Advertisement

Psychophysics of Night Vision Device Halos

  • Robert S. Allison
  • Tracey Brandwood
  • Margarita Vinnikov
  • James E. Zacher
  • Sion Jennings
  • Todd Macuda
  • Paul Thomas
  • Stephen A. Palmisano
Conference paper

Abstract

In modern Night Vision Devices (NVDs) ‘halo’ around bright light sources remains a salient imaging artifact. Although a common feature of image intensified imagery, little is known of the perceptual and operational effects of this device limitation. This paper describes two related sets of experiments. In the first set of experiments, we provide quantitative measurements of Night Vision Device (NVD) halos formed by light sources as a function of intensity and distance. This characterization allows for analysis of the possible effects of halo on human perception through NVDs. In the second set of experiments, the effects of halation on the perception of depth and environmental layout are investigated psychophysically. The custom simulation environment used and results from psychophysical experiments designed to analyze halo-induced errors in slope estimation are presented. Accurate simulation of image intensifier physics and NVD scene modeling is challenging and computationally demanding, yet needs to be performed in real-time at high frame rates and at high-resolution in advanced military simulators. Given the constraints of the real-time simulation, it is important to understand how NVD artifacts impact task performance in order to make rational engineering decisions about the required level of fidelity of the NVD simulation. A salient artifact of NVD viewing is halo, the phenomenon where the image of a bright light source appears surrounded by disc-like halo. High-fidelity physical modeling of these halo phenomena would be computationally expensive. To evaluate the level of approximation that would be sufficient for training purposes human factors data is required.

NVD halos generated by light sources in a scene have a size that is approximately invariant with intensity and distance. Objective and subjective measures of halo geometry indicate that halo size, when halo is present, is relatively invariant of target distance or intensity. This property results in perceptual distortions and strong illusions with isolated stimuli. In complex scenes, systematic distortions of slant are predicted due to an imposed texture gradient created by the halo. We investigated this hypothesis in psychophysical experiments. The results suggest that perception of slant and glideslope in complex scenes is remarkably tolerant of texture gradients imposed by NVG halo. These results are discussed in terms of NVG simulation and of the ability of human operators to compensate for perceptual distortions.

Keywords

Optic Flow Automatic Gain Control Virtual Camera Texture Gradient Surface Slant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sommaire

Effectuer des mesures quantitatives des halos autour des sources lumineuses perçus par les dispositifs de vision de nuit (DVN) selon l’intensité et la distance, décrire une méthode visant à simuler leurs effets en laboratoire et présenter les résultats des expériences psychophysiques ayant pour but d’analyser les erreurs induites par les halos dans l’estimation de la pente. Simuler avec précision la physique des intensificateurs d’images et modéliser les scènes observées à l’aide des DVN est difficile et exige beaucoup de calculs, or il faut réaliser ces activités en temps réel avec une fréquence d’images et une résolution élevées dans des simulateurs militaires de pointe. Étant donné les limites inhérentes à la simulation en temps réel, il est important de comprendre les incidences des artéfacts des DVN sur l’exécution des tâches afin de prendre des décisions rationnelles techniques sur le niveau de fidélité requis. La présence d’un halo ayant la forme d’un disque autour des sources lumineuses est un artéfact propre aux DVN.

Lorsque les repères indiquaient de façon évidente que la scène observée était inclinée, les participants ont perçu une pente proche de celle que l’on trouvait en l’absence de halo, tel que prévu. L’agencement régulier des lumières a permis d’obtenir différentes perspectives de profondeur, y compris la perspective linéaire, les gradients de texture, la compression (et l’effet de rapprochement) et la possibilité d’inférer un horizon implicite. Lorsque des halos sont présents dans une scène et qu’ils sont associés à une surface inclinée, leur grandeur varie, dans une certaine mesure, avec la distance apparente (constance de la grandeur). Il n’y a que peu de conflit dans ce cas particulier, étant donné que les repères de pente dominent et que l’invariance du halo est perçue comme un gradient de taille. Nous examinerons les résultats de la simulation NVG et la capacité de l’utilisateur à compenser les distorsions liées à la perception.

Notes

Acknowledgements

This work was performed for the NRC Flight Research Laboratory under PWGSC Contract #561982 in support of the Advanced Deployable Day/Night Simulation Technology Demonstration Project led by DRDC Toronto. Alex Tumanov and Jason Telner assisted in data collection for preliminary experiments related to this research. Portions of this work were reported in the proceedings of the SPIE Defense and Security conference held in Orlando, FL, April 9-13, 2007.

References

  1. Allison RS, Howard IP (2000) Temporal dependencies in resolving monocular and binocular cue conflict in slant perception. Vision Res 40(14):1869-1885CrossRefGoogle Scholar
  2. Berkley WE (1992) Night vision goggle illusions and visual training. Paper presented at the visual problems in night operations (AGARD-LS-187), Neuilly sur Seine, FranceGoogle Scholar
  3. Bradley A, Kaiser MK (1994) Evaluation of visual acuity with Gen III night vision goggles. NASA Technical Memorandum # 108792. National Aeronautics and Space Administration, Moffett Field, CAGoogle Scholar
  4. Braithwaite MG, Douglass PK, Durnford SJ, Lucas G (1998) The hazard of spatial disorientation during helicopter flight using night vision devices. Aviat Space Environ Med 69(11):1038-1044Google Scholar
  5. Craig G, Macuda T, Thomas P, Allison R, Jennings S (2005) Light source halos in night vision goggles: psychophysical assessments (conference proceedings paper, March 29). In: Rash CE, Reese CE (eds) Helmet- and head-mounted displays X: technologies and applications. Proceedings of SPIE - the international society for optical engineering, vol 5800, no. 1, Orlando, FL, 19 May 2005, pp 40-44Google Scholar
  6. Cutting JE, Millard RT (1984) Three gradients and the perception of flat and curved surfaces. J Exp Psychol: Gen 113(2):198-216CrossRefGoogle Scholar
  7. DeLucia PR, Task HL (1995) Depth and collision judgment using night vision goggles. Int J Aviat Psychol 5(4):371-386CrossRefGoogle Scholar
  8. DeVilbiss CA, Ercoline WR, Antonio JC (1994) Visual performance with night vision goggles (NVGs) measured in US Air Force aircrew members. In: Helmet- and head-mounted displays and symbology design requirements. Paper presented at the proceedings of the SPIE - the international society for optical engineering, vol 2218. Orlando, FL, 5-7 April 1994, pp 64-70Google Scholar
  9. Emmert E (1881) Groβenverhältnisse der Nachbilder. Klin Monbl Augenheilkd 19:443-450Google Scholar
  10. Flach JM, Warren R, Garness SA, Kelly L, Stanard T (1997) Perception and control of altitude: splay and depression angles. J Exp Psychol: Hum Percept Perform 23(6):1764-1782CrossRefGoogle Scholar
  11. Galanis G, Jennings A, Beckett P (2001) Runway width effects in the visual approach to landing. Int J Aviat Psychol 11(3):281-301CrossRefGoogle Scholar
  12. Geri GA, Martin EL, Wetzel PA (2002) Head and eye movements in visual search using night vision goggles. Aviat Space Environ Med 73(8):779-786Google Scholar
  13. Giachritsis CD, Harris MG (2005) Global versus local image expansion in estimating time-to-contact from complex optic flow. Perception 34(5):577-585CrossRefGoogle Scholar
  14. Gibb RW (2007) Visual spatial disorientation: revisiting the black hole illusion. Aviat Space Environ Med 78(8):801-808Google Scholar
  15. Gibson JJ (1950) The perception of visual surfaces. Am J Psychol 63:367-384CrossRefGoogle Scholar
  16. Gray R, Regan D (1999) Motion in depth: adequate and inadequate simulation. Percept Psychophys 61(2):236-245Google Scholar
  17. Harris MG, Giachritsis CD (2000) Coarse-grained information dominates fine-grained information in judgments of time-to-contact from retinal flow. Vis Res 40(6):601-611CrossRefGoogle Scholar
  18. Hughes PK, Zalevski AM, Gibbs P (2000) Visual acuity, contrast sensitivity, and stereopsis when viewing with night vision goggles. Technical Report DSTO-TR-1012, Defence Science and Technology Organization. Aeronautical and Maritime Research Laboratory - Air Operations Division, MelbourneGoogle Scholar
  19. Jennings S, Craig G (2000) Effects of field-of-view on pilot performance in night vision goggles flight trials: preliminary findings. In: Proceedings of the SPIE, vol. 4021, Paper presented at Helmet-and Head-Mounted Displays V, Orlando, FL, pp 335-342Google Scholar
  20. Knight KK, Apsey DA, Jackson WG, Dennis RJ (1998) A comparison of stereopsis with ANVIS and F4949 night vision goggles. Aviat Space Environ Med 69(2):99-103Google Scholar
  21. Knill DC (1998) Ideal observer perturbation analysis reveals human strategies for inferring surface orientation from texture. Vis Res 38(17):2635-2656CrossRefGoogle Scholar
  22. Knill DC, Saunders JA (2003) Do humans optimally integrate stereo and texture information for judgments of surface slant? Vis Res 43(24):2539-2558CrossRefGoogle Scholar
  23. Macuda T, Allison R, Thomas P, Craig G, Jennings S (2004) Detection of motion- defined form under simulated night vision conditions. In: Helmet- and head-mounted displays IX: technologies and applications. Proceedings of the society of photo-optical instrumentation engineers (SPIE), vol 5442. pp 36-44Google Scholar
  24. Niall KK, Reising JD, Martin EL (1999) Distance estimation with night vision goggles: A little feedback goes a long way. Hum Factors 41(3):495-506CrossRefGoogle Scholar
  25. Palmisano S, Gillam B (2005) Visual perception of touchdown point during simulated landing. J Exp Psychol: Appl 11(1):19-32CrossRefGoogle Scholar
  26. Rabin J, Wiley R (1994) Switching from forward-looking infrared to night-vision goggles: transitory effects on visual resolution. Aviat Space Environ Med 65(4):327-329Google Scholar
  27. Sheehy JB, Wilkinson M (1989) Depth perception after prolonged usage of night vision goggles. Aviat Space Environ Med 60(6):573-579Google Scholar
  28. Tanaka K, Fukada Y, Saito HA (1989) Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62(3):642-656Google Scholar
  29. Task HL (2001) Night vision goggle visual acuity assessment: Results of an interagency test. In: Proceedings of SPIE - The international society for optical engineering: helmet- and head-mounted displays VI, Vol 4361. Orlando, FL, pp 130-137Google Scholar
  30. Thomas PJ, Allison RS, Carr P, Shen E, Jennings S, Macuda T et al (2005) Physical modeling and characterization of the halo phenomenon in night vision goggles. Paper presented at the helmet- and head-mounted displays X: technologies and applications, 29 March 2005, Orlando, FL, USA. Proceedings of the SPIE - The International Society for Optical Engineering, vol 5800, no. 1, pp 21-3, USAGoogle Scholar
  31. Transport Canada (1993) Aerodrome standards and recommended practices, 4th edn (TP No. 312E). Transport Canada, Ottawa, ON. http://www.tc.gc.ca/publications/EN/TP312/PDF%5CHR/TP312E.pdf Accessed June 2009
  32. van Ee R, van Dam LC, Erkelens CJ (2002) Bi-stability in perceived slant when binocular disparity and monocular perspective specify different slants. J Vis 2(9):597-607Google Scholar
  33. Young MJ, Landy MS, Maloney LT (1993) A perturbation analysis of depth perception from combinations of texture and motion cues. Vis Res 33:2685-2696CrossRefGoogle Scholar
  34. Zalevski A, Meehan JW, Hughes PK (2000) Size estimation with night vision goggles. Technical Report DSTO - RR - 0201. Defence Science and Technology Organisation (DSTO Air Operations Division, Aeronautical and Maritime Research Laboratory, Fishermans Bend, VIC, Australia), pp 22Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Robert S. Allison
    • 1
  • Tracey Brandwood
    • 1
  • Margarita Vinnikov
    • 1
  • James E. Zacher
    • 1
  • Sion Jennings
    • 2
  • Todd Macuda
    • 2
  • Paul Thomas
    • 3
  • Stephen A. Palmisano
    • 4
  1. 1.Centre for Vision Research, York UniversityTorontoCanada
  2. 2.Institute for Aerospace Research, National Research Council of CanadaOttawaCanada
  3. 3.Topaz TechnologiesTorontoCanada
  4. 4.School of Psychology, University of WollongongWollongongAustralia

Personalised recommendations