Microfiber and Microcoil Resonators and Resonant Sensors

  • Fei Xu
  • Gilberto Brambilla
Part of the Springer Series in Optical Sciences book series (SSOS, volume 156)


The manufacture of tapers from optical fibers provides the possibility to get long, uniform, and robust micrometer- or nanometer-size wires. Optical microfibers are fabricated by adiabatically stretching conventional optical fibers and thus preserve the original optical fiber dimensions at their input/output pigtails, allowing ready splicing to standard fibers. Since microfibers have a size comparable to the wavelength of the light propagating in it, a considerable fraction of power can be located in the evanescent field, outside the microfiber physical boundary. When a microfiber is coiled, the mode propagating in it interferes with itself to give a resonator. In this chapter the latest results on the manufacture of optical microfiber resonators are presented. Optical microfibers can be used to fabricate single-loop and multiple-loop (coil) resonators with extremely high Q factors. High Q resonators can be used for refractometric biosensors and because of their design they provide an exceptionally high sensitivity.


Free Spectral Range Fluidic Channel Evanescent Field Leaky Mode Couple Wave Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Gilberto Brambilla gratefully acknowledges the Royal Society (London, UK) for his research fellowship. The authors thank EPSRC (UK research council) for financial support.


  1. 1.
    Bures, J., Ghosh, R. Power density of the evanescent field in the vicinity of a tapered fiber. J. Opt. Soc. Am. A 16, 1992–1996 (1999)CrossRefGoogle Scholar
  2. 2.
    Bilodeau, F., Hill, K. O., et al. Compact, low-loss, fused biconical taper couplers: Overcoupled operation and antisymmetric supermode cutoff. Opt. Letters 12, 634–636 (1987)CrossRefGoogle Scholar
  3. 3.
    Tong, L.M., Gattass, R.R., et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003)CrossRefGoogle Scholar
  4. 4.
    Brambilla, G., Finazzi, V., et al. Ultra-low-loss optical fiber nanotapers. Opt. Express 12, 2258–2263 (2004)CrossRefGoogle Scholar
  5. 5.
    Sumetsky, M., Dulashko, Y., et al. Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer. Opt. Express 12, 3521–3531 (2004)CrossRefGoogle Scholar
  6. 6.
    Brambilla, G., Koizumi, F., et al. Compound-glass optical nanowires. Electron. Lett. 41, 400–402 (2005)Google Scholar
  7. 7.
    Brambilla, G., Xu, F., et al. Fabrication of optical fibre nanowires and their optical and mechanical characterisation. Electron. Lett. 42, 517–519 (2006)CrossRefGoogle Scholar
  8. 8.
    Leon-Saval, S.G., Birks, T.A., et al. Supercontinuum generation in submicron fibre waveguides. Opt. Express 12, 2864–2869 (2004)CrossRefGoogle Scholar
  9. 9.
    Tong, L.M., Lou, J.Y., et al. Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Lett. 5, 259–262 (2005)CrossRefGoogle Scholar
  10. 10.
    Sumetsky, M. Optical fiber microcoil resonator. Opt. Express 12, 2303–2316 (2004)CrossRefGoogle Scholar
  11. 11.
    Sumetsky, M., Dulashko, et al. Demonstration of a microfiber loop optical resonator. OFC/NFOEC (2005)Google Scholar
  12. 12.
    Sumetsky, M., Dulashko, et al. Demonstration of a multi-turn microfiber coil resonator. OFC/NFOEC (2007)Google Scholar
  13. 13.
    Xu, F., Brambilla, G. Manufacture of 3-D microfiber coil resonators. IEEE Photon. Technol. Lett. 19, 1481–1483 (2007)CrossRefGoogle Scholar
  14. 14.
    Xu, F., Brambilla, G. Embedding optical microfiber coil resonators in Teflon. Opt. Lett. 32, 2164–2166 (2007)CrossRefGoogle Scholar
  15. 15.
    Xu, F., Horak, P., et al. Optical microfiber coil resonator refractometric sensor. Opt. Express 15, 7888–7893 (2007)CrossRefGoogle Scholar
  16. 16.
    Xu, F., Pruneri, V., et al. An embedded optical nanowire loop resonator refractometric sensor. Opt. Express 16, 1062–1067 (2008)CrossRefGoogle Scholar
  17. 17.
    Xu, F., Brambilla, G. Demonstration of a refractometric sensor based on optical microfiber coil resonator. Appl. Phys. Lett. 92, 101126 (2008)CrossRefGoogle Scholar
  18. 18.
    Stokes, L.F., Chodorow, M., et al. All-single-mode fiber resonator. Opt. Lett. 7, 288–290 (1982)CrossRefGoogle Scholar
  19. 19.
    Caspar, C., Bachus, E.J. Fibre-optic microring-resonator with 2 mm diameter. Electron. Lett. 25, 1506–1508 (1989)CrossRefGoogle Scholar
  20. 20.
    Sumetsky, M., Dulashko, Y., et al. Optical microfiber loop resonator. Appl. Phys. Lett. 86, 161108 (2005)CrossRefGoogle Scholar
  21. 21.
    Sumetsky, M., Dulashko, Y., et al. The microfiber loop resonator: Theory, experiment, and application. J. Lightwave Technol. 24, 242–250 (2006)CrossRefGoogle Scholar
  22. 22.
    Jiang, X.S., Tong, L.M., et al. Demonstration of optical microfiber knot resonators. Appl. Phys. Lett. 88, 223501 (2006)CrossRefGoogle Scholar
  23. 23.
    Xu, F., Brambilla, G. Preservation of micro-optical fibers by embedding. Jpn. J. Appl. Phys. 47, 6675–6677 (2008)CrossRefGoogle Scholar
  24. 24.
    Adams, M., DeRose, G.A., et al. Lithographically fabricated optical cavities for refractive index sensing. J. Vac. Sci. Technol. B 23, 3168–3173 (2005)CrossRefGoogle Scholar
  25. 25.
    Chao, C.Y., Fung, W., et al. Polymer microring resonators for biochemical sensing applications. IEEE J. Sel. Top. Quant. Electron. 12, 134–142 (2006)CrossRefGoogle Scholar
  26. 26.
    Hanumegowda, N.M., Stica, et al. Refractometric sensors based on microsphere resonators. Appl. Phys. Lett. 87, 201107 (2005)CrossRefGoogle Scholar
  27. 27.
    White, I.M., Oveys, H., et al. Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides. Appl. Phys. Lett. 89, 191106 (2006)CrossRefGoogle Scholar
  28. 28.
    White, I.M., Zhu, et al. Refractometric sensors for lab-on-a-chip based on optical ring resonators. IEEE Sens. J. 7, 28–35 (2007)CrossRefGoogle Scholar
  29. 29.
    Dinleyici, M.S., Patterson, D.B. Vector modal solution of evanescent coupler. J. Lightwave Technol. 15, 2316–2324 (1997)CrossRefGoogle Scholar
  30. 30.
    Marcuse, D., Ladouceur, F., et al. Vector modes of d-shaped fibers. sIEE Proc. Part J. Optoelectron. 139, 117–126 (1992)CrossRefGoogle Scholar
  31. 31.
    Chao, C.Y., Guo, L.J. Design and optimization of microring resonators in biochemical sensing applications. J. Lightwave Technol. 24, 1395–1402 (2006)CrossRefGoogle Scholar
  32. 32.
    White, I.M., Fan, X. On the performance quantification of resonant refractive index sensors. Optics Express 16, 1020–1028 (2008)CrossRefGoogle Scholar
  33. 33.
    Knight, J.C., Cheung, G., et al. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett. 22, 1129–1131 (1997)CrossRefGoogle Scholar
  34. 34.
    Xu, F., Horak, P., et al. Optimized design of microcoil resonators. J. Lightwave Technol. 25, 1561–1567 (2007)CrossRefGoogle Scholar
  35. 35.
    Xu, F., Horak, P., et al. Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator. Appl. Opt. 46, 570–573 (2007)CrossRefGoogle Scholar
  36. 36.
    Altkorn, R., Koev, I., et al. Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy. Appl. Opt. 36, 8992–8998 (1997)CrossRefGoogle Scholar
  37. 37.
    Dress, P., Belz, M., et al. Physical analysis of teflon coated capillary waveguides. Sens. Actuators B 51, 278–284 (1998)CrossRefGoogle Scholar
  38. 38.
    Kim, C.B., Su, C.B. Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fibre optic Fresnel ratio meter. Meas. Sci. Technol. 15, 1683–1686 (2004)CrossRefGoogle Scholar
  39. 39.
    Balakirev, M.Y., Porte, S., et al. Photochemical patterning of biological molecules inside a glass capillary. Anal. Chem. 77, 5474–5479 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2010

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering and National Laboratory of Solid State MicrostructuresNanjing UniversityNanjingPeople’s Republic of China
  2. 2.Optoelectronics Research Centre, University of SouthamptonSouthamptonUK

Personalised recommendations