HIV Replication

  • Vladimir A. Novitsky
  • Max Essex


Knowledge of HIV replication is critical for understanding AIDS pathogenesis and the proper design of therapeutic interventions. HIV–1 replication is a complex, multistep process of virus–host interaction, dependent on both viral and host cell factors. HIV–1 utilizes host cell machinery extensively at each step of viral replication. Transient events that occur during HIV–1 replication include viral fusion, trafficking of the viral nucleoprotein complex in the cytoplasm, reverse transcription, relocation of proviral DNA into the nucleus, integration, transcription, and export of mRNA to the cytoplasm, assembly of new virions at the host cell membrane, budding, and maturation of viral particles (see Fig. 10.1). The proteolytically cleaved HIV proteins are essential for forming infectious virus particles able to start the next round of viral infection.


Preintegration Complex Viral Regulatory Protein Coreceptor Binding Site Host Transcription Factor Viral Nucleoprotein Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 1988;331:280–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Hill M, Tachedjian G, Mak J. The packaging and maturation of the HIV-1 Pol proteins. Curr HIV Res. 2005;3:73–85.PubMedCrossRefGoogle Scholar
  3. 3.
    Arokium H, Kamata M, Chen I. Virion-associated Vpr of human immunodeficiency virus type 1 triggers activation of apoptotic events and enhances fas-induced apoptosis in human T cells. J Virol. 2009;83:11283–97.PubMedCrossRefGoogle Scholar
  4. 4.
    Balasubramanyam A, Mersmann H, Jahoor F, Phillips TM, Sekhar RV, Schubert U, et al. Effects of transgenic expression of HIV-1 Vpr on lipid and energy metabolism in mice. Am J Physiol Endocrinol Metab. 2007;292:E40–48.PubMedCrossRefGoogle Scholar
  5. 5.
    Cao Y, Liu X, De Clercq E. Cessation of HIV-1 transcription by inhibiting regulatory protein Rev-mediated RNA transport. Curr HIV Res. 2009;7:101–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Favaro JP, Borg KT, Arrigo SJ, Schmidt MG. Effect of Rev on the intranuclear localization of HIV-1 unspliced RNA. Virology. 1998;249:286–96.PubMedCrossRefGoogle Scholar
  7. 7.
    Perales C, Carrasco L, Gonzalez ME. Regulation of HIV-1 env mRNA translation by Rev protein. Biochim Biophys Acta. 2005;1743:169–75.PubMedCrossRefGoogle Scholar
  8. 8.
    Arnold M, Nath A, Hauber J, Kehlenbach RH. Multiple importins function as nuclear transport receptors for the Rev protein of human immunodeficiency virus type 1. J Biol Chem. 2006;281:20883–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Nedellec R, Coetzer M, Shimizu N, Hoshino H, Polonis VR, Morris L, et al. Virus entry via the alternative coreceptors CCR3 and FPRL1 differs by human immunodeficiency virus type 1 subtype. J Virol. 2009;83:8353–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Tilton JC, Doms RW. Entry inhibitors in the treatment of HIV-1 infection. Antiviral Res. 2010;85:91–100.PubMedCrossRefGoogle Scholar
  11. 11.
    Sarafianos SG, Marchand B, Das K, et al. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol. 2009;385:693–713.PubMedCrossRefGoogle Scholar
  12. 12.
    McColl DJ, Chen X. Strand transfer inhibitors of HIV-1 integrase: bringing IN a new era of antiretroviral therapy. Antiviral Res. 2010;85:101–18.PubMedCrossRefGoogle Scholar
  13. 13.
    Poeschla EM. Integrase, LEDGF/p75 and HIV replication. Cell Mol Life Sci. 2008;65:1403–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002;110:521–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Knipe DM, Howley PM, editors. Fields virology. 5th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2007.Google Scholar
  16. 16.
    Brass AL, Dykxhoorn DM, Benita Y, et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science. 2008;319:921–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Nabel G, Baltimore D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells [published erratum appears in Nature 1990 Mar 8;344(6262):178]. Nature. 1987;326:711–3.PubMedCrossRefGoogle Scholar
  18. 18.
    Cron RQ, Bartz SR, Clausell A, Bort SJ, Klebanoff SJ, Lewis DB. NFAT1 enhances HIV-1 gene expression in primary human CD4 T cells. Clin Immunol. 2000;94:179–91.PubMedCrossRefGoogle Scholar
  19. 19.
    Ranjbar S, Tsytsykova AV, Lee SK, et al. NFAT5 regulates HIV-1 in primary monocytes via a highly conserved long terminal repeat site. PLoS Pathog. 2006;2:e130.PubMedCrossRefGoogle Scholar
  20. 20.
    Bates DL, Barthel KK, Wu Y, et al. Crystal structure of NFAT bound to the HIV-1 LTR tandem kappaB enhancer element. Structure. 2008;16:684–94.PubMedCrossRefGoogle Scholar
  21. 21.
    Davis N, Ghosh S, Simmons DL, et al. Rel-associated pp 40: an inhibitor of the rel family of transcription factors. Science. 1991;253:1268–71.PubMedCrossRefGoogle Scholar
  22. 22.
    Ganchi PA, Sun SC, Greene WC, Ballard DW. I kappa B/MAD-3 masks the nuclear localization signal of NF-kappa B p65 and requires the transactivation domain to inhibit NF-kappa B p65 DNA binding. Mol Biol Cell. 1992;3:1339–52.PubMedGoogle Scholar
  23. 23.
    Sun SC, Ganchi PA, Ballard DW, Greene WC. NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Science. 1993;259:1912–5.PubMedCrossRefGoogle Scholar
  24. 24.
    DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature. 1997;388:548–54.PubMedCrossRefGoogle Scholar
  25. 25.
    Mercurio F, Murray BW, Shevchenko A, et al. IkappaB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol Cell Biol. 1999;19:1526–38.PubMedGoogle Scholar
  26. 26.
    Mercurio F, Zhu H, Murray BW, et al. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science. 1997;278:860–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Stroud JC, Oltman A, Han A, Bates DL, Chen L. Structural basis of HIV-1 activation by NF-kappaB–a higher-order complex of p50:RelA bound to the HIV-1 LTR. J Mol Biol. 2009;393:98–112.PubMedCrossRefGoogle Scholar
  28. 28.
    Mancebo HS, Lee G, Flygare J, et al. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev. 1997;11:2633–44.PubMedCrossRefGoogle Scholar
  29. 29.
    Yang X, Gold MO, Tang DN, et al. TAK, an HIV Tat-associated kinase, is a member of the cyclin-dependent family of protein kinases and is induced by activation of peripheral blood lymphocytes and differentiation of promonocytic cell lines. Proc Natl Acad Sci U S A. 1997;94:12331–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Garber ME, Wei P, Jones KA. HIV-1 Tat interacts with cyclin T1 to direct the P-TEFb CTD kinase complex to TAR RNA. Cold Spring Harb Symp Quant Biol. 1998;63:371–80.PubMedCrossRefGoogle Scholar
  31. 31.
    Deng L, de la Fuente C, Fu P, et al. Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. Virology. 2000;277:278–95.PubMedCrossRefGoogle Scholar
  32. 32.
    Kiernan RE, Vanhulle C, Schiltz L, et al. HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J. 1999;18:6106–18.PubMedCrossRefGoogle Scholar
  33. 33.
    Jowett JB, Planelles V, Poon B, Shah NP, Chen ML, Chen IS. The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2  +  M phase of the cell cycle. J Virol. 1995;69: 6304–13.PubMedGoogle Scholar
  34. 34.
    Planelles V, Jowett JB, Li QX, Xie Y, Hahn B, Chen IS. Vpr-induced cell cycle arrest is conserved among primate lentiviruses. J Virol. 1996;70:2516–24.PubMedGoogle Scholar
  35. 35.
    Manninen A, Huotari P, Hiipakka M, Renkema GH, Saksela K. Activation of NFAT-dependent gene expression by Nef: conservation among divergent Nef alleles, dependence on SH3 binding and membrane association, and cooperation with protein kinase C-theta. J Virol. 2001;75:3034–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Manninen A, Renkema GH, Saksela K. Synergistic activation of NFAT by HIV-1 nef and the Ras/MAPK pathway. J Biol Chem. 2000;275:16513–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Varin A, Manna SK, Quivy V, et al. Exogenous Nef protein activates NF-kappa B, AP-1, and c-Jun N-terminal kinase and stimulates HIV transcription in promonocytic cells. Role in AIDS pathogenesis. J Biol Chem. 2003;278:2219–27.PubMedCrossRefGoogle Scholar
  38. 38.
    Federico M, Percario Z, Olivetta E, et al. HIV-1 Nef activates STAT1 in human monocytes/macrophages through the release of soluble factors. Blood. 2001;98:2752–61.PubMedCrossRefGoogle Scholar
  39. 39.
    Percario Z, Olivetta E, Fiorucci G, et al. Human immunodeficiency virus type 1 (HIV-1) Nef activates STAT3 in primary human monocyte/macrophages through the release of soluble factors: involvement of Nef domains interacting with the cell endocytotic machinery. J Leukoc Biol. 2003;74:821–32.PubMedCrossRefGoogle Scholar
  40. 40.
    Simmons A, Aluvihare V, McMichael A. Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity. 2001;14: 763–77.PubMedCrossRefGoogle Scholar
  41. 41.
    Ono A. HIV-1 assembly at the plasma membrane: Gag trafficking and localization. Future Virol. 2009;4:241–57.PubMedCrossRefGoogle Scholar
  42. 42.
    Dupont S, Sharova N, DeHoratius C, et al. A novel nuclear export activity in HIV-1 matrix protein required for viral replication. Nature. 1999;402:681–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Tang C, Loeliger E, Luncsford P, Kinde I, Beckett D, Summers MF. Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc Natl Acad Sci U S A. 2004;101:517–22.PubMedCrossRefGoogle Scholar
  44. 44.
    Bieniasz PD. Late budding domains and host proteins in enveloped virus release. Virology. 2006;344:55–63.PubMedCrossRefGoogle Scholar
  45. 45.
    Demirov DG, Freed EO. Retrovirus budding. Virus Res. 2004;106:87–102.PubMedCrossRefGoogle Scholar
  46. 46.
    Morita E, Sundquist WI. Retrovirus budding. Annu Rev Cell Dev Biol. 2004;20:395–425.PubMedCrossRefGoogle Scholar
  47. 47.
    Ganser-Pornillos BK, Yeager M, Sundquist WI. The structural biology of HIV assembly. Curr Opin Struct Biol. 2008;18:203–17.PubMedCrossRefGoogle Scholar
  48. 48.
    Morikawa Y. HIV capsid assembly. Curr HIV Res. 2003;1:1–14.PubMedCrossRefGoogle Scholar
  49. 49.
    Freed EO, Martin MA. HIVs and their replication. In: Howley PM, Knipe DM, editors. Fields virology. Philadelphia: Lippincott, Williams and Wilkins; 2007. p. 2107–85.Google Scholar
  50. 50.
    Mougel M, Houzet L, Darlix JL. When is it time for reverse transcription to start and go? Retrovirology. 2009;6:24.PubMedCrossRefGoogle Scholar
  51. 51.
    Nekhai S, Jerebtsova M, Jackson A, Southerland W. Regulation of HIV-1 transcription by protein phosphatase 1. Curr HIV Res. 2007;5:3–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Brady J, Kashanchi F. Tat gets the “green” light on transcription initiation. Retrovirology. 2005;2:69.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Immunology and Infectious DiseasesHarvard School of Public HealthBostonUSA
  2. 2.Department of Immunology and Infectious DiseasesHarvard School of Public HealthBostonUSA

Personalised recommendations