Performance of Single and Coupled Microresonators in Photonic Switching Schemes

Part of the Springer Series in Optical Sciences book series (SSOS, volume 156)


Applications of single and coupled microresonators in various photonic switching schemes are considered. It is shown that both single and coupled resonators enhance the performance of the switches based on nonlinear optical or electro-optical effect, but the enhancement occurs at the expense of reduced bandwidth. The critical bit rates at which the enhancement is still possible are derived for single and coupled microresonators. It is shown that the choice of optimum microresonator scheme is determined most of all by the intrinsic switching speed of the nonlinear or electro-optic material.


Group Delay Nonlinear Refractive Index Couple Resonator Group Delay Dispersion Resonant Enhancement 


  1. 1.
    Mouftah, H.T., Elmirghani, J.M.H. (eds.) Photonic switching technology: Systems and Networks. Wiley, NY (1998).Google Scholar
  2. 2.
    Agrawal, G.P. Fiber optics communication systems. Wiley, NY (2002).CrossRefGoogle Scholar
  3. 3.
    Boyd, R.W. Nonlinear optics. Academic Press, San Diego CA (2003).Google Scholar
  4. 4.
    Buse, K., Adibi, A., et al. Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature 393, 665–668 (1998)CrossRefGoogle Scholar
  5. 5.
    Mace, D.A.H., Adams, M.J. Carrier recombination time measurements of InAlAs/InGaAs multiple quantum wells using nonlinear frequency-dependent transmission. Semicond. Sci. Technol. 5, 105–107 (1990)CrossRefGoogle Scholar
  6. 6.
    Jalali, B., Fathpour, S. Silicon photonics. J. Lightw. Technol. 24, 4600–4615 (2006)CrossRefGoogle Scholar
  7. 7.
    Bach, H., Neuroth, N. (eds.) The Properties of optical glass. Springer, Berlin (1998)Google Scholar
  8. 8.
    Adair, R., Chase, L.L., et al. Nonlinear refractive index of optical crystals. Phys. Rev. B 39, 3337–3350 (1989)CrossRefGoogle Scholar
  9. 9.
    Millar, P., Aitchison, J.S., et al. Nonlinear waveguide arrays in AlGaAs. J. Opt. Soc. Am. B 14, 3224–3231 (1997)CrossRefGoogle Scholar
  10. 10.
    Hunsperger, R.G. Integrated optics. Theory and applications. Springer, NY (2008)Google Scholar
  11. 11.
    Lipson, M. Compact electro-optic modulators on a silicon chip. IEEE J. Sel. Top. Quant. El. 12, 1520–1526 (2006)CrossRefGoogle Scholar
  12. 12.
    Xu, Q., Manipatruni, S., et al. 12.5 Gbit/s carrier-injection-based silicon microring silicon modulators. Opt. Express 15, 430–436 (2007)CrossRefGoogle Scholar
  13. 13.
    Soref, R.A., Bennett, B.R. Electro-optical effects in silicon. IEEE J. Quant. Electron. QE-23, 123–129 (1987)CrossRefGoogle Scholar
  14. 14.
    Liao, L., Samara-Rubio, D., et al. High speed silicon Mach-Zehnder modulator. Opt. Express 13, 3129–3135 (2005)CrossRefGoogle Scholar
  15. 15.
    Nikogosyan, D.A. Properties of optical and laser related materials. A handbook. Wiley, NY (1997)Google Scholar
  16. 16.
    Shi, Y., Zhang, C., et al. Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape. Science 2888, 119–122 (2000)CrossRefGoogle Scholar
  17. 17.
    Wooten, E.L., Kissa, K.M., et al. A review of lithium niobate modulators for fiber-optic communications systems, IEEE J. Sel. Top. Quant. Electron. 6, 69–82 (2000)CrossRefGoogle Scholar
  18. 18.
    Chen, D., Fetterman, H., et al. Demonstration of 110 GHz electro-optic polymer modulators. Appl. Phys. Lett. 70, 3335–3337 (1997)CrossRefGoogle Scholar
  19. 19.
    Kash, M.M., Sautenkov, V.A., et al. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82, 5229–5232 (1999)CrossRefGoogle Scholar
  20. 20.
    Chemla, D.S., Miller, D.A.B. Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures. J. Opt. Soc. Am. B 2, 1155–1173 (1985)CrossRefGoogle Scholar
  21. 21.
    Rosenthal, A., Horowitz, M. Analysis and design of nonlinear fiber Bragg gratings and their application for optical compression of reflected pulses. Opt. Lett. 31, 1334–1336 (2006)CrossRefGoogle Scholar
  22. 22.
    Marburger, J.H., Felber, F.S. Theory of a lossless nonlinear Fabry-Perot interferometer. Phys. Rev. A 17, 335–342 (1978)CrossRefGoogle Scholar
  23. 23.
    Xia, F., Sekaric, L., et al. Ultra-compact optical buffers on a silicon chip. Nat. Photon. 1, 65–71 (2006)CrossRefGoogle Scholar
  24. 24.
    Tazawa, H., Kuo, Y.-H., et al. Ring resonator-based electro-optic polymer traveling-wave modulator. IEEE J. Lightw. Technol. 24, 3514–3519 (2006)CrossRefGoogle Scholar
  25. 25.
    Cohen, D.A., Hossein-Zadeh, M., et al. High-Q microphotonic electro-optic modulator. Solid-State Electron. 45, 1577–1589 (2001)CrossRefGoogle Scholar
  26. 26.
    Bhola, B., Song, H.-C., et al. Polymer micro-resonator strain sensors. IEEE Photon. Technol. Lett. 17, 867–869 (2005)CrossRefGoogle Scholar
  27. 27.
    Savchenkov, A.A., Matsko, A.B., et al. Ringdown spectroscopy of stimulated Raman scattering in a whispering gallery mode resonator. Opt. Lett. 32, 497–499 (2007)CrossRefGoogle Scholar
  28. 28.
    Schmidt, B., Xu, Q., et al. Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes. Opt. Express, 15, 3140–3148 (2007)CrossRefGoogle Scholar
  29. 29.
    Madsen, C.K., Lenz, G. Optical all-pass filters for phase response design with applications for dispersion compensation. IEEE Photon. Technol. Lett. 10, 994–996 (1998)CrossRefGoogle Scholar
  30. 30.
    Poon, J. K., Zhu, L., et al. Transmission and group delay of microring coupled-resonator optical waveguides. Opt. Lett. 31, 456–458 (2006)CrossRefGoogle Scholar
  31. 31.
    S. Xiao, M. H. Khan, H. Shen, and M. Qi, Multiple-channel silicon micro-resonator based filters for WDM applications, Opt. Express 15, 7489–7498 (2007)CrossRefGoogle Scholar
  32. 32.
    Nawrocka, M.S., Liu, T., et al. Tunable silicon microring resonator with wide free spectral range. Appl. Phys. Lett. 89, 071110 (2006)CrossRefGoogle Scholar
  33. 33.
    Heebner, J.E., Boyd, R.W. “Slow” and “fast” light in resonator-coupled waveguides. J. Mod. Opt. 49, 2629–2636 (2002).CrossRefGoogle Scholar
  34. 34.
    Heebner, J.E., Boyd, R.W., et al SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides J. Opt. Soc. Am. B 19, 722–731 (2002)CrossRefGoogle Scholar
  35. 35.
    Yariv, A., Xu, Y., et al. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999)CrossRefGoogle Scholar
  36. 36.
    Melloni, A., Morichetti, F., et al. Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures. Opt. Quant. Electron. 35, 365–378 (2003)CrossRefGoogle Scholar
  37. 37.
    Khurgin, J.B. Expanding the bandwidth of slow light photonic devices based on coupled resonators. Opt. Lett. 30, 513–515 (2005)CrossRefGoogle Scholar
  38. 38.
    Khurgin, J.B. Optical buffers based on slow light in EIT media and coupled resonator structures-comparative analysis. J. Opt. Soc. Am. B 22, 1062–1074 (2005)CrossRefGoogle Scholar
  39. 39.
    Soljačić, M., Johnson, S.G., et al. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am B 19, 2052–2059 (2002)CrossRefGoogle Scholar
  40. 40.
    Khurgin, J.B. Performance of nonlinear photonic crystal devices at high bit rates. Opt. Lett. 30, 643–645 (2005)CrossRefGoogle Scholar
  41. 41.
    Mamyshev, P.V. All-optical data regeneration based on self-phase modulation effect. ECOC, p. 475 (1998).Google Scholar
  42. 42.
    Goto, H., Konishi, T., et al. An all-optical limiter with high-accuracy thresholding based on self-phase modulation assisted by preparatory waveform conversion. J. Opt. A: Pure Appl. Opt. 10, 095306 (2008)CrossRefGoogle Scholar
  43. 43.
    Sardesai, H.P., Weiner, A.M. Nonlinear fiber-optic receiver for ultra-short pulse code division multiple access communication. Electron. Lett. 33, 610–611 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2010

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations