Advertisement

Hepatitis B Virus: Replication, Mutation, and Evolution

  • Amy C. Sherman
  • Shyam Kottilil
Chapter

Abstract

Hepatitis B Virus (HBV) is a DNA virus that utilizes a complex life cycle to replicate via an RNA intermediate transcript with the help of reverse transcriptase enzyme. Many steps in the life cycle of HBV have not been clearly understood mainly because of the lack of availability of culture systems that are permissive to full-length HBV genome replication. Chronic HBV infection can lead to liver cirrhosis and hepatocellular carcinoma. Effective treatments are available for chronic HBV that has been shown to significantly lower morbidity and mortality. However, the effectiveness of antiviral therapy is hampered by the development of mutations in the reverse transcriptase resulting in progressive liver disease. Mutagenesis also happens in the presence of host immune response and has resulted in the evolution of HBV across various species (avian, primate, and human) and geographical regions. This review focuses on a concise summary of HBV replication cycle, mutagenesis, and evolution.

Keywords

Adefovir Dipivoxil Subviral Particle Reverse Transcription Process Cell Signal Transduction Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nassal M, Hepatitis B. Hepatitis B viruses: reverse transcription a different way. Virus Res. 2008;134(1–2):235–49.PubMedCrossRefGoogle Scholar
  2. 2.
    Lan YT, Li J, Liao W, Ou J. Roles of the three major phosphorylation sites of hepatitis B virus core protein in viral replication. Virology. 1999;259(2):342–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Xie Y, Zhai J, Deng Q, Tiollais P, Wang Y, Zhao M. Entry of hepatitis B virus: mechanism and new therapeutic target. Pathol Biol (Paris). 2010;58:301–7.Google Scholar
  4. 4.
    Liang TJ, Hepatitis B. The virus and disease. Hepatology. 2009;49(5 Suppl):S13–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Gripon P, Rumin S, Urban S, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci USA. 2002;99(24): 15655–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee WM. Hepatitis B virus infection. N Engl J Med. 1997;337(24): 1733–45.PubMedCrossRefGoogle Scholar
  7. 7.
    Bruss V, Lu X, Thomssen R, Gerlich WH. Post-translational alterations in transmembrane topology of the hepatitis B virus large envelope protein. EMBO J. 1994;13(10):2273–9.PubMedGoogle Scholar
  8. 8.
    Tuttleman JS, Pourcel C, Summers J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell. 1986;47(3):451–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Beck J, Nassal M. Hepatitis B virus replication. World J Gastroenterol. 2007;13(1):48–64.PubMedGoogle Scholar
  10. 10.
    Hu J, Toft DO, Seeger C. Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO J. 1997;16(1):59–68.PubMedCrossRefGoogle Scholar
  11. 11.
    Hu J, Seeger C. Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proc Natl Acad Sci USA. 1996;93(3): 1060–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Nassal M, Rieger A. A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous first-strand DNA synthesis. J Virol. 1996;70(5):2764–73.PubMedGoogle Scholar
  13. 13.
    Pollack JR, Ganem D. An RNA stem-loop structure directs hepatitis B virus genomic RNA encapsidation. J Virol. 1993;67(6): 3254–63.PubMedGoogle Scholar
  14. 14.
    Tang H, McLachlan A. A pregenomic RNA sequence adjacent to DR1 and complementary to epsilon influences hepatitis B virus replication efficiency. Virology. 2002;303(1):199–210.PubMedCrossRefGoogle Scholar
  15. 15.
    Oropeza CE, McLachlan A. Complementarity between epsilon and phi sequences in pregenomic RNA influences hepatitis B virus replication efficiency. Virology. 2007;359(2):371–81.PubMedCrossRefGoogle Scholar
  16. 16.
    Bouchard MJ, Schneider RJ. The enigmatic X gene of hepatitis B virus. J Virol. 2004;78(23):12725–34.PubMedCrossRefGoogle Scholar
  17. 17.
    Seeger C, Zoulim F, Mason WS. Hepadnaviruses. In: Knipe DM, Howley P, editors. Fields virology, No. 2. Philadelphia: Lippincott Williams and Wilkins; 2007.Google Scholar
  18. 18.
    Gearhart TL, Bouchard MJ. The hepatitis B virus X protein modulates hepatocyte proliferation pathways to stimulate viral replication. J Virol. 2010;84(6):2675–86.PubMedCrossRefGoogle Scholar
  19. 19.
    Wei Y, Neuveut C, Tiollais P, Buendia MA. Molecular biology of the hepatitis B virus and role of the X gene. Pathol Biol. 2010;58:267–72.PubMedCrossRefGoogle Scholar
  20. 20.
    McClain SL, Clippinger AJ, Lizzano R, Bouchard MJ. Hepatitis B virus replication is associated with an HBx-dependent mitochondrion-regulated increase in cytosolic calcium levels. J Virol. 2007;81(21):12061–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Bouchard MJ, Wang LH, Schneider RJ. Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science. 2001;294(5550):2376–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Ozer A, Khaoustov VI, Mearns M, et al. Effect of hepatocyte proliferation and cellular DNA synthesis on hepatitis B virus replication. Gastroenterology. 1996;110(5):1519–28.PubMedCrossRefGoogle Scholar
  23. 23.
    Friedrich B, Wollersheim M, Brandenburg B, Foerste R, Will H, Hildt E. Induction of anti-proliferative mechanisms in hepatitis B virus producing cells. J Hepatol. 2005;43(4):696–703.PubMedCrossRefGoogle Scholar
  24. 24.
    Guidotti LG, Matzke B, Chisari FV. Hepatitis B virus replication is cell cycle independent during liver regeneration in transgenic mice. J Virol. 1997;71(6):4804–8.PubMedGoogle Scholar
  25. 25.
    Gomez-Gonzalo M, Carretero M, Rullas J, et al. The hepatitis B virus X protein induces HIV-1 replication and transcription in synergy with T-cell activation signals: functional roles of NF-kappaB/NF-AT and SP1-binding sites in the HIV-1 long terminal repeat promoter. J Biol Chem. 2001;276(38):35435–43.PubMedCrossRefGoogle Scholar
  26. 26.
    Domingo E, Mas A, Yuste E, et al. Virus population dynamics, fitness variations and the control of viral disease: an update. Prog Drug Res. 2001;57:77–115.PubMedGoogle Scholar
  27. 27.
    Orito E, Mizokami M, Ina Y, et al. Host-independent evolution and a genetic classification of the hepadnavirus family based on nucleotide sequences. Proc Natl Acad Sci USA. 1989;86(18):7059–62.PubMedCrossRefGoogle Scholar
  28. 28.
    Morozov V, Pisareva M, Groudinin M. Homologous recombination between different genotypes of hepatitis B virus. Gene. 2000; 260(1–2):55–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Lok AS, Akarca U, Greene S. Mutations in the pre-core region of hepatitis B virus serve to enhance the stability of the secondary structure of the pre-genome encapsidation signal. Proc Natl Acad Sci USA. 1994;91(9):4077–81.PubMedCrossRefGoogle Scholar
  30. 30.
    Bessesen M, Ives D, Condreay L, Lawrence S, Sherman KE. Chronic active hepatitis B exacerbations in human immunodeficiency virus-infected patients following development of resistance to or withdrawal of lamivudine. Clin Infect Dis. 1999;28(5): 1032–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Lai CL, Dienstag J, Schiff E, et al. Prevalence and clinical correlates of YMDD variants during lamivudine therapy for patients with chronic hepatitis B. Clin Infect Dis. 2003;36(6):687–96.PubMedCrossRefGoogle Scholar
  32. 32.
    Dienstag JL, Schiff ER, Wright TL, et al. Lamivudine as initial treatment for chronic hepatitis B in the United States. N Engl J Med. 1999;341(17):1256–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Angus P, Vaughan R, Xiong S, et al. Resistance to adefovir dipivoxil therapy associated with the selection of a novel mutation in the HBV polymerase. Gastroenterology. 2003;125(2):292–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Tenney DJ, Levine SM, Rose RE, et al. Clinical emergence of entecavir-resistant hepatitis B virus requires additional substitutions in virus already resistant to Lamivudine. Antimicrob Agents Chemother. 2004;48(9):3498–507.PubMedCrossRefGoogle Scholar
  35. 35.
    Liaw YF, Gane E, Leung N, et al. 2-Year GLOBE trial results: ­telbivudine is superior to lamivudine in patients with chronic hepatitis B. Gastroenterology. 2009;136(2):486–95.PubMedCrossRefGoogle Scholar
  36. 36.
    Marcellin P, Heathcote EJ, Buti M, et al. Tenofovir disoproxil fumarate versus adefovir dipivoxil for chronic hepatitis B. N Engl J Med. 2008;359(23):2442–55.PubMedCrossRefGoogle Scholar
  37. 37.
    Amini-Bavil-Olyaee S, Herbers U, Sheldon J, Luedde T, Trautwein C, Tacke F. The rtA194T polymerase mutation impacts viral replication and susceptibility to tenofovir in hepatitis B e antigen-positive and hepatitis B e antigen-negative hepatitis B virus strains. Hepatology. 2009;49(4):1158–65.PubMedCrossRefGoogle Scholar
  38. 38.
    Torresi J, Earnest-Silveira L, Deliyannis G, et al. Reduced antigenicity of the hepatitis B virus HBsAg protein arising as a consequence of sequence changes in the overlapping polymerase gene that are selected by lamivudine therapy. Virology. 2002;293(2): 305–13.PubMedCrossRefGoogle Scholar
  39. 39.
    Warner N, Locarnini S. The antiviral drug selected hepatitis B virus rtA181T/sW172* mutant has a dominant negative secretion defect and alters the typical profile of viral rebound. Hepatology. 2008;48(1):88–98.PubMedCrossRefGoogle Scholar
  40. 40.
    Jazayeri SM, Alavian SM, Carman WF. Hepatitis B virus: origin and evolution. J Viral Hepat. 2010;17(4):229–35.PubMedCrossRefGoogle Scholar
  41. 41.
    Miller RH, Robinson WS. Common evolutionary origin of hepatitis B virus and retroviruses. Proc Natl Acad Sci USA. 1986;83(8): 2531–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Carman WF, Thomas HC. Implications of genetic variation on the pathogenesis of hepatitis B virus infection. Arch Virol Suppl. 1993;8:143–54.PubMedGoogle Scholar
  43. 43.
    Zoulim F. New insight on hepatitis B virus persistence from the study of intrahepatic viral cccDNA. J Hepatol. 2005;42(3):302–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Norder H, Courouce AM, Coursaget P, et al. Genetic diversity of hepatitis B virus strains derived worldwide: genotypes, subgenotypes, and HBsAg subtypes. Intervirology. 2004;47(6):289–309.PubMedCrossRefGoogle Scholar
  45. 45.
    Okamoto H, Imai M, Shimozaki M, et al. Nucleotide sequence of a cloned hepatitis B virus genome, subtype ayr: comparison with genomes of the other three subtypes. J Gen Virol. 1986;67(Pt 11):2305–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Kumar GT, Kazim SN, Kumar M, et al. Hepatitis B virus genotypes and hepatitis B surface antigen mutations in family contacts of hepatitis B virus infected patients with occult hepatitis B virus infection. J Gastroenterol Hepatol. 2009;24(4):588–98.PubMedCrossRefGoogle Scholar
  47. 47.
    Jeantet D, Chemin I, Mandrand B, et al. Cloning and expression of surface antigens from occult chronic hepatitis B virus infections and their recognition by commercial detection assays. J Med Virol. 2004;73(4):508–15.PubMedCrossRefGoogle Scholar
  48. 48.
    van Hemert FJ, Zaaijer HL, Berkhout B, Lukashov VV. Occult hepatitis B infection: an evolutionary scenario. Virol J. 2008;5:146.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Laboratory ImmunoregulationNational Institute of Allergy and Infectious DiseasesBethesdaUSA
  2. 2.Department of Laboratory ImmunoregulationNational Institute of Allergy and Infectious DiseasesBethesdaUSA

Personalised recommendations