Advertisement

High-Q Photonic Crystal Microcavities

  • Qiang Li
  • Min Qiu
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 156)

Abstract

Over the past few years, much work has been devoted to the study of microcavities in photonic crystals (PCs). High-quality factor (Q) PC microcavities exhibit attractive properties since they can confine light in wavelength-scale dimensions, making them potentially useful not only for photonic integration but also in quantum optics. Most of the high-Q PC microcavities are realized in slabs (PCSs), which are two-dimensional (2D) PCs with a high refractive index core layer providing light confinement in the third dimension. The key to design high-Q cavities is to reduce the radiation losses, i.e., to minimize the spatial Fourier components above the light line of the PCS. This chapter will focus on high-Q PC microcavity, including design rules, characterization methods, device demonstrations, and applications.

Keywords

Pump Pulse Probe Pulse Slab Thickness Photon Lifetime Electric Field Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Srinivasan, K., Painter, O. Momentum space design of high-Q photonic crystal optical cavities. Opt. Express 10, 670–684 (2002)CrossRefGoogle Scholar
  2. 2.
    Srinivasan, K., Painter, O. Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals. Opt. Express 11, 579–593 (2003)CrossRefGoogle Scholar
  3. 3.
    Vučković, J., Lončar, M. et al. Optimization of the Q factor in photonic crystal microcavities. IEEE J. Quant. Electron. 38, 850–856 (2002)CrossRefGoogle Scholar
  4. 4.
    Tanabe, T., Notomi, M., et al. Measurement of an ultra-high-Q photonic crystal microcavity using a single-side-band frequency modulator. Electron. Lett. 43, 187–188 (2007)CrossRefGoogle Scholar
  5. 5.
    Tanabe, T., Notomi, M., et al. Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities. Opt. Express 15, 7826–7839 (2007)CrossRefGoogle Scholar
  6. 6.
    Armani, D., Kippenberg, T., et al. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003)CrossRefGoogle Scholar
  7. 7.
    Foresi, J.S., Villeneuve, P.R., et al. Photonic-bandgap microcavities in optical waveguides. Nature 390, 143–145 (1997)CrossRefGoogle Scholar
  8. 8.
    Zain, A.R.M., Johnson, N.P., et al. Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in SOI. Opt. Express 16, 12084–12089 (2008)CrossRefGoogle Scholar
  9. 9.
    Deotare, P.B., McCutcheon, M.W., et al. High quality factor photonic crystal nanobeam cavities. Appl. Phys. Lett. 94, 121106 (2009)CrossRefGoogle Scholar
  10. 10.
    Akahane, Y., Asano, T., et al. High-Q photonic microcavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003)CrossRefGoogle Scholar
  11. 11.
    Akahane, Y., Asano, T., et al. Fine-tuned high-Q photonic-crystal micro-cavity. Opt. Express 13, 1202–1214 (2005)CrossRefGoogle Scholar
  12. 12.
    Ryu, H.Y., Notomi, M., et al. High quality-factor and small mode-volume hexapole modes in photonic crystal slab nano-cavities. Appl. Phys. Lett. 83, 4294–4296 (2003)CrossRefGoogle Scholar
  13. 13.
    Kim, G.H., Lee, Y.-H., et al. Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode. Opt. Express 12, 6624–6631 (2004)CrossRefGoogle Scholar
  14. 14.
    Tanabe, T., Shinya, A., et al. Single point defect photonic crystal microcavity with ultrahigh quality factor achieved by using hexapole mode. Appl. Phys. Lett. 91, 021110 (2007)CrossRefGoogle Scholar
  15. 15.
    Ryu, H.-Y., Notomi, M., et al. High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity. Opt. Express 12, 1708–1719 (2004)CrossRefGoogle Scholar
  16. 16.
    Zhang, Z., Qiu, M. Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. Opt. Express 12, 3988–3995 (2004)CrossRefGoogle Scholar
  17. 17.
    Song, B.-S., Noda, S., et al. Ultra-high-Q photonic double-heterostructure microcavity. Nature Mater. 4, 207–210 (2005)CrossRefGoogle Scholar
  18. 18.
    Asano, T., Song, B.-S., et al. Analysis of the experimental Q factors (∼1 million) of photonic crystal nanocavities. Opt. Express 14, 1996–2002 (2006)CrossRefGoogle Scholar
  19. 19.
    Takahashi, Y., Hagino, H., et al. High-Q nanocavity with a 2-ns photon lifetime. Opt. Express 15, 17206–17213 (2007)CrossRefGoogle Scholar
  20. 20.
    Tanaka, Y., Asano, T., et al. Design of photonic crystal nanocavity with Q-factor of ∼109. J. Lightwave Technol. 26, 1532–1539 (2008)CrossRefGoogle Scholar
  21. 21.
    Kuramochi, E., Notomi, M., et al. Ultrahigh-Q photonic crystal nano-cavities realized by the local width modulation of a line defect. Appl. Phys. Lett. 88, 041112 (2006)CrossRefGoogle Scholar
  22. 22.
    Notomi, M., Tanabe, T., et al. Nonlinear and adiabatic control of high-Q photonic crystal nanocavities. Opt. Express 15, 17458–17481 (2007)CrossRefGoogle Scholar
  23. 23.
    Kuramochi, E., Taniyama, H., et al. Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers. Appl. Phys. Lett. 93, 111112 (2008)CrossRefGoogle Scholar
  24. 24.
    Xiao, S., Qiu, M. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals. J. Opt. Soc. Am. B, 24, 1225–1229 (2007)CrossRefGoogle Scholar
  25. 25.
    Zhang, Z., Dainese, M., et al. Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure. Appl. Phys. Lett. 90, 041108 (2007)CrossRefGoogle Scholar
  26. 26.
    Jing, W., Min, Q. High-Q optical filter based on photonic crystal surface-mode microcavity. 2nd IEEE LEOS Winter Topicals, WTM 2009, art. no. 4771635, pp. 22–23Google Scholar
  27. 27.
    Tanabe, T., Notomi, M., et al. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal microcavity. Nat. Photonics 1, 49–52 (2007)CrossRefGoogle Scholar
  28. 28.
    Tanabe, T., Notomi, M., et al. Dynamic release of trapped light from an ultrahigh-Q microcavity via adiabatic frequency tuning. Phys. Rev. Lett. 102, 043907 (2009)CrossRefGoogle Scholar
  29. 29.
    Notomi, M., Mitsugi, S. Wavelength conversion via dynamic refractive index tuning of a cavity. Phys. Rev. A 73, 051803 (2006)CrossRefGoogle Scholar
  30. 30.
    Tanaka, Y., Upham, J., et al. Dynamic control of the Q factors in a photonic crystal microcavity. Nature Mater. 6, 862–865 (2007)CrossRefGoogle Scholar
  31. 31.
    Song, B.-S., Asano, T., et al. Role of interfaces in heterophotonic crystals for manipulation of photons. Phys. Rev. B 71, 195101 (2005)CrossRefGoogle Scholar
  32. 32.
    O’Brien D., Settle M. D., et al. Coupled photonic crystal heterostructure nanocavities. Opt. Express 15, 1228–1233 (2007)Google Scholar
  33. 33.
    Notomi, M., Kuramochi, E., et al. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nature Photon. 2, 741–747 (2008)CrossRefGoogle Scholar
  34. 34.
    Xia, F.N., Sekaric, L., et al. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007)CrossRefGoogle Scholar
  35. 35.
    Settle, M.D., Engelen, R.J.P., et al. Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth. Opt. Express 15, 219–226 (2007)CrossRefGoogle Scholar
  36. 36.
    Baba, T., Kawasaki, T., et al. Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide. Opt. Express 16, 9245–9253 (2008)CrossRefGoogle Scholar
  37. 37.
    Almeida, V.R., Barrios, C.A., et al. All-optical control of light in a silicon chip. Nature 431, 1081–1084 (2004)CrossRefGoogle Scholar
  38. 38.
    Almeida, V.R., Barrios, C.A., et al. All-optical switching on a silicon chip. Opt. Lett. 29, 2867–2869 (2004)CrossRefGoogle Scholar
  39. 39.
    Tanabe, T., Nishiguchi, K., et al. Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities. Appl. Phys. Lett. 90, 031115 (2007)CrossRefGoogle Scholar
  40. 40.
    Tanabe, T., Notomi, M., et al. All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 87, 151112 (2005)CrossRefGoogle Scholar
  41. 41.
    Chutinan, A., Mochizuki, M., et al. Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs. Appl. Phys. Lett. 79, 2690–2692 (2001)CrossRefGoogle Scholar
  42. 42.
    Min, B.-K., Kim, J.-E., et al. High-efficiency surface-emitting channel drop filters in two-dimensional photonic crystal slabs. Appl. Phys. Lett. 86, 11106/1–3 (2005)Google Scholar
  43. 43.
    Qiu, M., Jaskorzynska, B. A design of a channel drop filter in a two-dimensional triangular photonic crystal. Appl. Phys. Lett. 83, 1074–1076 (2003)CrossRefGoogle Scholar
  44. 44.
    Qiu, M. Ultra-compact optical filter in two-dimensional photonic crystal. Electron. Lett. 40, 539–540 (2004)CrossRefGoogle Scholar
  45. 45.
    Manolatou, C., Khan, M.J., et al. Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quant. Electron. 35, 1322–1331 (1999)CrossRefGoogle Scholar
  46. 46.
    Zhang, Z., Qiu, M. Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs. Opt. Express 13, 2596–2604 (2005)CrossRefGoogle Scholar
  47. 47.
    Song, B.-S., Asano, T., et al. Transmission and reflection characteristics of in-plane hetero-photonic crystals. Appl. Phys. Lett. 85, 4591–4593 (2004)CrossRefGoogle Scholar
  48. 48.
    Takano, H., Song, B.-S., et al. Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal. Appl. Phys. Lett. 86, 241101 (2005)CrossRefGoogle Scholar
  49. 49.
    Takano, H., Song, B.-S., et al. Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal. Opt. Express 14, 3491–3496 (2006)CrossRefGoogle Scholar
  50. 50.
    Weidner, E., Combrí, S. Achievement of ultrahigh quality factors in GaAs photonic crystal membrane micro-cavity. Appl. Phys. Lett. 89, 221104 (2006)CrossRefGoogle Scholar
  51. 51.
    Park, H.-G., Kim, S.-H., et al. Electrically driven single-cell photonic crystal laser. Science 305, 1444–1447 (2004)CrossRefGoogle Scholar
  52. 52.
    Nozaki, K., Kita, S., et al. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Opt. Express 15, 7506–7514 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2010

Authors and Affiliations

  1. 1.Photonics and Microwave EngineeringRoyal Institute of Technology (KTH)KistaSweden
  2. 2.Photonics and Microwave EngineeringRoyal Institute of Technology (KTH)KistaSweden

Personalised recommendations