Advertisement

Immunopathogenesis of Liver Injury

  • Mohamed Tarek M. Shata
Chapter

Abstract

The liver is the largest organ in the body with many vital metabolic functions. It occupies a key position between the gastrointestinal tract and systemic venous circulations. A healthy liver receives 70–75% of its blood form the portal vein (Fig. 7.1). The mesenteric veins of the intestinal tracts as well as the splenic vein are main sources of blood for the portal vein. Additionally, about 30% of the total blood passes through the liver every minute [1], carrying about 1010 lymphocytes in 24 h [2].

Keywords

Kupffer Cell Effective Immune Response Microbial Translocation Liver Sinusoidal Endothelial Cell Human Hepatocyte Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sheth K, Bankey P. The liver as an immune organ. Curr Opin Crit Care. 2001;7(2):99–104.PubMedCrossRefGoogle Scholar
  2. 2.
    Wick MJ, Leithauser F, Reimann J. The hepatic immune system. Crit Rev Immunol. 2002;22(1):47–103.PubMedGoogle Scholar
  3. 3.
    Li M, Liu X, Zhou Y, Su SB. Interferon-lambdas: the modulators of antivirus, antitumor, and immune responses. J Leukoc Biol. 2009;86(1):23–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Kita H, Mackay IR, Van De Water J, Gershwin ME. The lymphoid liver: considerations on pathways to autoimmune injury. Gastroenterology. 2001;120(6):1485–501.PubMedCrossRefGoogle Scholar
  5. 5.
    Reynoso-Paz S, Coppel RL, Mackay IR, Bass NM, Ansari AA, Gershwin ME. The immunobiology of bile and biliary epithelium. Hepatology. 1999;30(2):351–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Yan J, Greer JM, Hull R, O’Sullivan JD, Henderson RD, Read SJ, et al. The effect of ageing on human lymphocyte subsets: comparison of males and females. Immun Ageing. 2010;7:4.PubMedCrossRefGoogle Scholar
  7. 7.
    Steffan AM, Gendrault JL, McCuskey RS, McCuskey PA, Kirn A. Phagocytosis, an unrecognized property of murine endothelial liver cells. Hepatology. 1986;6(5):830–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Lloyd CM, Phillips AR, Cooper GJ, Dunbar PR. Three-colour fluorescence immunohistochemistry reveals the diversity of cells staining for macrophage markers in murine spleen and liver. J Immunol Methods. 2008;334(1–2):70–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Mackay IR. Hepatoimmunology: a perspective. Immunol Cell Biol. 2002;80(1):36–44.PubMedCrossRefGoogle Scholar
  10. 10.
    Nemeth E, Baird AW, O’Farrelly C. Microanatomy of the liver immune system. Semin Immunopathol. 2009;31(3):333–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Lauwerys BR, Garot N, Renauld JC, Houssiau FA. Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J Immunol. 2000;165(4):1847–53.PubMedGoogle Scholar
  12. 12.
    Gregory SH, Wing EJ. Neutrophil-Kupffer-cell interaction in host defenses to systemic infections. Immunol Today. 1998;19(11): 507–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Moretta A, Vitale M, Sivori S, Bottino C, Morelli L, Augugliaro R, et al. Human natural killer cell receptors for HLA-class I molecules. Evidence that the Kp43 (CD94) molecule functions as receptor for HLA-B alleles. J Exp Med. 1994;180(2):545–55.PubMedCrossRefGoogle Scholar
  14. 14.
    Moretta L, Ciccone E, Poggi A, Mingari MC, Moretta A. Ontogeny, specific functions and receptors of human natural killer cells. Immunol Lett. 1994;40(2):83–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Salazar-Mather TP, Orange JS, Biron CA. Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1alpha (MIP-1alpha)-dependent pathways. J Exp Med. 1998;187(1):1–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Itoh Y, Morita A, Nishioji K, Fujii H, Nakamura H, Kirishima T, et al. Time course profile and cell-type-specific production of monokine induced by interferon-gamma in Concanavalin A-induced hepatic injury in mice: comparative study with interferon-inducible protein-10. Scand J Gastroenterol. 2001;36(12):1344–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Bendelac A, Rivera MN, Park SH, Roark JH. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol. 1997;15:535–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Kumagai K, Takeda K, Hashimoto W, Seki S, Ogasawara K, Anzai R, et al. Interleukin-12 as an inducer of cytotoxic effectors in anti-tumor immunity. Int Rev Immunol. 1997;14(2–3):229–56.PubMedCrossRefGoogle Scholar
  19. 19.
    Grubor-Bauk B, Simmons A, Mayrhofer G, Speck PG. Impaired clearance of herpes simplex virus type 1 from mice lacking CD1d or NKT cells expressing the semivariant V alpha 14-J alpha 281 TCR. J Immunol. 2003;170(3):1430–4.PubMedGoogle Scholar
  20. 20.
    Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB. Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med. 1999;189(12):1973–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Kumar H, Belperron A, Barthold SW, Bockenstedt LK. Cutting edge: CD1d deficiency impairs murine host defense against the spirochete, Borrelia burgdorferi. J Immunol. 2000;165(9):4797–801.PubMedGoogle Scholar
  22. 22.
    Kakimi K, Guidotti LG, Koezuka Y, Chisari FV. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med. 2000;192(7):921–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Gonzalo JA, Delaney T, Corcoran J, Goodearl A, Gutierrez-Ramos JC, Coyle AJ. Cutting edge: the related molecules CD28 and inducible costimulator deliver both unique and complementary signals required for optimal T cell activation. J Immunol. 2001;166(1): 1–5.PubMedGoogle Scholar
  24. 24.
    Bertolino P, McCaughan GW, Bowen DG. Role of primary intrahepatic T-cell activation in the ‘liver tolerance effect’. Immunol Cell Biol. 2002;80(1):84–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006;43(2 Suppl 1):S54–62.PubMedCrossRefGoogle Scholar
  26. 26.
    Knolle PA, Loser E, Protzer U, Duchmann R, Schmitt E, zum Buschenfelde KH, et al. Regulation of endotoxin-induced IL-6 production in liver sinusoidal endothelial cells and Kupffer cells by IL-10. Clin Exp Immunol. 1997;107(3):555–61.PubMedCrossRefGoogle Scholar
  27. 27.
    Groux H, Bigler M, de Vries JE, Roncarolo MG. Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med. 1996;184(1):19–29.PubMedCrossRefGoogle Scholar
  28. 28.
    Roland CR, Walp L, Stack RM, Flye MW. Outcome of Kupffer cell antigen presentation to a cloned murine Th1 lymphocyte depends on the inducibility of nitric oxide synthase by IFN-gamma. J Immunol. 1994;153(12):5453–64.PubMedGoogle Scholar
  29. 29.
    Bowen DG, Zen M, Holz L, Davis T, McCaughan GW, Bertolino P. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J Clin Invest. 2004;114(5):701–12.PubMedGoogle Scholar
  30. 30.
    Roland CR, Mangino MJ, Duffy BF, Flye MW. Lymphocyte suppression by Kupffer cells prevents portal venous tolerance induction: a study of macrophage function after intravenous gadolinium. Transplantation. 1993;55(5):1151–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Knolle PA, Schmitt E, Jin S, Germann T, Duchmann R, Hegenbarth S, et al. Induction of cytokine production in naive CD4(+) T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Th1 cells. Gastroenterology. 1999;116(6):1428–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Takayama T, Morelli AE, Onai N, Hirao M, Matsushima K, Tahara H, et al. Mammalian and viral IL-10 enhance C-C chemokine receptor 5 but down-regulate C-C chemokine receptor 7 expression by myeloid dendritic cells: impact on chemotactic responses and in vivo homing ability. J Immunol. 2001;166(12):7136–43.PubMedGoogle Scholar
  33. 33.
    Corazza N, Badmann A, Lauer C. Immune cell-mediated liver injury. Semin Immunopathol. 2009;31(2):267–77.PubMedCrossRefGoogle Scholar
  34. 34.
    Malhi H, Gores GJ. Cellular and molecular mechanisms of liver injury. Gastroenterology. 2008;134(6):1641–54.PubMedCrossRefGoogle Scholar
  35. 35.
    Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda T, et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell. 1994;76(6): 969–76.PubMedCrossRefGoogle Scholar
  36. 36.
    Liu ZX, Kaplowitz N. Role of innate immunity in acetaminophen-induced hepatotoxicity. Expert Opin Drug Metab Toxicol. 2006;2(4):493–503.PubMedCrossRefGoogle Scholar
  37. 37.
    Liu ZX, Han D, Gunawan B, Kaplowitz N. Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatology. 2006;43(6):1220–30.PubMedCrossRefGoogle Scholar
  38. 38.
    Tagami A, Ohnishi H, Hughes RD. Increased serum soluble Fas in patients with acute liver failure due to paracetamol overdose. Hepatogastroenterology. 2003;50(51):742–5.PubMedGoogle Scholar
  39. 39.
    Batey RG, Cao Q, Gould B. Lymphocyte-mediated liver injury in alcohol-related hepatitis. Alcohol. 2002;27(1):37–41.PubMedCrossRefGoogle Scholar
  40. 40.
    Batey RG, Wang J. Molecular pathogenesis of T lymphocyte-induced liver injury in alcoholic hepatitis. Front Biosci. 2002;7: d1662–1675.PubMedCrossRefGoogle Scholar
  41. 41.
    Tagami A, Ohnishi H, Moriwaki H, Phillips M, Hughes RD. Fas-mediated apoptosis in acute alcoholic hepatitis. Hepatogastroenterology. 2003;50(50):443–8.PubMedGoogle Scholar
  42. 42.
    Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Roberts PJ, Svingen PA, et al. Toxic bile salts induce rodent hepatocyte ­apoptosis via direct activation of Fas. J Clin Invest. 1999;103(1): 137–45.PubMedCrossRefGoogle Scholar
  43. 43.
    Miyoshi H, Rust C, Roberts PJ, Burgart LJ, Gores GJ. Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas. Gastroenterology. 1999;117(3):669–77.PubMedCrossRefGoogle Scholar
  44. 44.
    Hatano E. Tumor necrosis factor signaling in hepatocyte apoptosis. J Gastroenterol Hepatol. 2007;22 Suppl 1:S43–44.PubMedCrossRefGoogle Scholar
  45. 45.
    MacEwan DJ. TNF receptor subtype signalling: differences and cellular consequences. Cell Signal. 2002;14(6):477–92.PubMedCrossRefGoogle Scholar
  46. 46.
    Wullaert A, Heyninck K, Beyaert R. Mechanisms of crosstalk between TNF-induced NF-kappaB and JNK activation in hepatocytes. Biochem Pharmacol. 2006;72(9):1090–101.PubMedCrossRefGoogle Scholar
  47. 47.
    Zheng SJ, Wang P, Tsabary G, Chen YH. Critical roles of TRAIL in hepatic cell death and hepatic inflammation. J Clin Invest. 2004;113(1):58–64.PubMedGoogle Scholar
  48. 48.
    Mundt B, Kuhnel F, Zender L, Paul Y, Tillmann H, Trautwein C, et al. Involvement of TRAIL and its receptors in viral hepatitis. FASEB J. 2003;17(1):94–6.PubMedGoogle Scholar
  49. 49.
    Shigeno M, Nakao K, Ichikawa T, Suzuki K, Kawakami A, Abiru S, et al. Interferon-alpha sensitizes human hepatoma cells to TRAIL-induced apoptosis through DR5 upregulation and NF-kappa B inactivation. Oncogene. 2003;22(11):1653–62.PubMedCrossRefGoogle Scholar
  50. 50.
    Bowen DG, McCaughan GW, Bertolino P. Intrahepatic immunity: a tale of two sites? Trends Immunol. 2005;26(10):512–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Crispe IN. Hepatic T cells and liver tolerance. Nat Rev Immunol. 2003;3(1):51–62.PubMedCrossRefGoogle Scholar
  52. 52.
    Salazar-Mather TP, Hokeness KL. Calling in the troops: regulation of inflammatory cell trafficking through innate cytokine/chemokine networks. Viral Immunol. 2003;16(3):291–306.PubMedCrossRefGoogle Scholar
  53. 53.
    De Creus A, Abe M, Lau AH, Hackstein H, Raimondi G, Thomson AW. Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin. J Immunol. 2005;174(4):2037–45.PubMedGoogle Scholar
  54. 54.
    Uhrig A, Banafsche R, Kremer M, Hegenbarth S, Hamann A, Neurath M, et al. Development and functional consequences of LPS tolerance in sinusoidal endothelial cells of the liver. J Leukoc Biol. 2005;77(5):626–33.PubMedCrossRefGoogle Scholar
  55. 55.
    Mehal WZ. Intrahepatic T cell survival versus death: which one prevails and why? J Hepatol. 2003;39(6):1070–1.PubMedCrossRefGoogle Scholar
  56. 56.
    Mackay IR, Popper H. Immunopathogenesis of chronic hepatitis: a review. Aust N Z J Med. 1973;3(1):79–88.PubMedGoogle Scholar
  57. 57.
    Koff RS. Problem hepatitis viruses: the mutants. Am J Med. 1994;96(1A):52S–56.PubMedCrossRefGoogle Scholar
  58. 58.
    Pawlotsky JM. Hepatitis C virus population dynamics during infection. Curr Top Microbiol Immunol. 2006;299:261–84.PubMedCrossRefGoogle Scholar
  59. 59.
    Eisen-Vandervelde AL, Yao ZQ, Hahn YS. The molecular basis of HCV-mediated immune dysregulation. Clin Immunol. 2004;111(1): 16–21.PubMedCrossRefGoogle Scholar
  60. 60.
    Moorman JP, Joo M, Hahn YS. Evasion of host immune surveillance by hepatitis C virus: potential roles in viral persistence. Arch Immunol Ther Exp (Warsz). 2001;49(3):189–94.Google Scholar
  61. 61.
    Yao ZQ, Ray S, Eisen-Vandervelde A, Waggoner S, Hahn YS. Hepatitis C virus: immunosuppression by complement regulatory pathway. Viral Immunol. 2001;14(4):277–95.PubMedCrossRefGoogle Scholar
  62. 62.
    Knolle PA, Germann T, Treichel U, Uhrig A, Schmitt E, Hegenbarth S, et al. Endotoxin down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells. J Immunol. 1999; 162(3):1401–7.PubMedGoogle Scholar
  63. 63.
    Al-Sherbiny M, Osman A, Mohamed N, Shata MT, Abdel-Aziz F, Abdel-Hamid M, et al. Exposure to hepatitis C virus induces cellular immune responses without detectable viremia or seroconversion. Am J Trop Med Hyg. 2005;73(1):44–9.PubMedGoogle Scholar
  64. 64.
    Freeman AJ, Ffrench RA, Post JJ, Harvey CE, Gilmour SJ, White PA, et al. Prevalence of production of virus-specific interferon-gamma among seronegative hepatitis C-resistant subjects reporting injection drug use. J Infect Dis. 2004;190(6):1093–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Semmo N, Barnes E, Taylor C, Kurtz J, Harcourt G, Smith N, et al. T-cell responses and previous exposure to hepatitis C virus in indeterminate blood donors. Lancet. 2005;365(9456):327–9.PubMedGoogle Scholar
  66. 66.
    Kamal SM, Amin A, Madwar M, Graham CS, He Q, Al Tawil A, et al. Cellular immune responses in seronegative sexual contacts of acute hepatitis C patients. J Virol. 2004;78(22):12252–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Koziel MJ, Wong DK, Dudley D, Houghton M, Walker BD. Hepatitis C virus-specific cytolytic T lymphocyte and T helper cell responses in seronegative persons. J Infect Dis. 1997;176(4): 859–66.PubMedCrossRefGoogle Scholar
  68. 68.
    Hiramatsu N, Hayashi N, Katayama K, Mochizuki K, Kawanishi Y, Kasahara A, et al. Immunohistochemical detection of Fas antigen in liver tissue of patients with chronic hepatitis C. Hepatology. 1994;19(6):1354–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Bode JG, Brenndorfer ED, Haussinger D. Hepatitis C virus (HCV) employs multiple strategies to subvert the host innate antiviral response. Biol Chem. 2008;389(10):1283–98.PubMedCrossRefGoogle Scholar
  70. 70.
    Chou AH, Tsai HF, Wu YY, Hu CY, Hwang LH, Hsu PI, et al. Hepatitis C virus core protein modulates TRAIL-mediated apoptosis by enhancing Bid cleavage and activation of mitochondria apoptosis signaling pathway. J Immunol. 2005;174(4):2160–6.PubMedGoogle Scholar
  71. 71.
    Sacco R, Tsutsumi T, Suzuki R, Otsuka M, Aizaki H, Sakamoto S, et al. Antiapoptotic regulation by hepatitis C virus core protein through up-regulation of inhibitor of caspase-activated DNase. Virology. 2003;317(1):24–35.PubMedCrossRefGoogle Scholar
  72. 72.
    Lan L, Gorke S, Rau SJ, Zeisel MB, Hildt E, Himmelsbach K, et al. Hepatitis C virus infection sensitizes human hepatocytes to TRAIL-induced apoptosis in a caspase 9-dependent manner. J Immunol. 2008;181(7):4926–35.PubMedGoogle Scholar
  73. 73.
    Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol. 2003;4(1):63–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003;4(1):69–77.PubMedCrossRefGoogle Scholar
  75. 75.
    Rauch A, Kutalik Z, Descombes P, Cai T, Di Iulio J, Mueller T, et al. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology. 2010;138(4):1338–45.PubMedCrossRefGoogle Scholar
  76. 76.
    Imazeki F, Yokosuka O, Omata M. Impact of IL-28B SNPs on ­control of hepatitis C virus infection: a genome-wide association study. Expert Rev Anti Infect Ther. 2010;8(5):497–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, Sakamoto N, et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet. 2009;41(10):1105–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, Abate ML, et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet. 2009;41(10): 1100–4.PubMedCrossRefGoogle Scholar
  79. 79.
    Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009;461(7262):399–401.PubMedCrossRefGoogle Scholar
  80. 80.
    Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, O’Huigin C, et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature. 2009;461(7265):798–801.PubMedCrossRefGoogle Scholar
  81. 81.
    Robek MD, Boyd BS, Chisari FV. Lambda interferon inhibits hepatitis B and C virus replication. J Virol. 2005;79(6):3851–4.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhu H, Butera M, Nelson DR, Liu C. Novel type I interferon IL-28A suppresses hepatitis C viral RNA replication. Virol J. 2005;2:80.PubMedCrossRefGoogle Scholar
  83. 83.
    Thomas DL. Hepatitis C and human immunodeficiency virus infection. Hepatology. 2002;36(5 Suppl 1):S201–209.PubMedCrossRefGoogle Scholar
  84. 84.
    Sulkowski MS, Thomas DL. Hepatitis C in the HIV-infected patient. Clin Liver Dis. 2003;7(1):179–94.PubMedCrossRefGoogle Scholar
  85. 85.
    Mrus JM, Sherman KE, Leonard AC, Sherman SN, Mandell KL, Tsevat J. Health values of patients coinfected with HIV/hepatitis C: are two viruses worse than one? Med Care. 2006;44(2):158–66.PubMedCrossRefGoogle Scholar
  86. 86.
    Graham CS, Baden LR, Yu E, Mrus JM, Carnie J, Heeren T, et al. Influence of human immunodeficiency virus infection on the course of hepatitis C virus infection: a meta-analysis. Clin Infect Dis. 2001;33(4):562–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Graham CS, Wells A, Liu T, Sherman KE, Peters M, Chung RT, et al. Antigen-specific immune responses and liver histology in HIV and hepatitis C coinfection. AIDS. 2005;19(8):767–73.PubMedCrossRefGoogle Scholar
  88. 88.
    Dienes HP, Drebber U, von Both I. Liver biopsy in hepatitis C. J Hepatol. 1999;31 Suppl 1:43–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Munshi N, Balasubramanian A, Koziel M, Ganju RK, Groopman JE. Hepatitis C and human immunodeficiency virus envelope proteins cooperatively induce hepatocytic apoptosis via an innocent bystander mechanism. J Infect Dis. 2003;188(8):1192–204.PubMedCrossRefGoogle Scholar
  90. 90.
    Castedo M, Perfettini JL, Andreau K, Roumier T, Piacentini M, Kroemer G. Mitochondrial apoptosis induced by the HIV-1 envelope. Ann N Y Acad Sci. 2003;1010:19–28.PubMedCrossRefGoogle Scholar
  91. 91.
    Roumier T, Castedo M, Perfettini JL, Andreau K, Metivier D, Zamzami N, et al. Mitochondrion-dependent caspase activation by the HIV-1 envelope. Biochem Pharmacol. 2003;66(8):1321–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Balasubramanian A, Ganju RK, Groopman JE. Hepatitis C virus and HIV envelope proteins collaboratively mediate interleukin-8 secretion through activation of p38 MAP kinase and SHP2 in hepatocytes. J Biol Chem. 2003;278(37):35755–66.PubMedCrossRefGoogle Scholar
  93. 93.
    Klatt NR, Brenchley JM. Th17 cell dynamics in HIV infection. Curr Opin HIV AIDS. 2010;5(2):135–40.PubMedCrossRefGoogle Scholar
  94. 94.
    Hofer U, Speck RF. Disturbance of the gut-associated lymphoid tissue is associated with disease progression in chronic HIV infection. Semin Immunopathol. 2009;31(2):257–66.PubMedCrossRefGoogle Scholar
  95. 95.
    Cecchinato V, Trindade CJ, Laurence A, Heraud JM, Brenchley JM, Ferrari MG, et al. Altered balance between Th17 and Th1 cells at mucosal sites predicts AIDS progression in simian immunodeficiency virus-infected macaques. Mucosal Immunol. 2008;1(4): 279–88.PubMedCrossRefGoogle Scholar
  96. 96.
    Balagopal A, Ray SC, De Oca RM, Sutcliffe CG, Vivekanandan P, Higgins Y, et al. Kupffer cells are depleted with HIV immunodeficiency and partially recovered with antiretroviral immune reconstitution. AIDS. 2009;23(18):2397–404.PubMedCrossRefGoogle Scholar
  97. 97.
    Blackard JT, Komurian-Pradel F, Perret M, Sodoyer M, Smeaton L, St Clair JB, et al. Intrahepatic cytokine expression is downregulated during HCV/HIV co-infection. J Med Virol. 2006;78(2):202–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Yim HC, Li JC, Lau JS, Lau AS. HIV-1 Tat dysregulation of lipopolysaccharide-induced cytokine responses: microbial interactions in HIV infection. AIDS. 2009;23(12):1473–84.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department Viral Immunology Lab/Div Digestive DiseasesUniversity of CincinnatiCincinnatiUSA

Personalised recommendations