The Control of ESBL-Producing Bacteria

  • Peter M. Hawkey


Infections caused by Extended Spectrum Beta Lactamase (ESBL) producing Gram-negative bacteria have emerged over the last twenty years as a major worldwide problem for treatment. Initially the ESBL enzymes of the TEM and SHV type were identified, these did not reach high rates and were most common in Klebsiella spp rather than E.coli. ESBLs of the CTX-M type have become the most common and widespread type particularly in community strains of E.coli. Faecal colonisation in both infected patients and asymptomatic carriers is the most important source so successful infection control measures are directed at reducing spread from that source. Antibiotic restriction has been demonstrated to control the rate of ESBLs, reduction in third generation cephalosporins and quinolones having the greatest impact when combined with source control/hand washing as infection control interventions. Substitution of these selective agents by piperacillin/tazobactam and carbapenems results in ESBL reduction particularly if combined with use of a diversity of other narrow spectrum agents. There are widely differing rates of ESBLs around the world which broadly correlates with the overall hospital/community prescription, agricultural and over the counter usage of quinolones and cephalosporins. Application of antibiotic stewardship is an important control measure when supported by control of the sources and routes of spread of ESBL-producing Enterobacteriaceae.


Antibiotic resistance ESBL CTXM UTI Gut carriage Cephalosporins 


  1. Akram, M., Shahid, M., & Khan, A.U. 2007. Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in J N M C Hospital Aligarh, India. Ann.Clin.Microbiol.Antimicrob., 6, 4PubMedCrossRefGoogle Scholar
  2. Al Naimeri N., Heddema, E.R., Bart, A., de, J.E., Vandenbroucke-Grauls, C.M., Savelkoul, P.H., & Duim, B. 2006. Emergence of multidrug-resistant Gram-negative bacteria during selective decontamination of the digestive tract on an intensive care unit. J.Antimicrob.Chemother., 58, 853-856Google Scholar
  3. Arda, B., Sipahi, O.R., Yamazhan, T., Tasbakan, M., Pullukcu, H., Tunger, A., Buke, C., & Ulusoy, S. 2007. Short-term effect of antibiotic control policy on the usage patterns and cost of antimicrobials, mortality, nosocomial infection rates and antibacterial resistance. J.Infect., 55, 41-48PubMedCrossRefGoogle Scholar
  4. Asensio, A., Oliver, A., Gonzalez-Diego, P., Baquero, F., Perez-Diaz, J.C., Ros, P., Cobo, J., Palacios, M., Lasheras, D., & Canton, R. 2000. Outbreak of a multiresistant Klebsiella pneumoniae strain in an intensive care unit: antibiotic use as risk factor for colonization and infection. Clin.Infect.Dis., 30, 55-60PubMedCrossRefGoogle Scholar
  5. Ben-Ami, R., Schwaber, M.J., Navon-Venezia, S., Schwartz, D., Giladi, M., Chmelnitsky, I., Leavitt, A., & Carmeli, Y. 2006. Influx of extended-spectrum beta-lactamase-producing enterobacteriaceae into the hospital. Clin.Infect.Dis., 42, 925-934PubMedCrossRefGoogle Scholar
  6. Blanco, M., Alonso, M.P., Nicolas-Chanoine, M.H., Dahbi, G., Mora, A., Blanco, J.E., Lopez, C., Cortes, P., Llagostera, M., Leflon-Guibout, V., Puentes, B., Mamani, R., Herrera, A., Coira, M.A., Garcia-Garrote, F., Pita, J.M., & Blanco, J. 2009. Molecular epidemiology of Escherichia coli producing extended-spectrum {beta}-lactamases in Lugo (Spain): dissemination of clone O25b:H4-ST131 producing CTX-M-15. J.Antimicrob.Chemother., 63, 1135-1141PubMedCrossRefGoogle Scholar
  7. Casewell, M.W., Dalton, M.T., Webster, M., & Phillips, I. 1977. Gentamicin-resistant Klebsiella aerogenes in a urological ward. Lancet, 2, (8035) 444-446PubMedCrossRefGoogle Scholar
  8. Castanheira, M., Mendes, R.E., Rhomberg, P.R., & Jones, R.N. 2008. Rapid emergence of blaCTX-M among Enterobacteriaceae in U.S. Medical Centers: molecular evaluation from the MYSTIC Program (2007). Microb.Drug Resist., 14, 211-216PubMedCrossRefGoogle Scholar
  9. Cattoir, V. & Nordmann, P. 2009. Plasmid-mediated quinolone resistance in gram-negative bacterial species: an update. Curr.Med.Chem., 16, 1028-1046PubMedCrossRefGoogle Scholar
  10. Cavaco, L.M., Frimodt-Moller, N., Hasman, H., Guardabassi, L., Nielsen, L., & Aarestrup, F.M. 2008. Prevalence of quinolone resistance mechanisms and associations to minimum inhibitory concentrations in quinolone-resistant Escherichia coli isolated from humans and swine in Denmark. Microb.Drug Resist., 14, 163-169PubMedCrossRefGoogle Scholar
  11. Chanawong, A., M’Zali, F.H., Heritage, J., Xiong, J.H., & Hawkey, P.M. 2002. Three cefotaximases, CTX-M-9, CTX-M-13, and CTX-M-14, among Enterobacteriaceae in the People’s Republic of China. Antimicrob.Agents Chemother., 46, 630-637PubMedCrossRefGoogle Scholar
  12. den Heijer, C.D., Donker, G.A., Maes, J., & Stobberingh, E.E. 2010. Antibiotic susceptibility of unselected uropathogenic Escherichia coli from female Dutch general practice patients: a comparison of two surveys with a 5 year interval. J.Antimicrob.Chemother., 65, 2128-2133CrossRefGoogle Scholar
  13. Dierikx, C., van Essen-Zandbergen, A., Veldman, K., Smith, H., & Mevius, D. 2010. Increased detection of extended spectrum beta-lactamase producing Salmonella enterica and Escherichia coli isolates from poultry. Vet.Microbiol., 145, 273-278PubMedCrossRefGoogle Scholar
  14. Du, B., Long, Y., Liu, H., Chen, D., Liu, D., Xu, Y., & Xie, X. 2002. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infection: risk factors and clinical outcome. Intensive Care Med., 28, 1718-1723PubMedCrossRefGoogle Scholar
  15. Ensor, V.M., Shahid, M., Evans, J.T., & Hawkey, P.M. 2006. Occurrence, prevalence and genetic environment of CTX-M -lactamases in Enterobacteriaceae from Indian hospitals. J.Antimicrob.Chemother., 58, 1260-1263PubMedCrossRefGoogle Scholar
  16. Gaze, W., O’Neill, C., Wellington, E., & Hawkey, P. 2008. Antibiotic resistance in the environment, with particular reference to MRSA. Adv.Appl.Microbiol., 63C, 249-280Google Scholar
  17. Gaze, W.H., Abdouslam, N., Hawkey, P.M., & Wellington, E.M. 2005. Incidence of class 1 integrons in a quaternary ammonium compound-polluted environment. Antimicrob.Agents Chemother., 49, 1802-1807PubMedCrossRefGoogle Scholar
  18. Giske, C.G., Sundsfjord, A.S., Kahlmeter, G., Woodford, N., Nordmann, P., Paterson, D.L., Canton, R., & Walsh, T.R. 2009. Redefining extended-spectrum beta-lactamases: balancing science and clinical need. J.Antimicrob.Chemother., 63, 1–4PubMedCrossRefGoogle Scholar
  19. Gray, K.J., Wilson, L.K., Phiri, A., Corkill, J.E., French, N., & Hart, C.A. 2006. Identification and characterization of ceftriaxone resistance and extended-spectrum beta-lactamases in Malawian bacteraemic Enterobacteriaceae. J.Antimicrob.Chemother., 57, 661-665PubMedCrossRefGoogle Scholar
  20. Harris, A.D., Karchmer, T.B., Carmeli, Y., & Samore, M.H. 2001. Methodological principles of case-control studies that analyzed risk factors for antibiotic resistance: a systematic review. Clin.Infect.Dis., 32, 1055–1061PubMedCrossRefGoogle Scholar
  21. Harris, A.D., Kotetishvili, M., Shurland, S., Johnson, J.A., Morris, J.G., Nemoy, L.L., & Johnson, J.K. 2007a. How important is patient-to-patient transmission in extended-spectrum beta-lactamase Escherichia coli acquisition. Am.J.Infect.Control., 35, 97-101CrossRefGoogle Scholar
  22. Harris, A.D., McGregor, J.C., Johnson, J.A., Strauss, S.M., Moore, A.C., Standiford, H.C., Hebden, J.N., & Morris, J.G., Jr. 2007b. Risk factors for colonization with extended-spectrum beta-lactamase-producing bacteria and intensive care unit admission. Emerg.Infect.Dis., 13, 1144-1149CrossRefGoogle Scholar
  23. Hawkey, P.M. & Jones, A.M. 2009. The changing epidemiology of resistance. J.Antimicrob.Chemother., 64 Suppl 1:, i3-10PubMedCrossRefGoogle Scholar
  24. Hyle, E.P., Gasink, L.B., Linkin, D.R., Bilker, W.B., & Lautenbach, E. 2007. Use of different thresholds of prior antimicrobial use in defining exposure: impact on the association between antimicrobial use and antimicrobial resistance. J.Infect., 55, 414-418PubMedCrossRefGoogle Scholar
  25. Kim, J.Y., Sohn, J.W., Park, D.W., Yoon, Y.K., Kim, Y.M., & Kim, M.J. 2008. Control of extended-spectrum {beta}-lactamase-producing Klebsiella pneumoniae using a computer-assisted management program to restrict third-generation cephalosporin use. J.Antimicrob.Chemother., 62, 416-421Google Scholar
  26. Knothe, H., Shah, P., Krcmery, V., Antal, M., & Mitsuhashi, S. 1983. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection, 11, 315-317PubMedCrossRefGoogle Scholar
  27. Larson, E.L., Quiros, D., Giblin, T., & Lin, S. 2007. Relationship of antimicrobial control policies and hospital and infection control characteristics to antimicrobial resistance rates. Am.J.Crit Care., 16, 110-120PubMedGoogle Scholar
  28. Lautenbach, E., Patel, J.B., Bilker, W.B., Edelstein, P.H., & Fishman, N.O. 2001. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin.Infect.Dis., 32, 1162-1171PubMedCrossRefGoogle Scholar
  29. Lee, J., Pai, H., Kim, Y.K., Kim, N.H., Eun, B.W., Kang, H.J., Park, K.H., Choi, E.H., Shin, H.Y., Kim, E.C., Lee, H.J., & Ahn, H.S. 2007. Control of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a children’s hospital by changing antimicrobial agent usage policy. J.Antimicrob.Chemother., 60, 629-637PubMedCrossRefGoogle Scholar
  30. Lipworth, A.D., Hyle, E.P., Fishman, N.O., Nachamkin, I., Bilker, W.B., Marr, A.M., Larosa, L.A., Kasbekar, N., & Lautenbach, E. 2006. Limiting the emergence of extended-spectrum Beta-lactamase-producing enterobacteriaceae: influence of patient population characteristics on the response to antimicrobial formulary interventions. Infect.Control Hosp.Epidemiol., 27, 279-286PubMedCrossRefGoogle Scholar
  31. MacAdam, H., Zaoutis, T.E., Gasink, L.B., Bilker, W.B., & Lautenbach, E. 2006. Investigating the association between antibiotic use and antibiotic resistance: impact of different methods of categorising prior antibiotic use. Int.J.Antimicrob.Agents., 28, 325-332PubMedCrossRefGoogle Scholar
  32. Martinez-Martinez, L., Pascual, A., & Jacoby, G.A. 1998. Quinolone resistance from a transferable plasmid. Lancet., 351, 797-799PubMedCrossRefGoogle Scholar
  33. Meyer, K.S., Urban, C., Eagan, J.A., Berger, B.J., & Rahal, J.J. 1993. Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins. Ann.Intern.Med., 119, 353-358PubMedGoogle Scholar
  34. Munday, C.J., Whitehead, G.M., Todd, N.J., Campbell, M., & Hawkey, P.M. 2004a. Predominance and genetic diversity of community- and hospital-acquired CTX-M extended-spectrum beta-lactamases in York, UK. J.Antimicrob.Chemother., 54, 628-633CrossRefGoogle Scholar
  35. Munday, C.J., Xiong, J., Li, C., Shen, D., & Hawkey, P.M. 2004b. Dissemination of CTX-M type beta-lactamases in Enterobacteriaceae isolates in the People’s Republic of China. Int.J.Antimicrob.Agents, 23, 175-180CrossRefGoogle Scholar
  36. Ndugulile, F., Jureen, R., Harthug, S., Urassa, W., & Langeland, N. 2005. Extended spectrum beta-lactamases among Gram-negative bacteria of nosocomial origin from an intensive care unit of a tertiary health facility in Tanzania. BMC.Infect.Dis., 5, 86PubMedCrossRefGoogle Scholar
  37. Nicolas-Chanoine, M.H., Blanco, J., Leflon-Guibout, V., Demarty, R., Alonso, M.P., Canica, M.M., Park, Y.J., Lavigne, J.P., Pitout, J., & Johnson, J.R. 2008. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J.Antimicrob.Chemother., 61, 273–281Google Scholar
  38. Oostdijk, E.A., de Smet, A.M., Blok, H.E., Thieme Groen, E.S., van Asselt, G.J., Benus, R.F., Bernards, S.A., Frenay, I.H., Jansz, A.R., de Jongh, B.M., Kaan, J.A., Leverstein-van Hall, M.A., Mascini, E.M., Pauw, W., Sturm, P.D., Thijsen, S.F., Kluytmans, J.A., & Bonten, M.J. 2010. Ecological effects of selective decontamination on resistant gram-negative bacterial colonization. Am.J.Respir.Crit Care Med., 181, 452-457PubMedCrossRefGoogle Scholar
  39. Papanicolaou, G.A., Medeiros, A.A., & Jacoby, G.A. 1990. Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy beta-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob.Agents Chemother., 34, 2200-2209Google Scholar
  40. Paterson, D.L. & Bonomo, R.A. 2005. Extended-spectrum beta-lactamases: a clinical update. Clin.Microbiol.Rev., 18, 657-686PubMedCrossRefGoogle Scholar
  41. Paterson, D.L., Ko, W.C., Von Gottberg, A., Mohapatra, S., Casellas, J.M., Goossens, H., Mulazimoglu, L., Trenholme, G., Klugman, K.P., Bonomo, R.A., Rice, L.B., Wagener, M.M., McCormack, J.G., & Yu, V.L. 2004. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial Infections. Ann.Intern.Med., 140, 26-32PubMedGoogle Scholar
  42. Paterson, D.L., Mulazimoglu, L., Casellas, J.M., Ko, W.C., Goossens, H., Von Gottberg, A., Mohapatra, S., Trenholme, G.M., Klugman, K.P., McCormack, J.G., & Yu, V.L. 2000a. Epidemiology of ciprofloxacin resistance and its relationship to extended-spectrum beta-lactamase production in Klebsiella pneumoniae isolates causing bacteremia. Clin.Infect.Dis., 30, 473-478CrossRefGoogle Scholar
  43. Patterson, J.E., Hardin, T.C., Kelly, C.A., Garcia, R.C., & Jorgensen, J.H. 2000b. Association of antibiotic utilization measures and control of multiple-drug resistance in Klebsiella pneumoniae. Infect.Control Hosp.Epidemiol., 21, 455-458CrossRefGoogle Scholar
  44. Pessoa-Silva, C.L., Meurer, M.B., Camara, A., V, Flannery, B., Almeida Lins, M.C., Mello Sampaio, J.L., Martins, T.L., Vaz Miranda, L.E., Riley, L.W., & Gerberding, J.L. 2003. Extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit: risk factors for infection and colonization. J.Hosp.Infect., 53, 198-206Google Scholar
  45. Philippon, A., Arlet, G., & Jacoby, G.A. 2002. Plasmid-determined AmpC-type beta-lactamases. Antimicrob.Agents Chemother., 46, (1) 1-11PubMedCrossRefGoogle Scholar
  46. Philippon, A., Labia, R., & Jacoby, G. 1989. Extended-spectrum beta-lactamases. Antimicrob.Agents Chemother., 33, 1131-1136PubMedCrossRefGoogle Scholar
  47. Rahal, J.J., Urban, C., Horn, D., Freeman, K., Segal-Maurer, S., Maurer, J., Mariano, N., Marks, S., Burns, J.M., Dominick, D., & Lim, M. 1998. Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA, 280, 1233-1237PubMedCrossRefGoogle Scholar
  48. Rice, L.B., Eckstein, E.C., DeVente, J., & Shlaes, D.M. 1996. Ceftazidime-resistant Klebsiella pneumoniae isolates recovered at the Cleveland Department of Veterans Affairs Medical Center. Clin.Infect.Dis., 23, 118-124PubMedCrossRefGoogle Scholar
  49. Rice, L.B., Willey, S.H., Papanicolaou, G.A., Medeiros, A.A., Eliopoulos, G.M., Moellering, R.C., Jr., & Jacoby, G.A. 1990. Outbreak of ceftazidime resistance caused by extended-spectrum beta-lactamases at a Massachusetts chronic-care facility. Antimicrob.Agents Chemother., 34,PubMedCrossRefGoogle Scholar
  50. Rodriguez-Bano, J., Navarro, M.D., Romero, L., Muniain, M.A., de Cueto, M., Rios, M.J., Hernandez, J.R., & Pascual, A. 2006. Bacteremia due to extended-spectrum beta -lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin.Infect.Dis., 43, 1407-1414PubMedCrossRefGoogle Scholar
  51. Rodriguez-Bano, J., Picon, E., Gijon, P., Hernandez, J.R., Ruiz, M., Pena, C., Almela, M., Almirante, B., Grill, F., Colomina, J., Gimenez, M., Oliver, A., Horcajada, J.P., Navarro, G., Coloma, A., & Pascual, A. 2010. Community-onset bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli: risk factors and prognosis. Clin.Infect.Dis., 50, 40-48PubMedCrossRefGoogle Scholar
  52. Rooney, P.J., O’Leary, M.C., Loughrey, A.C., McCalmont, M., Smyth, B., Donaghy, P., Badri, M., Woodford, N., Karisik, E., & Livermore, D.M. 2009. Nursing homes as a reservoir of extended-spectrum beta-lactamase (ESBL)-producing ciprofloxacin-resistant Escherichia coli. J.Antimicrob.Chemother., 64, 635-641PubMedCrossRefGoogle Scholar
  53. Sanders, C.C. 1987. Chromosomal cephalosporinases responsible for multiple resistance to newer beta-lactam antibiotics. Annu.Rev.Microbiol., 41, 573-593PubMedCrossRefGoogle Scholar
  54. Sandiumenge, A., Diaz, A., Rodriguez, L., Vidaur, L., Canadell, M., Olona, M. Rue & J Rello. 2006. Impact of diversity of antibiotic use on development of antimicrobial resistance. J. Antimicrob. Chemother. 57: 1197-1204Google Scholar
  55. Saurina, G., Quale, J.M., Manikal, V.M., Oydna, E., & Landman, D. 2000. Antimicrobial resistance in Enterobacteriaceae in Brooklyn, NY: epidemiology and relation to antibiotic usage patterns. J.Antimicrob.Chemother., 45, 895-898PubMedCrossRefGoogle Scholar
  56. Sirot, D. 1995. Extended-spectrum plasmid-mediated beta-lactamases. J.Antimicrob.Chemother., 36 Suppl A:19-34.,PubMedCrossRefGoogle Scholar
  57. Sirot, D., Sirot, J., Labia, R., Morand, A., Courvalin, P., Darfeuille-Michaud, A., Perroux, R., & Cluzel, R. 1987. Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel beta-lactamase. J.Antimicrob.Chemother., 20, 323-334PubMedCrossRefGoogle Scholar
  58. Urbanek, K., Kolar, M., Loveckova, Y., Strojil, J., & Santava, L. 2007. Influence of third-generation cephalosporin utilization on the occurrence of ESBL-positive Klebsiella pneumoniae strains. J.Clin.Pharm.Ther., 32, 403-408PubMedCrossRefGoogle Scholar
  59. Valverde, A., Coque, T.M., Sanchez-Moreno, M.P., Rollan, A., Baquero, F., & Canton, R. 2004. Dramatic increase in prevalence of fecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae during nonoutbreak situations in Spain. J.Clin.Microbiol., 42, (10) 4769-4775PubMedCrossRefGoogle Scholar
  60. Warren, R.E., Harvey, G., Carr, R., Ward, D., & Doroshenko, A. 2008. Control of infections due to extended-spectrum beta-lactamase-producing organisms in hospitals and the community. Clin.Microbiol.Infect., 14 Suppl 1, 124-133Google Scholar
  61. Wener, K.M., Schechner, V., Gold, H.S., Wright, S.B., & Carmeli, Y. 2010. Treatment with fluoroquinolones or with beta-lactam-beta-lactamase inhibitor combinations is a risk factor for isolation of extended-spectrum-beta-lactamase-producing Klebsiella species in hospitalized patients. Antimicrob.Agents Chemother., 54, 2010-2016PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Immunology and InfectionUniversity of BirminghamEdgbastonUK

Personalised recommendations