Host Gene Polymorphisms and Disease/Treatment Outcomes in HIV and Viral Coinfections

  • Jacob K. Nattermann
  • Jürgen K. Rockstroh


Since the early days of the current HIV type 1 (HIV-1) pandemic, it has been observed that both susceptibility to HIV-1 infection and natural course of disease are highly variable. These differences are the result of multifaceted interactions between virus, host, and environment, and these interactions may be even more complex in the case of coinfection with other viruses such as HBV or HCV. With respect to the host, it is known that genetic differences importantly contribute to this variation.


Human Leukocyte Antigen Sustain Virologic Response Human Leukocyte Antigen Class Human Immune Deficiency Virus Human Leukocyte Antigen Allele 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Telenti A, Goldstein DB. Genomics meets HIV-1. Nat Rev Microbiol. 2006;4:865–73.PubMedCrossRefGoogle Scholar
  2. 2.
    Fellay J, Ge D, Shianna KV, et al. Common genetic variation and the control of HIV in humans. PLoS Genet. 2009;5:e1000791.PubMedCrossRefGoogle Scholar
  3. 3.
    Ioannidis JP. Commentary: grading the credibility of molecular evidence for complex diseases. Int J Epidemiol. 2006;35:572–8. discussion 593–6.PubMedCrossRefGoogle Scholar
  4. 4.
    O’Brien SJ, Nelson GW. Human genes that limit AIDS. Nat Genet. 2004;36:565–74.PubMedCrossRefGoogle Scholar
  5. 5.
    Fellay J, Shianna KV, Ge D, et al. A whole-genome association study of major determinants for host control of HIV-1. Science. 2007;317:944–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Le Clerc S, Limou S, Coulonges C, et al. Genomewide association study of a rapid progression cohort identifies new susceptibility alleles for AIDS (ANRS Genomewide Association Study 03). J Infect Dis. 2009;200:1194–201.PubMedCrossRefGoogle Scholar
  7. 7.
    Limou S, Le Clerc S, Coulonges C, et al. Genomewide association study of an AIDS-nonprogression cohort emphasizes the role played by HLA genes (ANRS Genomewide Association Study 02). J Infect Dis. 2009;199:419–26.PubMedCrossRefGoogle Scholar
  8. 8.
    Herbeck JT, Gottlieb GS, Winkler CA, et al. Multistage genomewide association study identifies a locus at 1q41 associated with rate of HIV-1 disease progression to clinical AIDS. J Infect Dis. 2010;201:618–26.PubMedCrossRefGoogle Scholar
  9. 9.
    Dalmasso C, Carpentier W, Meyer L, et al. Distinct genetic loci control plasma HIV-RNA and cellular HIV-DNA levels in HIV-1 infection: the ANRS Genome Wide Association 01 study. PLoS One. 2008;3:e3907.PubMedCrossRefGoogle Scholar
  10. 10.
    Catano G, Kulkarni H, He W, et al. HIV-1 disease-influencing effects associated with ZNRD1, HCP5 and HLA-C alleles are attributable mainly to either HLA-A10 or HLA-B*57 alleles. PLoS One. 2008;3:e3636.PubMedCrossRefGoogle Scholar
  11. 11.
    Mackay CR. Chemokines: immunology’s high impact factors. Nat Immunol. 2001;2:95–101.PubMedCrossRefGoogle Scholar
  12. 12.
    Loetscher P, Uguccioni M, Bordoli L, et al. CCR5 is characteristic of Th1 lymphocytes. Nature. 1998;391:344–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Dean M, Carrington M, Winkler C, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. 1996;273:1856–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996;86:367–77.PubMedCrossRefGoogle Scholar
  15. 15.
    Blanpain C, Libert F, Vassart G, Parmentier M. CCR5 and HIV infection. Receptors Channels. 2002;8:19–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Blanpain C, Lee B, Tackoen M, et al. Multiple nonfunctional alleles of CCR5 are frequent in various human populations. Blood. 2000;96:1638–45.PubMedGoogle Scholar
  17. 17.
    Quillent C, Oberlin E, Braun J, et al. HIV-1-resistance phenotype conferred by combination of two separate inherited mutations of CCR5 gene. Lancet. 1998;351:14–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Wu L, Paxton WA, Kassam N, et al. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med. 1997;185:1681–91.PubMedCrossRefGoogle Scholar
  19. 19.
    Martin MP, Dean M, Smith MW, et al. Genetic acceleration of AIDS progression by a promoter variant of CCR5. Science. 1998;282:1907–11.PubMedCrossRefGoogle Scholar
  20. 20.
    Gonzalez E, Bamshad M, Sato N, et al. Race-specific HIV-1 disease-modifying effects associated with CCR5 haplotypes. Proc Natl Acad Sci U S A. 1999;96:12004–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Mummidi S, Ahuja SS, Gonzalez E, et al. Genealogy of the CCR5 locus and chemokine system gene variants associated with altered rates of HIV-1 disease progression. Nat Med. 1998;4:786–93.PubMedCrossRefGoogle Scholar
  22. 22.
    Dolan MJ, Kulkarni H, Camargo JF, et al. CCL3L1 and CCR5 influence cell-mediated immunity and affect HIV-AIDS pathogenesis via viral entry-independent mechanisms. Nat Immunol. 2007;8:1324–36.PubMedCrossRefGoogle Scholar
  23. 23.
    Smith MW, Dean M, Carrington M, et al. Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science. 1997;277:959–65.PubMedCrossRefGoogle Scholar
  24. 24.
    Nakayama EE, Tanaka Y, Nagai Y, Iwamoto A, Shioda T. A CCR2-V64I polymorphism affects stability of CCR2A isoform. AIDS. 2004;18:729–38.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee B, Doranz BJ, Rana S, et al. Influence of the CCR2-V64I polymorphism on human immunodeficiency virus type 1 coreceptor activity and on chemokine receptor function of CCR2b, CCR3, CCR5, and CXCR4. J Virol. 1998;72:7450–8.PubMedGoogle Scholar
  26. 26.
    Mariani R, Wong S, Mulder LC, et al. CCR2-64I polymorphism is not associated with altered CCR5 expression or coreceptor function. J Virol. 1999;73:2450–9.PubMedGoogle Scholar
  27. 27.
    Vasilescu A, Terashima Y, Enomoto M, et al. A haplotype of the human CXCR1 gene protective against rapid disease progression in HIV-1+ patients. Proc Natl Acad Sci U S A. 2007;104:3354–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Gonzalez E, Rovin BH, Sen L, et al. HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci U S A. 2002;99:13795–800.PubMedCrossRefGoogle Scholar
  29. 29.
    Faure S, Meyer L, Genin E, et al. Deleterious genetic influence of CX3CR1 genotypes on HIV-1 disease progression. J Acquir Immune Defic Syndr. 2003;32:335–7.PubMedCrossRefGoogle Scholar
  30. 30.
    McDermott DH, Colla JS, Kleeberger CA, et al. Genetic polymorphism in CX3CR1 and risk of HIV disease. Science. 2000;290:2031.PubMedCrossRefGoogle Scholar
  31. 31.
    Kwa D, Boeser-Nunnink B, Schuitemaker H. Lack of evidence for an association between a polymorphism in CX3CR1 and the clinical course of HIV infection or virus phenotype evolution. AIDS. 2003;17:759–61.PubMedCrossRefGoogle Scholar
  32. 32.
    Puissant B, Abbal M, Blancher A. Polymorphism of human and primate RANTES, CX3CR1, CCR2 and CXCR4 genes with regard to HIV/SIV infection. Immunogenetics. 2003;55:275–83.PubMedCrossRefGoogle Scholar
  33. 33.
    Singh KK, Hughes MD, Chen J, Spector SA. Genetic polymorphisms in CX3CR1 predict HIV-1 disease progression in children independently of CD4+ lymphocyte count and HIV-1 RNA load. J Infect Dis. 2005;191:1971–80.PubMedCrossRefGoogle Scholar
  34. 34.
    Suresh P, Wanchu A, Sachdeva RK, Bhatnagar A. Gene polymorphisms in CCR5, CCR2, CX3CR1, SDF-1 and RANTES in exposed but uninfected partners of HIV-1 infected individuals in North India. J Clin Immunol. 2006;26:476–84.PubMedCrossRefGoogle Scholar
  35. 35.
    Puissant B, Roubinet F, Massip P, et al. Analysis of CCR5, CCR2, CX3CR1, and SDF1 polymorphisms in HIV-positive treated patients: impact on response to HAART and on peripheral T lymphocyte counts. AIDS Res Hum Retroviruses. 2006;22:153–62.PubMedCrossRefGoogle Scholar
  36. 36.
    Vidal F, Vilades C, Domingo P, et al. Spanish HIV-1-infected long-term nonprogressors of more than 15 years have an increased frequency of the CX3CR1 249I variant allele. J Acquir Immune Defic Syndr. 2005;40:527–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Passam AM, Sourvinos G, Krambovitis E, et al. Polymorphisms of Cx(3)CR1 and CXCR6 receptors in relation to HAART therapy of HIV type 1 patients. AIDS Res Hum Retroviruses. 2007;23: 1026–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Walton RT, Rowland-Jones SL. HIV and chemokine binding to red blood cells – DARC matters. Cell Host Microbe. 2008;4:3–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Lachgar A, Jaureguiberry G, Le Buenac H, et al. Binding of HIV-1 to RBCs involves the Duffy antigen receptors for chemokines (DARC). Biomed Pharmacother. 1998;52:436–9.PubMedCrossRefGoogle Scholar
  40. 40.
    He W, Neil S, Kulkarni H, et al. Duffy antigen receptor for chemokines mediates trans-infection of HIV-1 from red blood cells to target cells and affects HIV-AIDS susceptibility. Cell Host Microbe. 2008;4:52–62.PubMedCrossRefGoogle Scholar
  41. 41.
    Kulkarni H, Marconi VC, He W, et al. The Duffy-null state is associated with a survival advantage in leukopenic HIV-infected persons of African ancestry. Blood. 2009;114:2783–92.PubMedGoogle Scholar
  42. 42.
    Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995;270:1811–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Dong HF, Wigmore K, Carrington MN, Dean M, Turpin JA, Howard OM. Variants of CCR5, which are permissive for HIV-1 infection, show distinct functional responses to CCL3, CCL4 and CCL5. Genes Immun. 2005;6:609–19.PubMedCrossRefGoogle Scholar
  44. 44.
    Liu H, Hwangbo Y, Holte S, et al. Analysis of genetic polymorphisms in CCR5, CCR2, stromal cell-derived factor-1, RANTES, and dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin in seronegative individuals repeatedly exposed to HIV-1. J Infect Dis. 2004;190:1055–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Liu XL, Wang FS, Jin L, Liu MX, Xu DZ. Preliminary study on the association of chemokine RANTES gene polymorphisms with HIV-1 infection in Chinese Han population. Zhonghua Liu Xing Bing Xue Za Zhi. 2003;24:971–5.PubMedGoogle Scholar
  46. 46.
    Zhao XY, Lee SS, Wong KH, et al. Effects of single nucleotide polymorphisms in the RANTES promoter region in healthy and HIV-infected indigenous Chinese. Eur J Immunogenet. 2004;31: 179–83.PubMedCrossRefGoogle Scholar
  47. 47.
    An P, Nelson GW, Wang L, et al. Modulating influence on HIV/AIDS by interacting RANTES gene variants. Proc Natl Acad Sci U S A. 2002;99:10002–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Gonzalez E, Dhanda R, Bamshad M, et al. Global survey of genetic variation in CCR5, RANTES, and MIP-1alpha: impact on the epidemiology of the HIV-1 pandemic. Proc Natl Acad Sci U S A. 2001;98:5199–204.PubMedCrossRefGoogle Scholar
  49. 49.
    McDermott DH, Beecroft MJ, Kleeberger CA, et al. Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the Multicenter AIDS Cohort Study. AIDS. 2000;14:2671–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Duggal P, Winkler CA, An P, et al. The effect of RANTES chemokine genetic variants on early HIV-1 plasma RNA among African American injection drug users. J Acquir Immune Defic Syndr. 2005;38:584–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Boulassel MR, Smith GH, Edwardes MD, et al. Influence of RANTES, SDF-1 and TGF-beta levels on the value of interleukin-7 as a predictor of virological response in HIV-1-infected patients receiving double boosted protease inhibitor-based therapy. HIV Med. 2005;6:268–77.PubMedCrossRefGoogle Scholar
  52. 52.
    Ahlenstiel G, Iwan A, Nattermann J, et al. Distribution and effects of polymorphic RANTES gene alleles in HIV/HCV coinfection – a prospective cross-sectional study. World J Gastroenterol. 2005;11:7631–8.PubMedGoogle Scholar
  53. 53.
    Cooke GS, Tosh K, Ramaley PA, et al. A polymorphism that reduces RANTES expression is associated with protection from death in HIV-seropositive Ugandans with advanced disease. J Infect Dis. 2006;194:666–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Guerini FR, Delbue S, Zanzottera M, et al. Analysis of CCR5, CCR2, SDF1 and RANTES gene polymorphisms in subjects with HIV-related PML and not determined leukoencephalopathy. Biomed Pharmacother. 2008;62:26–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Rathore A, Chatterjee A, Sivarama P, Yamamoto N, Singhal PK, Dhole TN. Association of RANTES −403G/A, −28C/G and In1.1T/C polymorphism with HIV-1 transmission and progression among North Indians. J Med Virol. 2008;80:1133–41.PubMedCrossRefGoogle Scholar
  56. 56.
    Vidal F, Peraire J, Domingo P, et al. Polymorphism of RANTES chemokine gene promoter is not associated with long-term nonprogressive HIV-1 infection of more than 16 years. J Acquir Immune Defic Syndr. 2006;41:17–22.PubMedCrossRefGoogle Scholar
  57. 57.
    Modi WS, Goedert JJ, Strathdee S, et al. MCP-1-MCP-3-Eotaxin gene cluster influences HIV-1 transmission. AIDS. 2003;17: 2357–65.PubMedCrossRefGoogle Scholar
  58. 58.
    Singh KK, Hughes MD, Chen J, Spector SA. Impact of MCP-1-2518-G allele on the HIV-1 disease of children in the United States. AIDS. 2006;20:475–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Modi WS, Lautenberger J, An P, et al. Genetic variation in the CCL18-CCL3-CCL4 chemokine gene cluster influences HIV Type 1 transmission and AIDS disease progression. Am J Hum Genet. 2006;79:120–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Kuhn L, Schramm DB, Donninger S, et al. African infants’ CCL3 gene copies influence perinatal HIV transmission in the absence of maternal nevirapine. AIDS. 2007;21:1753–61.PubMedCrossRefGoogle Scholar
  61. 61.
    Paximadis M, Mohanlal N, Gray GE, Kuhn L, Tiemessen CT. Identification of new variants within the two functional genes CCL3 and CCL3L encoding the CCL3 (MIP-1alpha) chemokine: implications for HIV-1 infection. Int J Immunogenet. 2009;36:21–32.PubMedCrossRefGoogle Scholar
  62. 62.
    Modi WS. CCL3L1 and CCL4L1 chemokine genes are located in a segmental duplication at chromosome 17q12. Genomics. 2004;83: 735–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Gonzalez E, Kulkarni H, Bolivar H, et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science. 2005;307:1434–40.PubMedCrossRefGoogle Scholar
  64. 64.
    Menten P, Wuyts A, Van Damme J. Macrophage inflammatory protein-1. Cytokine Growth Factor Rev. 2002;13:455–81.PubMedCrossRefGoogle Scholar
  65. 65.
    Huik K, Sadam M, Karki T, et al. CCL3L1 copy number is a strong genetic determinant of HIV seropositivity in Caucasian intravenous drug users. J Infect Dis. 2010;201:730–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Nakajima T, Ohtani H, Naruse T, et al. Copy number variations of CCL3L1 and long-term prognosis of HIV-1 infection in asymptomatic HIV-infected Japanese with hemophilia. Immunogenetics. 2007;59:793–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Nakajima T, Kaur G, Mehra N, Kimura A. HIV-1/AIDS susceptibility and copy number variation in CCL3L1, a gene encoding a natural ligand for HIV-1 co-receptor CCR5. Cytogenet Genome Res. 2008;123:156–60.PubMedCrossRefGoogle Scholar
  68. 68.
    Shalekoff S, Meddows-Taylor S, Schramm DB, et al. Host CCL3L1 gene copy number in relation to HIV-1-specific CD4+ and CD8+ T-cell responses and viral load in South African women. J Acquir Immune Defic Syndr. 2008;48:245–54.PubMedCrossRefGoogle Scholar
  69. 69.
    Ahuja SK, Kulkarni H, Catano G, et al. CCL3L1-CCR5 genotype influences durability of immune recovery during antiretroviral therapy of HIV-1-infected individuals. Nat Med. 2008;14:413–20.PubMedCrossRefGoogle Scholar
  70. 70.
    Bhattacharya T, Stanton J, Kim EY, et al. CCL3L1 and HIV/AIDS susceptibility. Nat Med. 2009;15:1112–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Urban TJ, Weintrob AC, Fellay J, et al. CCL3L1 and HIV/AIDS susceptibility. Nat Med. 2009;15:1110–2.PubMedCrossRefGoogle Scholar
  72. 72.
    Kulkarni H, Marconi VC, Agan BK, et al. Role of CCL3L1-CCR5 genotypes in the epidemic spread of HIV-1 and evaluation of vaccine efficacy. PLoS One. 2008;3:e3671.PubMedCrossRefGoogle Scholar
  73. 73.
    Winkler C, Modi W, Smith MW, et al. Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC). Science. 1998;279:389–93.PubMedCrossRefGoogle Scholar
  74. 74.
    van Rij RP, Broersen S, Goudsmit J, Coutinho RA, Schuitemaker H. The role of a stromal cell-derived factor-1 chemokine gene variant in the clinical course of HIV-1 infection. AIDS. 1998;12:F85–90.PubMedCrossRefGoogle Scholar
  75. 75.
    Ioannidis JP, Rosenberg PS, Goedert JJ, et al. Effects of CCR5-Delta32, CCR2-64I, and SDF-1 3′A alleles on HIV-1 disease progression: an international meta-analysis of individual-patient data. Ann Intern Med. 2001;135:782–95.PubMedGoogle Scholar
  76. 76.
    VerPlank L, Bouamr F, LaGrassa TJ, et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc Natl Acad Sci U S A. 2001;98:7724–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Garrus JE, von Schwedler UK, Pornillos OW, et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell. 2001;107:55–65.PubMedCrossRefGoogle Scholar
  78. 78.
    Demirov DG, Ono A, Orenstein JM, Freed EO. Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc Natl Acad Sci U S A. 2002;99:955–60.PubMedCrossRefGoogle Scholar
  79. 79.
    Medina G, Zhang Y, Tang Y, et al. The functionally exchangeable L domains in RSV and HIV-1 Gag direct particle release through pathways linked by Tsg101. Traffic. 2005;6:880–94.PubMedCrossRefGoogle Scholar
  80. 80.
    Martin-Serrano J, Zang T, Bieniasz PD. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med. 2001;7:1313–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Bleiber G, May M, Martinez R, et al. Use of a combined ex vivo/in vivo population approach for screening of human genes involved in the human immunodeficiency virus type 1 life cycle for variants influencing disease progression. J Virol. 2005;79: 12674–80.PubMedCrossRefGoogle Scholar
  82. 82.
    Berthoux L, Sebastian S, Sokolskaja E, Luban J. Cyclophilin A is required for TRIM5{alpha}-mediated resistance to HIV-1 in Old World monkey cells. Proc Natl Acad Sci U S A. 2005;102: 14849–53.PubMedCrossRefGoogle Scholar
  83. 83.
    Rits MA, van Dort KA, Kootstra NA. Polymorphisms in the regulatory region of the cyclophilin A gene influence the susceptibility for HIV-1 infection. PLoS One. 2008;3:e3975.PubMedCrossRefGoogle Scholar
  84. 84.
    Abdurahman S, Hoglund S, Hoglund A, Vahlne A. Mutation in the loop C-terminal to the cyclophilin A binding site of HIV-1 capsid protein disrupts proper virus assembly and infectivity. Retrovirology. 2007;4:19.PubMedCrossRefGoogle Scholar
  85. 85.
    van Manen D, Rits MA, Beugeling C, van Dort K, Schuitemaker H, Kootstra NA. The effect of Trim5 polymorphisms on the clinical course of HIV-1 infection. PLoS Pathog. 2008;4:e18.PubMedCrossRefGoogle Scholar
  86. 86.
    Lin TY, Emerman M. Determinants of cyclophilin A-dependent TRIM5 alpha restriction against HIV-1. Virology. 2008;379: 335–41.PubMedCrossRefGoogle Scholar
  87. 87.
    Sokolskaja E, Luban J. Cyclophilin, TRIM5, and innate immunity to HIV-1. Curr Opin Microbiol. 2006;9:404–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Goldschmidt V, Bleiber G, May M, Martinez R, Ortiz M, Telenti A. Role of common human TRIM5alpha variants in HIV-1 disease progression. Retrovirology. 2006;3:54.PubMedCrossRefGoogle Scholar
  89. 89.
    Speelmon EC, Livingston-Rosanoff D, Li SS, et al. Genetic association of the antiviral restriction factor TRIM5alpha with human immunodeficiency virus type 1 infection. J Virol. 2006;80:2463–71.PubMedCrossRefGoogle Scholar
  90. 90.
    Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002;418:646–50.PubMedCrossRefGoogle Scholar
  91. 91.
    An P, Bleiber G, Duggal P, et al. APOBEC3G genetic variants and their influence on the progression to AIDS. J Virol. 2004;78: 11070–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Do H, Vasilescu A, Diop G, et al. Exhaustive genotyping of the CEM15 (APOBEC3G) gene and absence of association with AIDS progression in a French cohort. J Infect Dis. 2005;191: 159–63.PubMedCrossRefGoogle Scholar
  93. 93.
    OhAinle M, Kerns JA, Li MM, Malik HS, Emerman M. Antiretroelement activity of APOBEC3H was lost twice in recent human evolution. Cell Host Microbe. 2008;4:249–59.PubMedCrossRefGoogle Scholar
  94. 94.
    Carrington M, Nelson GW, Martin MP, et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science. 1999;283:1748–52.PubMedCrossRefGoogle Scholar
  95. 95.
    Dalmau J, Puertas MC, Azuara M, et al. Contribution of immunological and virological factors to extremely severe primary HIV type 1 infection. Clin Infect Dis. 2009;48:229–38.PubMedCrossRefGoogle Scholar
  96. 96.
    Dorak MT, Tang J, Penman-Aguilar A, et al. Transmission of HIV-1 and HLA-B allele-sharing within serodiscordant heterosexual Zambian couples. Lancet. 2004;363:2137–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Tang J, Shao W, Yoo YJ, et al. Human leukocyte antigen class I genotypes in relation to heterosexual HIV type 1 transmission within discordant couples. J Immunol. 2008;181:2626–35.PubMedGoogle Scholar
  98. 98.
    Goulder PJ, Pasquier C, Holmes EC, et al. Mother-to-child transmission of HIV infection and CTL escape through HLA-A2-SLYNTVATL epitope sequence variation. Immunol Lett. 2001;79: 109–16.PubMedCrossRefGoogle Scholar
  99. 99.
    Goulder PJ, Brander C, Tang Y, et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature. 2001;412:334–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Migueles SA, Sabbaghian MS, Shupert WL, et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci U S A. 2000;97:2709–14.PubMedCrossRefGoogle Scholar
  101. 101.
    Gao X, Bashirova A, Iversen AK, et al. AIDS restriction HLA allotypes target distinct intervals of HIV-1 pathogenesis. Nat Med. 2005;11:1290–2.PubMedCrossRefGoogle Scholar
  102. 102.
    Cornelissen M, Hoogland FM, Back NK, et al. Multiple transmissions of a stable human leucocyte antigen-B27 cytotoxic T-cell-escape strain of HIV-1 in The Netherlands. AIDS. 2009;23:1495–500.PubMedCrossRefGoogle Scholar
  103. 103.
    Flores-Villanueva PO, Hendel H, Caillat-Zucman S, et al. Associations of MHC ancestral haplotypes with resistance/susceptibility to AIDS disease development. J Immunol. 2003;170: 1925–9.PubMedGoogle Scholar
  104. 104.
    Goulder PJ, Bunce M, Luzzi G, Phillips RE, McMichael AJ. Potential underestimation of HLA-C-restricted cytotoxic T-lymphocyte responses. AIDS. 1997;11:1884–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Lajoie J, Hargrove J, Zijenah LS, Humphrey JH, Ward BJ, Roger M. Genetic variants in nonclassical major histocompatibility complex class I human leukocyte antigen (HLA)-E and HLA-G molecules are associated with susceptibility to heterosexual acquisition of HIV-1. J Infect Dis. 2006;193:298–301.PubMedCrossRefGoogle Scholar
  106. 106.
    Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359: 727–32.PubMedCrossRefGoogle Scholar
  107. 107.
    Mahungu TW, Johnson MA, Owen A, Back DJ. The impact of pharmacogenetics on HIV therapy. Int J STD AIDS. 2009;20: 145–51.PubMedCrossRefGoogle Scholar
  108. 108.
    Martin MP, Gao X, Lee JH, et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet. 2002;31:429–34.PubMedGoogle Scholar
  109. 109.
    Boulet S, Sharafi S, Simic N, et al. Increased proportion of KIR3DS1 homozygotes in HIV-exposed uninfected individuals. AIDS. 2008;22:595–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Pascal V, Yamada E, Martin MP, et al. Detection of KIR3DS1 on the cell surface of peripheral blood NK cells facilitates identification of a novel null allele and assessment of KIR3DS1 expression during HIV-1 infection. J Immunol. 2007;179:1625–33.PubMedGoogle Scholar
  111. 111.
    Carrington M, Martin MP, van Bergen J. KIR-HLA intercourse in HIV disease. Trends Microbiol. 2008;16:620–7.PubMedCrossRefGoogle Scholar
  112. 112.
    O’Connell KA, Han Y, Williams TM, Siliciano RF, Blankson JN. Role of natural killer cells in a cohort of elite suppressors: low frequency of the protective KIR3DS1 allele and limited inhibition of human immunodeficiency virus type 1 replication in vitro. J Virol. 2009;83:5028–34.PubMedCrossRefGoogle Scholar
  113. 113.
    Long BR, Erickson AE, Chapman JM, et al. Increased number and function of natural killer cells in human immunodeficiency virus 1-positive subjects co-infected with herpes simplex virus 2. Immunology. 2010;129(2):186–96.PubMedCrossRefGoogle Scholar
  114. 114.
    Li H, Cui Y, Fu QX, et al. Kinetics of interaction of HLA-B2705 with natural killer cell immunoglobulin-like receptor 3DS1. Protein Pept Lett. 2010;17(5):547–54.PubMedCrossRefGoogle Scholar
  115. 115.
    Wichukchinda N, Kitamura Y, Rojanawiwat A, et al. The polymorphisms in DC-SIGNR affect susceptibility to HIV type 1 infection. AIDS Res Hum Retroviruses. 2007;23:686–92.PubMedCrossRefGoogle Scholar
  116. 116.
    Martin MP, Lederman MM, Hutcheson HB, et al. Association of DC-SIGN promoter polymorphism with increased risk for parenteral, but not mucosal, acquisition of human immunodeficiency virus type 1 infection. J Virol. 2004;78:14053–6.PubMedCrossRefGoogle Scholar
  117. 117.
    Koizumi Y, Kageyama S, Fujiyama Y, et al. RANTES −28G delays and DC-SIGN −139C enhances AIDS progression in HIV type 1-infected Japanese hemophiliacs. AIDS Res Hum Retroviruses. 2007;23:713–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Milanese M, Segat L, Pontillo A, Arraes LC, de Lima Filho JL, Crovella S. DEFB1 gene polymorphisms and increased risk of HIV-1 infection in Brazilian children. AIDS. 2006;20:1673–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Segat L, Milanese M, Boniotto M, et al. DEFB-1 genetic polymorphism screening in HIV-1 positive pregnant women and their children. J Matern Fetal Neonatal Med. 2006;19:13–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Ricci E, Malacrida S, Zanchetta M, Montagna M, Giaquinto C, De Rossi A. Role of beta-defensin-1 polymorphisms in mother-to-child transmission of HIV-1. J Acquir Immune Defic Syndr. 2009;51:13–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Braida L, Boniotto M, Pontillo A, Tovo PA, Amoroso A, Crovella S. A single-nucleotide polymorphism in the human beta-defensin 1 gene is associated with HIV-1 infection in Italian children. AIDS. 2004;18:1598–600.PubMedCrossRefGoogle Scholar
  122. 122.
    Baroncelli S, Ricci E, Andreotti M, et al. Single-nucleotide polymorphisms in human beta-defensin-1 gene in Mozambican HIV-1-infected women and correlation with virologic parameters. AIDS. 2008;22:1515–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Boniotto M, Crovella S, Pirulli D, et al. Polymorphisms in the MBL2 promoter correlated with risk of HIV-1 vertical transmission and AIDS progression. Genes Immun. 2000;1:346–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Boniotto M, Braida L, Pirulli D, Arraes L, Amoroso A, Crovella S. MBL2 polymorphisms are involved in HIV-1 infection in Brazilian perinatally infected children. AIDS. 2003;17:779–80.PubMedCrossRefGoogle Scholar
  125. 125.
    Crovella S, Bernardon M, Braida L, et al. Italian multicentric pilot study on MBL2 genetic polymorphisms in HIV positive pregnant women and their children. J Matern Fetal Neonatal Med. 2005;17:253–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Oh DY, Baumann K, Hamouda O, et al. A frequent functional toll-like receptor 7 polymorphism is associated with accelerated HIV-1 disease progression. AIDS. 2009;23:297–307.PubMedCrossRefGoogle Scholar
  127. 127.
    Pine SO, McElrath MJ, Bochud PY. Polymorphisms in toll-like receptor 4 and toll-like receptor 9 influence viral load in a seroincident cohort of HIV-1-infected individuals. AIDS. 2009;23: 2387–95.PubMedCrossRefGoogle Scholar
  128. 128.
    Bochud PY, Hersberger M, Taffe P, et al. Polymorphisms in Toll-like receptor 9 influence the clinical course of HIV-1 infection. AIDS. 2007;21:441–6.PubMedCrossRefGoogle Scholar
  129. 129.
    Soriano-Sarabia N, Vallejo A, Ramirez-Lorca R, et al. Influence of the Toll-like receptor 9 1635A/G polymorphism on the CD4 count, HIV viral load, and clinical progression. J Acquir Immune Defic Syndr. 2008;49:128–35.PubMedCrossRefGoogle Scholar
  130. 130.
    Rockstroh JK, Spengler U. HIV and hepatitis C virus co-infection. Lancet Infect Dis. 2004;4:437–44.PubMedCrossRefGoogle Scholar
  131. 131.
    Falck-Ytter Y, Kale H, Mullen KD, Sarbah SA, Sorescu L, McCullough AJ. Surprisingly small effect of antiviral treatment in patients with hepatitis C. Ann Intern Med. 2002;136:288–92.PubMedGoogle Scholar
  132. 132.
    Fried MW, Shiffman ML, Reddy KR, et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med. 2002;347:975–82.PubMedCrossRefGoogle Scholar
  133. 133.
    Manns MP, McHutchison JG, Gordon SC, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet. 2001;358:958–65.PubMedCrossRefGoogle Scholar
  134. 134.
    Hagemann T, Wilson J, Kulbe H, et al. Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. J Immunol. 2005;175:1197–205.PubMedGoogle Scholar
  135. 135.
    Hadziyannis SJ, Sette Jr H, Morgan TR, et al. Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann Intern Med. 2004;140:346–55.PubMedGoogle Scholar
  136. 136.
    Suppiah V, Moldovan M, Ahlenstiel G, et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet. 2009;41:1100–4.PubMedCrossRefGoogle Scholar
  137. 137.
    Tanaka Y, Nishida N, Sugiyama M, et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet. 2009;41:1105–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Ge D, Fellay J, Thompson AJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009;461:399–401.PubMedCrossRefGoogle Scholar
  139. 139.
    Thomas DL, Thio CL, Martin MP, et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature. 2009;461:798–801.PubMedCrossRefGoogle Scholar
  140. 140.
    McCarthy JJ, Li JH, Thompson A, et al. Replicated association between an IL28B gene variant and a sustained response to pegylated interferon and ribavirin. Gastroenterology. 2010;138: 2307–14.PubMedCrossRefGoogle Scholar
  141. 141.
    Rauch A, Kutalik Z, Descombes P, et al. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology. 2010;138: 1338–45.PubMedCrossRefGoogle Scholar
  142. 142.
    Sheppard P, Kindsvogel W, Xu W, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol. 2003;4:63–8. Epub 2002 Dec 2.PubMedCrossRefGoogle Scholar
  143. 143.
    Kotenko SV, Gallagher G, Baurin VV, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003;4:69–77.PubMedCrossRefGoogle Scholar
  144. 144.
    Marcello T, Grakoui A, Barba-Spaeth G, et al. Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology. 2006;131:1887–98.PubMedCrossRefGoogle Scholar
  145. 145.
    Pravica V, Asderakis A, Perrey C, Hajeer A, Sinnott PJ, Hutchinson IV. In vitro production of IFN-gamma correlates with CA repeat polymorphism in the human IFN-gamma gene. Eur J Immunogenet. 1999;26:1–3.PubMedCrossRefGoogle Scholar
  146. 146.
    Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchinson IV. An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet. 1997;24:1–8.PubMedCrossRefGoogle Scholar
  147. 147.
    Fishman D, Faulds G, Jeffery R, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest. 1998;102:1369–76.PubMedCrossRefGoogle Scholar
  148. 148.
    Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A. 1997;94:3195–9.PubMedCrossRefGoogle Scholar
  149. 149.
    Tilg H, Wilmer A, Vogel W, et al. Serum levels of cytokines in chronic liver diseases. Gastroenterology. 1992;103:264–74.PubMedGoogle Scholar
  150. 150.
    Larrea E, Garcia N, Qian C, Civeira MP, Prieto J. Tumor necrosis factor alpha gene expression and the response to interferon in chronic hepatitis C. Hepatology. 1996;23:210–7.PubMedGoogle Scholar
  151. 151.
    Fukuda R, Ishimura N, Ishihara S, et al. Intrahepatic expression of pro-inflammatory cytokine mRNAs and interferon efficacy in chronic hepatitis C. Liver. 1996;16:390–9.PubMedGoogle Scholar
  152. 152.
    Nelson DR, Lim HL, Marousis CG, et al. Activation of tumor necrosis factor-alpha system in chronic hepatitis C virus infection. Dig Dis Sci. 1997;42:2487–94.PubMedCrossRefGoogle Scholar
  153. 153.
    Malaguarnera M, Di Fazio I, Romeo MA, et al. Elevation of interleukin 6 levels in patients with chronic hepatitis due to hepatitis C virus Serum interleukin 6 concentrations in chronic hepatitis C patients before and after interferon-alpha treatment. J Gastroenterol. 1997;32:211–5.PubMedCrossRefGoogle Scholar
  154. 154.
    Oyanagi Y, Takahashi T, Matsui S, et al. Enhanced expression of interleukin-6 in chronic hepatitis C. Liver. 1999;19:464–72.PubMedCrossRefGoogle Scholar
  155. 155.
    Tsushima H, Kawata S, Tamura S, et al. Reduced plasma transforming growth factor-beta1 levels in patients with chronic hepatitis C after interferon-alpha therapy: association with regression of hepatic fibrosis. J Hepatol. 1999;30:1–7.PubMedCrossRefGoogle Scholar
  156. 156.
    Cotler SJ, Reddy KR, McCone J, et al. An analysis of acute changes in interleukin-6 levels after treatment of hepatitis C with consensus interferon. J Interferon Cytokine Res. 2001;21: 1011–9.PubMedCrossRefGoogle Scholar
  157. 157.
    Lapinski TW. The levels of IL-1beta, IL-4 and IL-6 in the serum and the liver tissue of chronic HCV-infected patients. Arch Immunol Ther Exp (Warsz). 2001;49:311–6.Google Scholar
  158. 158.
    Malaguarnera M, Di Fazio I, Romeo MA, Restuccia S, Laurino A, Trovato BA. Elevation of interleukin 6 levels in patients with chronic hepatitis due to hepatitis C virus. J Gastroenterol. 1997;32:211–5.PubMedCrossRefGoogle Scholar
  159. 159.
    Ramadori G, Christ B. Cytokines and the hepatic acute-phase response. Semin Liver Dis. 1999;19:141–55.PubMedCrossRefGoogle Scholar
  160. 160.
    Gao B. Cytokines, STATs and liver disease. Cell Mol Immunol. 2005;2:92–100.PubMedGoogle Scholar
  161. 161.
    Nattermann J, Vogel M, Berg T, et al. Effect of the interleukin-6 C174G gene polymorphism on treatment of acute and chronic hepatitis C in human immunodeficiency virus coinfected patients. Hepatology. 2007;1:1.CrossRefGoogle Scholar
  162. 162.
    Yee LJ, Tang J, Gibson AW, Kimberly R, Van Leeuwen DJ, Kaslow RA. Interleukin 10 polymorphisms as predictors of sustained response in antiviral therapy for chronic hepatitis C infection. Hepatology. 2001;33:708–12.PubMedCrossRefGoogle Scholar
  163. 163.
    Edwards-Smith CJ, Jonsson JR, Purdie DM, Bansal A, Shorthouse C, Powell EE. Interleukin-10 promoter polymorphism predicts initial response of chronic hepatitis C to interferon alfa. Hepatology. 1999;30:526–30.PubMedCrossRefGoogle Scholar
  164. 164.
    Oleksyk TK, Thio CL, Truelove AL, et al. Single nucleotide polymorphisms and haplotypes in the IL10 region associated with HCV clearance. Genes Immun. 2005;6:347–57.PubMedCrossRefGoogle Scholar
  165. 165.
    Mangia A, Santoro R, Piattelli M, et al. IL-10 haplotypes as possible predictors of spontaneous clearance of HCV infection. Cytokine. 2004;25:103–9.PubMedCrossRefGoogle Scholar
  166. 166.
    Lio D, Caruso C, Di Stefano R, et al. IL-10 and TNF-alpha polymorphisms and the recovery from HCV infection. Hum Immunol. 2003;64:674–80.PubMedCrossRefGoogle Scholar
  167. 167.
    Yin LM, Zhu WF, Wei L, et al. Association of interleukin-12 p40 gene 3′-untranslated region polymorphism and outcome of HCV infection. World J Gastroenterol. 2004;10:2330–3.PubMedGoogle Scholar
  168. 168.
    Houldsworth A, Metzner M, Rossol S, et al. Polymorphisms in the IL-12B gene and outcome of HCV infection. J Interferon Cytokine Res. 2005;25:271–6.PubMedCrossRefGoogle Scholar
  169. 169.
    Mueller T, Mas-Marques A, Sarrazin C, et al. Influence of interleukin 12B (IL12B) polymorphisms on spontaneous and treatment-induced recovery from hepatitis C virus infection. J Hepatol. 2004;41:652–8.PubMedCrossRefGoogle Scholar
  170. 170.
    Lee JH, Teuber G, von Wagner M, Roth WK, Zeuzem S. Antiviral effect of human recombinant interleukin-12 in patients infected with hepatitis C virus. J Med Virol. 2000;60:264–8.PubMedCrossRefGoogle Scholar
  171. 171.
    Kimura T, Saito T, Yoshimura M, et al. Association of transforming growth factor-beta 1 functional polymorphisms with natural clearance of hepatitis C virus. J Infect Dis. 2006;193:1371–4.PubMedCrossRefGoogle Scholar
  172. 172.
    D’Alfonso S, Richiardi PM. A polymorphic variation in a putative regulation box of the TNFA promoter region. Immunogenetics. 1994;39:150–4.PubMedGoogle Scholar
  173. 173.
    Wilson AG, de Vries N, Pociot F, di Giovine FS, van der Putte LB, Duff GW. An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles. J Exp Med. 1993;177: 557–60.PubMedCrossRefGoogle Scholar
  174. 174.
    Hohler T, Kruger A, Gerken G, Schneider PM, Meyer zum Buschenfelde KH, Rittner C. Tumor necrosis factor alpha promoter polymorphism at position −238 is associated with chronic active hepatitis C infection. J Med Virol. 1998;54:173–7.PubMedCrossRefGoogle Scholar
  175. 175.
    Dai CY, Chuang WL, Chang WY, et al. Tumor necrosis factor-alpha promoter polymorphism at position −308 predicts response to combination therapy in hepatitis C virus infection. J Infect Dis. 2006;193:98–101. Epub 2005 Nov 16.PubMedCrossRefGoogle Scholar
  176. 176.
    Yee LJ, Tang J, Herrera J, Kaslow RA, van Leeuwen DJ. Tumor necrosis factor gene polymorphisms in patients with cirrhosis from chronic hepatitis C virus infection. Genes Immun. 2000;1:386–90.PubMedCrossRefGoogle Scholar
  177. 177.
    Schiemann U, Glas J, Torok P, et al. Response to combination therapy with interferon alfa-2a and ribavirin in chronic hepatitis C according to a TNF-alpha promoter polymorphism. Digestion. 2003;68:1–4. Epub 2003 Aug 29.PubMedCrossRefGoogle Scholar
  178. 178.
    Frese M, Schwarzle V, Barth K, et al. Interferon-gamma inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology. 2002;35:694–703.PubMedCrossRefGoogle Scholar
  179. 179.
    Woollard DJ, Grakoui A, Shoukry NH, Murthy KK, Campbell KJ, Walker CM. Characterization of HCV-specific Patr class II restricted CD4+ T cell responses in an acutely infected chimpanzee. Hepatology. 2003;38:1297–306.PubMedCrossRefGoogle Scholar
  180. 180.
    Bream JH, Carrington M, O’Toole S, et al. Polymorphisms of the human IFNG gene noncoding regions. Immunogenetics. 2000;51:50–8.PubMedCrossRefGoogle Scholar
  181. 181.
    Huang Y, Yang H, Borg BB, et al. A functional SNP of interferon-gamma gene is important for interferon-alpha-induced and spontaneous recovery from hepatitis C virus infection. Proc Natl Acad Sci U S A. 2007;104:985–90. Epub 2007 Jan 10.PubMedCrossRefGoogle Scholar
  182. 182.
    Woitas RP, Ahlenstiel G, Iwan A, et al. Frequency of the HIV-protective CC chemokine receptor 5-Delta32/Delta32 genotype is increased in hepatitis C. Gastroenterology. 2002;122:1721–8.PubMedCrossRefGoogle Scholar
  183. 183.
    Promrat K, McDermott DH, Gonzalez CM, et al. Associations of chemokine system polymorphisms with clinical outcomes and treatment responses of chronic hepatitis C. Gastroenterology. 2003;124:352–60.PubMedCrossRefGoogle Scholar
  184. 184.
    Hellier S, Frodsham AJ, Hennig BJ, et al. Association of genetic variants of the chemokine receptor CCR5 and its ligands, RANTES and MCP-2, with outcome of HCV infection. Hepatology. 2003;38:1468–76.PubMedGoogle Scholar
  185. 185.
    Goulding C, McManus R, Murphy A, et al. The CCR5-delta32 mutation: impact on disease outcome in individuals with hepatitis C infection from a single source. Gut. 2005;54:1157–61. Epub 2005 Apr 29.PubMedCrossRefGoogle Scholar
  186. 186.
    Ahlenstiel G, Berg T, Woitas RP, et al. Effects of the CCR5-Delta 32 mutation on antiviral treatment in chronic hepatitis C. J Hepatol. 2003;39:245–52.PubMedCrossRefGoogle Scholar
  187. 187.
    Goyal A, Suneetha PV, Kumar GT, Shukla DK, Arora N, Sarin SK. CCR5Delta32 mutation does not influence the susceptibility to HCV infection, severity of liver disease and response to therapy in patients with chronic hepatitis C. World J Gastroenterol. 2006;12:4721–6.PubMedGoogle Scholar
  188. 188.
    Glas J, Torok HP, Simperl C, et al. The Delta 32 mutation of the chemokine-receptor 5 gene neither is correlated with chronic hepatitis C nor does it predict response to therapy with interferon-alpha and ribavirin. Clin Immunol. 2003;108:46–50.PubMedCrossRefGoogle Scholar
  189. 189.
    Wasmuth HE, Werth A, Mueller T, et al. Haplotype-tagging RANTES gene variants influence response to antiviral therapy in chronic hepatitis C. Hepatology. 2004;40:327–34.PubMedCrossRefGoogle Scholar
  190. 190.
    Neumann-Haefelin C, Blum HE, Chisari FV, Thimme R. T cell response in hepatitis C virus infection. J Clin Virol. 2005;32: 75–85.PubMedCrossRefGoogle Scholar
  191. 191.
    Singh R, Kaul R, Kaul A, Khan K. A comparative review of HLA associations with hepatitis B and C viral infections across global populations. World J Gastroenterol. 2007;13:1770–87.PubMedGoogle Scholar
  192. 192.
    Thursz M, Yallop R, Goldin R, Trepo C, Thomas HC. Influence of MHC class II genotype on outcome of infection with hepatitis C virus. The HENCORE group. Hepatitis C European Network for Cooperative Research. Lancet. 1999;354:2119–24.PubMedCrossRefGoogle Scholar
  193. 193.
    Jiao J, Wang JB. Hepatitis C virus genotypes, HLA-DRB alleles and their response to interferon-alpha and ribavirin in patients with chronic hepatitis C. Hepatobiliary Pancreat Dis Int. 2005;4:80–3.PubMedGoogle Scholar
  194. 194.
    Sim H, Wojcik J, Margulies M, Wade JA, Heathcote J. Response to interferon therapy: influence of human leucocyte antigen alleles in patients with chronic hepatitis C. J Viral Hepat. 1998;5:249–53.PubMedCrossRefGoogle Scholar
  195. 195.
    Piekarska A, Woszczek G, Sidorkiewicz M, Kuydowicz J. HLA class II alleles and response to hepatitis C treatment with interferon alpha2b. Przegl Epidemiol. 2002;56:123–8.PubMedGoogle Scholar
  196. 196.
    Alric L, Fort M, Izopet J, et al. Study of host- and virus-related factors associated with spontaneous hepatitis C virus clearance. Tissue Antigens. 2000;56:154–8.PubMedCrossRefGoogle Scholar
  197. 197.
    Romero-Gomez M, Gonzalez-Escribano MF, Torres B, et al. HLA class I B44 is associated with sustained response to interferon  +  ribavirin therapy in patients with chronic hepatitis C. Am J Gastroenterol. 2003;98:1621–6.PubMedGoogle Scholar
  198. 198.
    Kikuchi I, Ueda A, Mihara K, et al. The effect of HLA alleles on response to interferon therapy in patients with chronic hepatitis C. Eur J Gastroenterol Hepatol. 1998;10:859–63.PubMedCrossRefGoogle Scholar
  199. 199.
    Hraber P, Kuiken C, Yusim K. Evidence for human leukocyte antigen heterozygote advantage against hepatitis C virus infection. Hepatology. 2007;46:1713–21.PubMedCrossRefGoogle Scholar
  200. 200.
    Khakoo SI, Thio CL, Martin MP, et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science. 2004;305:872–4.PubMedCrossRefGoogle Scholar
  201. 201.
    Zuniga J, Romero V, Azocar J, et al. Protective KIR-HLA interactions for HCV infection in intravenous drug users. Mol Immunol. 2009;46:2723–7.PubMedCrossRefGoogle Scholar
  202. 202.
    Rauch A, Gaudieri S, Thio C, Bochud PY. Host genetic determinants of spontaneous hepatitis C clearance. Pharmacogenomics. 2009;10:1819–37.PubMedCrossRefGoogle Scholar
  203. 203.
    Askar M, Avery R, Corey R, et al. Lack of killer immunoglobulin-like receptor 2DS2 (KIR2DS2) and KIR2DL2 is associated with poor responses to therapy of recurrent hepatitis C virus in liver transplant recipients. Liver Transpl. 2009;15:1557–63.PubMedCrossRefGoogle Scholar
  204. 204.
    de Arias AE, Haworth SE, Belli LS, et al. Killer cell immunoglobulin-like receptor genotype and killer cell immunoglobulin-like receptor-human leukocyte antigen C ligand compatibility affect the severity of hepatitis C virus recurrence after liver transplantation. Liver Transpl. 2009;15:390–9.PubMedCrossRefGoogle Scholar
  205. 205.
    Lu Z, Zhang B, Chen S, et al. Association of KIR genotypes and haplotypes with susceptibility to chronic hepatitis B virus infection in Chinese Han population. Cell Mol Immunol. 2008;5:457–63.PubMedCrossRefGoogle Scholar
  206. 206.
    Rauch A, Laird R, McKinnon E, et al. Influence of inhibitory killer immunoglobulin-like receptors and their HLA-C ligands on resolving hepatitis C virus infection. Tissue Antigens. 2007;69 Suppl 1:237–40.PubMedCrossRefGoogle Scholar
  207. 207.
    Paladino N, Flores AC, Marcos CY, et al. Increased frequencies of activating natural killer receptors are associated with liver injury in individuals who do not eliminate hepatitis C virus. Tissue Antigens. 2007;69 Suppl 1:109–11.PubMedCrossRefGoogle Scholar
  208. 208.
    Lopez-Vazquez A, Rodrigo L, Martinez-Borra J, et al. Protective effect of the HLA-Bw4I80 epitope and the killer cell immunoglobulin-like receptor 3DS1 gene against the development of hepatocellular carcinoma in patients with hepatitis C virus infection. J Infect Dis. 2005;192:162–5.PubMedCrossRefGoogle Scholar
  209. 209.
    Thio CL, Gao X, Goedert JJ, et al. HLA-Cw*04 and hepatitis C virus persistence. J Virol. 2002;76:4792–7.PubMedCrossRefGoogle Scholar
  210. 210.
    Knapp S, Warshow U, Hegazy D, et al. Consistent beneficial effects of killer cell immunoglobulin-like receptor 2DL3 and group 1 human leukocyte antigen-C following exposure to hepatitis C virus. Hepatology. 2010;51(4):1168–75.PubMedCrossRefGoogle Scholar
  211. 211.
    Gardiner CM. Killer cell immunoglobulin-like receptors on NK cells: the how, where and why. Int J Immunogenet. 2008;35:1–8.PubMedCrossRefGoogle Scholar
  212. 212.
    Siffert W, Rosskopf D, Siffert G, et al. Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet. 1998;18:45–8.PubMedCrossRefGoogle Scholar
  213. 213.
    Sarrazin C, Berg T, Weich V, et al. GNB3 C825T polymorphism and response to interferon-alfa/ribavirin treatment in patients with hepatitis C virus genotype 1 (HCV-1) infection. J Hepatol. 2005;43:388–93.PubMedCrossRefGoogle Scholar
  214. 214.
    Rosskopf D, Koch K, Habich C, et al. Interaction of Gbeta3s, a splice variant of the G-protein Gbeta3, with Ggamma- and Galpha-proteins. Cell Signal. 2003;15:479–88.PubMedCrossRefGoogle Scholar
  215. 215.
    Rosskopf D, Manthey I, Siffert W. Identification and ethnic ­distribution of major haplotypes in the gene GNB3 encoding the G-protein beta3 subunit. Pharmacogenetics. 2002;12:209–20.PubMedCrossRefGoogle Scholar
  216. 216.
    Ahlenstiel G, Nischalke HD, Bueren K, et al. The GNB3 C825T polymorphism affects response to HCV therapy with pegylated interferon in HCV/HIV co-infected but not in HCV mono-infected patients. J Hepatol. 2007;47:348–55. Epub 2007 May 24.PubMedCrossRefGoogle Scholar
  217. 217.
    Yee LJ, Perez KA, Tang J, van Leeuwen DJ, Kaslow RA. Association of CTLA4 polymorphisms with sustained response to interferon and ribavirin therapy for chronic hepatitis C virus infection. J Infect Dis. 2003;187:1264–71. Epub 2003 Apr 2.PubMedCrossRefGoogle Scholar
  218. 218.
    Schott E, Witt H, Hinrichsen H, et al. Gender-dependent association of CTLA4 polymorphisms with resolution of hepatitis C virus infection. J Hepatol. 2007;46:372–80. Epub 2006 Nov 2.PubMedCrossRefGoogle Scholar
  219. 219.
    Hijikata M, Ohta Y, Mishiro S. Identification of a single nucleotide polymorphism in the MxA gene promoter (G/T at nt −88) correlated with the response of hepatitis C patients to interferon. Intervirology. 2000;43:124–7.PubMedCrossRefGoogle Scholar
  220. 220.
    Hijikata M, Mishiro S, Miyamoto C, Furuichi Y, Hashimoto M, Ohta Y. Genetic polymorphism of the MxA gene promoter and interferon responsiveness of hepatitis C patients: revisited by analyzing two SNP sites (−123 and −88) in vivo and in vitro. Intervirology. 2001;44:379–82.PubMedCrossRefGoogle Scholar
  221. 221.
    Suzuki F, Arase Y, Suzuki Y, et al. Single nucleotide polymorphism of the MxA gene promoter influences the response to interferon monotherapy in patients with hepatitis C viral infection. J Viral Hepat. 2004;11:271–6.PubMedCrossRefGoogle Scholar
  222. 222.
    Naito M, Matsui A, Inao M, et al. SNPs in the promoter region of the osteopontin gene as a marker predicting the efficacy of interferon-based therapies in patients with chronic hepatitis C. J Gastroenterol. 2005;40:381–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Internal Medicine IUniversity of BonnBonnGermany
  2. 2.Department of Internal Medicine IUniversity of BonnBonnGermany

Personalised recommendations