131. 131.
    Huang, M.C.Y., Zhou, Y., et al. A nanoelectromechanical tunable laser. Nat Photon. 2, 180–184 (2008)CrossRefGoogle Scholar
  132. 132.
    Li, M., Pernice, et al. Harnessing optical forces in integrated photonic circuits. Nature. 456, 480–484 (2008)CrossRefGoogle Scholar
  133. 133.
    Arnold, S., Keng, D., et al. Whispering gallery mode carousel: a photonic mechanism for enhanced nanoparticle detection in biosensing. Opt. Express. 17, 6230–6238 (2009)CrossRefGoogle Scholar
  134. 134.
    Guzatov, D.V., Woggon, U. Coupled microsphere clusters for detecting molecule’s dipole moment orientation. Appl. Phys. Lett. 94, 241104-3 (2009)Google Scholar

Copyright information

© Springer-Verlag US 2010

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringBoston UniversityBostonUSA

Personalised recommendations