Advertisement

Effects of Screen Resolution and Training Variation on a Simulated Flight Control Task

  • Don C. Donderi
  • Keith K. Niall
  • Karyn Fish
  • Benjamin Goldstein
Conference paper

Abstract

One hundred and four inexperienced observers were trained on a PC-based flight control task in order to measure the effect of two flight simulation variables; screen resolution and training speed, on post-training performance. A throttle and joystick controlled the speed, radius and inclination angle of an orbiting F-18 chase aircraft. The control task was to overtake and intercept a target F-18 flying on another orbit with a different radius and inclination. The simulation included a realistic F-18 cockpit for the chase plane, a realistic F-18 target aircraft, textured terrain, a horizon, clouds and sun. The variables of interest were screen resolution (768 × 1,024, 960 × 1,280, 1,200 × 1,600 [criterion]) and simulated training speeds of 450, 900 (criterion) or 1,350 knots. Experiment 1 was carried out in a single session at criterion resolution with 50 observers. It included a pre-test at criterion speed and a training session that presented either 18 training trials at 900 knots, 18 at 1,350 knots, 9 trials at 450 and 9 at 900 knots, or 6 trials at each of 450, 900 and 1,350 knots to different groups of observers. Consistent fast (1,350 knots) training generated the largest training errors but the best post-training (criterion speed) performance. Experiment 2, with 52 observers, used the same task. The three screen resolutions were varied between observers while training speeds were varied within observers on three sessions over 3 days. Familiarization and the criterion pre-test were completed on day 1. A single training session and criterion post-test were completed on each of days 2 and 3. All permutations of pairs of 450, 900 and 1,350 knot speeds were used during the training sessions over days 2 and 3. Following the first training session, 1,350-knot training at high (criterion) resolution and medium resolution produced the best post-training performance results. Following both training sessions, the best post-training results occurred following high resolution training at the fast (1,350 knot) training speed in both training sessions. Performance under low-resolution conditions was significantly worse than under high (criterion) or medium-resolution training. These results re-emphasize the importance of screen resolution during simulator training, and they support earlier findings that greater-than-realistic speed training improves performance on a simulated flight control task carried out at a realistic (criterion) post-test speed.

Keywords

Training Condition Training Trial Error Score Flight Simulation Familiarization Trial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sommaire

Deux expériences ont été suivis dans le cadre d’une tâche de pilotage simulée au moyen d’un PC. Une manette des gaz et un manche à balai servaient à commander le mouvement d’un F 18 de poursuite décrivant des cercles, et la tâche de pilotage consistait à rattraper et à intercepter un F 18 cible décrivant des cercles de rayon et d’inclinaison différents. Les variables d’intérêt étaient la résolution d’écran (faible, moyenne et élevée) ainsi que la vitesse d’entraînement simulée (supérieure à la vitesse de référence, égale à la vitesse de référence (900 nœuds) et inférieure à la vitesse de référence). L’expérience un, effectuée à haute résolution, présentait dix-huit essais d’entraînement qui faisaient varier la présentation de vitesses supérieures à la vitesse de référence, égales à la vitesse de référence et inférieures à la vitesse de référence au cours d’une seule journée et mesurait les variations des performances dans le cadre de prétests et de post tests. L’entraînement à une vitesse supérieure à la vitesse de référence a donné lieu aux erreurs d’entraînement les plus importantes et aux meilleures performances de référence dans le cadre de post tests. Dans le cadre de l’expérience deux, on a utilisé la même tâche. On a fait varier la résolution d’écran d’un observateur à l’autre, ainsi que les régimes d’entraînement au sein des observateurs sur trois jours. On a procédé à la familiarisation et aux prétests le premier jour, puis on a procédé à l’entraînement à une vitesse inférieure à la vitesse de référence, égale à la vitesse de référence et supérieure à la vitesse de référence selon différentes combinaisons au cours des deuxième et troisième jours, après quoi on a effectué un post test de référence chaque jour. L’analyse des données est incomplète, mais les données partielles laissent croire que l’entraînement à résolution élevée et l’entraînement rapide permettent des meilleures performances.

References

  1. Pavlov IP (1928) Lectures on conditioned reflexes. International Publishers, New YorkGoogle Scholar
  2. Hilgard E, Bower GH (1966) Theories of learning, 3rd edn. Appleton-Century-Crofts, New YorkGoogle Scholar
  3. Lieberman D (1990) Learning: behavior and cognition. Wadsworth, Belmont, CAGoogle Scholar
  4. Gibbon E (1776) History of the decline and fall of the Roman empire, vol. 1. Various editions, including Bury JB (ed) (1906). Fred de Fau & Company, New York. Available June 2009 from http://www.gutenberg.org/etext/731
  5. Duncan CP (1958) Transfer after training with single versus multiple tasks. J Exp Psychol 55:63-72CrossRefGoogle Scholar
  6. Menendez RG, Bernard JE (2000) Flight simulation in synthetic environments. In: Proceedings of the 19th digital avionics systems conferences, vol 1. pp 2A5/1-2A5/6Google Scholar
  7. Koonce JM, Bramble WJ Jr (1998) Personal computer-based flight training devices. Int J Aviat Psychol 8(3):277-292CrossRefGoogle Scholar
  8. Lintern G (1991) An informational perspective on skill transfer in human-machine systems. Hum Factors 33(3):251-266Google Scholar
  9. Lintern G, Walker MB (1991) Scene content and runway breadth effects on simulated landing approaches. Int J Aviat Psychol 1(2):117-132CrossRefGoogle Scholar
  10. Lintern G, Koonce JM (1992) Visual augmentation and scene detail effects in flight training. Int J Aviat Psychol 2(4):281-301CrossRefGoogle Scholar
  11. Taylor HL, Lintern G, Hulin CL, Talleur DA, Emanual TW Jr, Phillips SI (1999) Transfer of training effectiveness of a personal computer aviation training device. Int J Aviat Psychol 9(4):319-335CrossRefGoogle Scholar
  12. Roessingh JJM (2005) Transfer of manual flying skills from PC-based simulation to actual flight-comparison of in-flight measured data and instructor ratings. Int J Aviat Psychol 15(1):67-90CrossRefGoogle Scholar
  13. Ali SF, Guckenberger D, Rossi M, Williams M (2000) Evaluation of above real-time training and self-instructional strategies for airmanship tasks on a flight simulator. US Air Force Research Laboratory Technical Report No. AFRL-HE-AZ-TR-2000-0112 (Contract No. F41624-98-1-005), pp 74 Google Scholar
  14. Guckenberger D, Uliano KC, Lane NE (1993) Teaching high-performance skills using above-real-time training. National Aeronautics and Space Administration, NASA Contractor Report 4528Google Scholar
  15. Bliss JP, Lampton DR, Boldovici JA (1992) The effects of easy-to-difficult, difficult-only, and mixed-gunnery practice on performance of simulated gunnery tasks. Technical Report ARITR - 948, Army Research Institute for the Behavioral Sciences, Alexandria, VA. April, 1992 (Report ADA251866, National Technical Information Service), pp 42Google Scholar
  16. Michaels DD (1985) Visual optics and refraction: a clinical approach, 3rd edn. Mosby, St. LouisGoogle Scholar
  17. Bloom DM, Tanner AH (2007) Twenty megapixel MEMS-based laser projector. SID Symp Digest Tech Papers 38(1):8-11, session 3: Advanced projection systemsCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Don C. Donderi
    • 1
  • Keith K. Niall
    • 2
  • Karyn Fish
    • 1
  • Benjamin Goldstein
    • 1
  1. 1.Human Factors North Inc.TorontoCanada
  2. 2.Defence Research and Development Canada, Embassy of CanadaWashingtonUSA

Personalised recommendations