Well-Differentiated Thyroid Follicular Carcinoma

  • Todd G. Kroll
Part of the Molecular Pathology Library book series (MPLB, volume 3)


Tumors that arise from follicular epithelial cells of the human thyroid gland are common in clinical practice and can be detected in up to 50% of adults by ultrasonography.1–3 Fortunately, less than 20% of palpable thyroid tumors are carcinomas, and these make up only about 1% of all cancers.4 Approximately 80% of thyroid cancers are papillary carcinomas that have an excellent prognosis with an overall patient survival of 90-95%.5 Another 15% of thyroid carcinomas are follicular and Hürthle cell carcinomas that have a good prognosis with an overall patient survival of 75-80%.4,612 Papillary, follicular, and Hürthle cell carcinomas are thought to arise from the same type of precursor thyroid follicular epithelial cell, although each has unique morphologic and clinical features. Well-differentiated thyroid carcinomas have the potential to progress to aggressive clinical disease that may be rapidly lethal, particularly in older patients.


Thyroid Cancer Thyroid Carcinoma Papillary Carcinoma Thyroid Tumor Follicular Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tan GH, Gharib H. Thyroid incidentalomas: management approaches to nonpalpable nodules discovered incidentally on thyroid imaging. Ann Intern Med. 1997;126:226–231.PubMedGoogle Scholar
  2. 2.
    Ezzat S. Sarti DA, Cain DR. Braunstein GD Thyroid incidenta­lomas Prevalence by palpation and ultrasonography Arch Intern Med. 1994;154:1838–1840.Google Scholar
  3. 3.
    Bruneton JN, Balu-Maestro C, Marcy PY, Melia P, Mourou MY. Very high frequency (13 MHz) ultrasonographic examination of the normal neck: detection of normal lymph nodes and thyroid nodules. J Ultrasound Med. 1994;13:87–90.PubMedGoogle Scholar
  4. 4.
    Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A National Cancer Data Base report on 53, 856 cases of thyroid carcinoma treated in the U.S., 1985-1995 [see comments]. Cancer. 1998;83:2638–2648.PubMedCrossRefGoogle Scholar
  5. 5.
    DeLellis R, Lloyd R, Heitz P, Eng C, eds. Pathology and Genetics of Tumours of Endocrine Organs. Lyon: IARC; 2004.Google Scholar
  6. 6.
    D’Avanzo A, Ituarte P, Treseler P, et al. Prognostic scoring systems in patients with follicular thyroid cancer: a comparison of different staging systems in predicting the patient outcome. Thyroid. 2004;14:453–458.PubMedCrossRefGoogle Scholar
  7. 7.
    Harness JK, Thompson NW, McLeod MK, Eckhauser FE, Lloyd RV. Follicular carcinoma of the thyroid gland: trends and treatment. Surgery. 1984;96:972–980.PubMedGoogle Scholar
  8. 8.
    Lang W, Choritz H, Hundeshagen H. Risk factors in follicular thyroid carcinomas. A retrospective follow-up study covering a 14-year period with emphasis on morphological findings. Am J Surg Pathol. 1986;10:246–255.PubMedCrossRefGoogle Scholar
  9. 9.
    DeGroot LJ, Kaplan EL, Shukla MS, Salti G, Straus FH. Morbidity and mortality in follicular thyroid cancer. J Clin Endocrinol Metab. 1995;80:2946–2953.PubMedCrossRefGoogle Scholar
  10. 10.
    Brennan MD, Bergstralh EJ, van Heerden JA, McConahey WM. Follicular thyroid cancer treated at the Mayo Clinic, 1946 through 1970: initial manifestations, pathologic findings, therapy, and outcome. Mayo Clin Proc. 1991;66:11–22.PubMedGoogle Scholar
  11. 11.
    Grebe SK, Hay ID. Follicular thyroid cancer. Endocrinol Metab Clin North Am. 1995;24:761–801.PubMedGoogle Scholar
  12. 12.
    Evans HL. Follicular neoplasms of the thyroid. A study of 44 cases followed for a minimum of 10 years, with emphasis on differential diagnosis. Cancer. 1984;54:535–540.PubMedCrossRefGoogle Scholar
  13. 13.
    Albores-Saavedra J, Henson DE, Glazer E, Schwartz AM. Changing patterns in the incidence and survival of thyroid cancer with follicular phenotype - papillary, follicular, and anaplastic: a morphological and epidemiological study. Endocr Pathol. 2007;18:1–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Hodgson NC, Button J, Solorzano CC. Thyroid cancer: is the incidence still increasing? Ann Surg Oncol. 2004;11: 1093–1097.PubMedCrossRefGoogle Scholar
  15. 15.
    Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA. 2006;295:2164–2167.PubMedCrossRefGoogle Scholar
  16. 16.
    Czene K, Lichtenstein P, Hemminki K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish Family-Cancer Database. Int J Cancer. 2002;99:260–266.PubMedCrossRefGoogle Scholar
  17. 17.
    Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994;86:1600–1608.PubMedCrossRefGoogle Scholar
  18. 18.
    Lloyd RV, Erickson LA, Casey MB, et al. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol. 2004;28:1336–1340.PubMedCrossRefGoogle Scholar
  19. 19.
    Hirokawa M, Carney JA, Goellner JR, et al. Observer variation of encapsulated follicular lesions of the thyroid gland. Am J Surg Pathol. 2002;26:1508–1514.PubMedCrossRefGoogle Scholar
  20. 20.
    Baloch ZW, Livolsi VA. Follicular-patterned lesions of the thyroid: the bane of the pathologist. Am J Clin Pathol. 2002;117:143–150.PubMedCrossRefGoogle Scholar
  21. 21.
    LiVolsi VA, Asa SL. The demise of follicular carcinoma of the thyroid gland. Thyroid. 1994;4:233–236.PubMedCrossRefGoogle Scholar
  22. 22.
    Farahati J, Geling M, Mader U, et al. Changing trends of incidence and prognosis of thyroid carcinoma in lower Franconia, Germany, from 1981-1995. Thyroid. 2004;14:141–147.PubMedCrossRefGoogle Scholar
  23. 23.
    Williams ED, Doniach I, Bjarnason O, Michie W. Thyroid cancer in an iodide rich area: a histopathological study. Cancer. 1977;39:215–222.PubMedCrossRefGoogle Scholar
  24. 24.
    Stojadinovic A, Hoos A, Ghossein RA, et al. Hürthle cell carcinoma: a 60-year experience. Ann Surg Oncol. 2002;9:197–203.PubMedGoogle Scholar
  25. 25.
    Har-El G, Hadar T, Segal K, Levy R, Sidi J. Hürthle cell carcinoma of the thyroid gland. A tumor of moderate malignancy. Cancer. 1986;57:1613–1617.PubMedCrossRefGoogle Scholar
  26. 26.
    Grossman RF, Clark OH. Hürthle cell carcinoma. Cancer Control. 1997;4:13–17.PubMedGoogle Scholar
  27. 27.
    Kushchayeva Y, Duh QY, Kebebew E, D’Avanzo A, Clark OH. Comparison of clinical characteristics at diagnosis and during follow-up in 118 patients with Hürthle cell or follicular thyroid cancer. Am J Surg. 2008;195:457–462.PubMedCrossRefGoogle Scholar
  28. 28.
    Shaha AR, Loree TR, Shah JP. Prognostic factors and risk group analysis in follicular carcinoma of the thyroid. Surgery. 1995;118:1131-1136. discussion 1136–1138.PubMedCrossRefGoogle Scholar
  29. 29.
    Evans HL, Vassilopoulou-Sellin R. Follicular and Hürthle cell carcinomas of the thyroid: a comparative study. Am J Surg Pathol. 1998;22:1512–1520.PubMedCrossRefGoogle Scholar
  30. 30.
    Nikiforova MN, Lynch RA, Biddinger PW, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003;88:2318–2326.PubMedCrossRefGoogle Scholar
  31. 31.
    French CA, Alexander EK, Cibas ES, et al. Genetic and biological subgroups of low-stage follicular thyroid cancer. Am J Pathol. 2003;162:1053–1060.PubMedGoogle Scholar
  32. 32.
    Tung WS, Shevlin DW, Kaleem Z, Tribune DJ, Wells SA Jr, Goodfellow PJ. Allelotype of follicular thyroid carcinomas reveals genetic instability consistent with frequent nondisjunctional chromosomal loss. Genes Chromosomes Cancer. 1997;19:43–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Semple RK, Meirhaeghe A, Vidal-Puig AJ, et al. A dominant negative human peroxisome proliferator-activated receptor (PPAR){alpha} is a constitutive transcriptional corepressor and inhibits signaling through all PPAR isoforms. Endocrinology. 2005;146:1871–1882.PubMedCrossRefGoogle Scholar
  34. 34.
    Farrand K, Delahunt B, Wang XL, et al. High resolution loss of heterozygosity mapping of 17p13 in thyroid cancer: Hürthle cell carcinomas exhibit a small 411-kilobase common region of allelic imbalance, probably containing a novel tumor suppressor gene. J Clin Endocrinol Metab. 2002;87:4715–4721.PubMedCrossRefGoogle Scholar
  35. 35.
    Cheung CC, Ezzat S, Ramyar L, Freeman JL, Asa SL. Molecular basis off Hürthle cell papillary thyroid carcinoma. J Clin Endocrinol Metab. 2000;85:878–882.PubMedCrossRefGoogle Scholar
  36. 36.
    Chiappetta G, Toti P, Cetta F, et al. The RET/PTC oncogene is frequently activated in oncocytic thyroid tumors (Hürthle cell adenomas and carcinomas), but not in oncocytic hyperplastic lesions. J Clin Endocrinol Metab. 2002;87:364–369.PubMedCrossRefGoogle Scholar
  37. 37.
    Belchetz G, Cheung CC, Freeman J, Rosen IB, Witterick IJ, Asa SL. Hürthle cell tumors: using molecular techniques to define a novel classification system. Arch Otolaryngol Head Neck Surg. 2002;128:237–240.PubMedGoogle Scholar
  38. 38.
    Fischer S, Asa SL. Application of immunohistochemistry to thyroid neoplasms. Arch Pathol Lab Med. 2008;132:359–372.PubMedGoogle Scholar
  39. 39.
    Papotti M, Rodriguez J, De Pompa R, Bartolazzi A, Rosai J. Galectin-3 and HBME-1 expression in well-differentiated thyroid tumors with follicular architecture of uncertain malignant potential. Mod Pathol. 2005;18:541–546.PubMedCrossRefGoogle Scholar
  40. 40.
    Weber KB, Shroyer KR, Heinz DE, Nawaz S, Said MS, Haugen BR. The use of a combination of galectin-3 and thyroid peroxidase for the diagnosis and prognosis of thyroid cancer. Am J Clin Pathol. 2004;122:524–531.PubMedCrossRefGoogle Scholar
  41. 41.
    Oestreicher-Kedem Y, Halpern M, Roizman P, et al. Diagnostic value of galectin-3 as a marker for malignancy in follicular patterned thyroid lesions. Head Neck. 2004;26:960–966.PubMedCrossRefGoogle Scholar
  42. 42.
    Prasad ML, Pellegata NS, Huang Y, Nagaraja HN, de la Chapelle A, Kloos RT. Galectin-3, fibronectin-1, CITED-1, HBME1 and cytokeratin-19 immunohistochemistry is useful for the differential diagnosis of thyroid tumors. Mod Pathol. 2005;18:48–57.PubMedCrossRefGoogle Scholar
  43. 43.
    Saggiorato E, Aversa S, Deandreis D, et al. Galectin-3: presurgical marker of thyroid follicular epithelial cell-derived carcinomas. J Endocrinol Invest. 2004;27:311–317.PubMedGoogle Scholar
  44. 44.
    Bartolazzi A, Orlandi F, Saggiorato E, et al. Galectin-3-expression analysis in the surgical selection of follicular thyroid nodules with indeterminate fine-needle aspiration cytology: a prospective multicentre study. Lancet Oncol. 2008;9:543–549.PubMedCrossRefGoogle Scholar
  45. 45.
    Cvejic DS, Savin SB, Petrovic IM, Paunovic IR, Tatic SB, Havelka MJ. Galectin-3 expression in papillary thyroid carcinoma: relation to histomorphologic growth pattern, lymph node metastasis, extrathyroid invasion, and tumor size. Head Neck. 2005;27:1049–1055.PubMedCrossRefGoogle Scholar
  46. 46.
    Fernandez PL, Merino MJ, Gomez M, et al. Galectin-3 and laminin expression in neoplastic and non-neoplastic thyroid tissue. J Pathol. 1997;181:80–86.PubMedCrossRefGoogle Scholar
  47. 47.
    Herrmann ME, LiVolsi VA, Pasha TL, Roberts SA, Wojcik EM, Baloch ZW. Immunohistochemical expression of galectin-3 in benign and malignant thyroid lesions. Arch Pathol Lab Med. 2002;126:710–713.PubMedGoogle Scholar
  48. 48.
    Kovacs RB, Foldes J, Winkler G, Bodo M, Sapi Z. The investigation of galectin-3 in diseases of the thyroid gland. Eur J Endocrinol. 2003;149:449–453.PubMedCrossRefGoogle Scholar
  49. 49.
    Gasbarri A, Martegani MP, Del Prete F, Lucante T, Natali PG, Bartolazzi A. Galectin-3 and CD44v6 isoforms in the preoperative evaluation of thyroid nodules. J Clin Oncol. 1999;17:3494–3502.PubMedGoogle Scholar
  50. 50.
    Chiariotti L, Berlingieri MT, Battaglia C, et al. Expression of galectin-1 in normal human thyroid gland and in differentiated and poorly differentiated thyroid tumors. Int J Cancer. 1995;64:171–175.PubMedCrossRefGoogle Scholar
  51. 51.
    Inohara H, Honjo Y, Yoshii T, et al. Expression of galectin-3 in fine-needle aspirates as a diagnostic marker differentiating benign from malignant thyroid neoplasms. Cancer. 1999;85:2475–2484.PubMedCrossRefGoogle Scholar
  52. 52.
    Orlandi F, Saggiorato E, Pivano G, et al. Galectin-3 is a presurgical marker of human thyroid carcinoma. Cancer Res. 1998;58:3015–3020.PubMedGoogle Scholar
  53. 53.
    Xu XC. el-Naggar AK, Lotan R. Differential expression of galectin-1 and galectin-3 in thyroid tumors. Potential diagnostic implications. Am J Pathol. 1995;147:815–822.PubMedGoogle Scholar
  54. 54.
    de Matos PS, Ferreira AP, de Oliveira Facuri F, Assumpcao LV, Metze K, Ward LS. Usefulness of HBME-1, cytokeratin 19 and galectin-3 immunostaining in the diagnosis of thyroid malignancy. Histopathology. 2005;47:391–401.PubMedCrossRefGoogle Scholar
  55. 55.
    Miettinen M, Karkkainen P. Differential reactivity of HBME-1 and CD15 antibodies in benign and malignant thyroid tumours. Preferential reactivity with malignant tumours. Virchows Arch. 1996;429:213–219.PubMedCrossRefGoogle Scholar
  56. 56.
    Rezk S, Khan A. Role of immunohistochemistry in the diagnosis and progression of follicular epithelium-derived thyroid carcinoma. Appl Immunohistochem Mol Morphol. 2005;13:256–264.PubMedCrossRefGoogle Scholar
  57. 57.
    Saggiorato E, De Pompa R, Volante M, et al. Characterization of thyroid ‘follicular neoplasms’ in fine-needle aspiration cytological specimens using a panel of immunohistochemical markers: a proposal for clinical application. Endocr Relat Cancer. 2005;12:305–317.PubMedCrossRefGoogle Scholar
  58. 58.
    Choi YL, Kim MK, Suh JW, et al. Immunoexpression of HBME-1, high molecular weight cytokeratin, cytokeratin 19, thyroid transcription factor-1, and E-cadherin in thyroid carcinomas. J Korean Med Sci. 2005;20:853–859.PubMedCrossRefGoogle Scholar
  59. 59.
    Cheung CC, Ezzat S, Freeman JL, Rosen IB, Asa SL. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol. 2001;14:338–342.PubMedCrossRefGoogle Scholar
  60. 60.
    Mase T, Funahashi H, Koshikawa T, et al. HBME-1 immunostaining in thyroid tumors especially in follicular neoplasm. Endocr J. 2003;50:173–177.PubMedCrossRefGoogle Scholar
  61. 61.
    Cerilli LA, Mills SE, Rumpel CA, Dudley TH, Moskaluk CA. Interpretation of RET immunostaining in follicular lesions of the thyroid. Am J Clin Pathol. 2002;118:186–193.PubMedCrossRefGoogle Scholar
  62. 62.
    Nasser SM, Pitman MB, Pilch BZ, Faquin WC. Fine-needle aspiration biopsy of papillary thyroid carcinoma: diagnostic utility of cytokeratin 19 immunostaining. Cancer. 2000;90:307–311.PubMedCrossRefGoogle Scholar
  63. 63.
    Lam KY, Lui MC, Lo CY. Cytokeratin expression profiles in thyroid carcinomas. Eur J Surg Oncol. 2001;27:631–635.PubMedCrossRefGoogle Scholar
  64. 64.
    Khurana KK, Truong LD, LiVolsi VA, Baloch ZW. Cytokeratin 19 immunolocalization in cell block preparation of thyroid aspirates. An adjunct to fine-needle aspiration diagnosis of papillary thyroid carcinoma. Arch Pathol Lab Med. 2003;127:579–583.PubMedGoogle Scholar
  65. 65.
    Baloch ZW, Abraham S, Roberts S, LiVolsi VA. Differential expression of cytokeratins in follicular variant of papillary carcinoma: an immunohistochemical study and its diagnostic utility. Hum Pathol. 1999;30:1166–1171.PubMedCrossRefGoogle Scholar
  66. 66.
    Sahoo S, Hoda SA, Rosai J, DeLellis RA. Cytokeratin 19 immunoreactivity in the diagnosis of papillary thyroid carinoma: a note of caution. Am J Clin Pathol. 2001;116:696–702.PubMedCrossRefGoogle Scholar
  67. 67.
    Beesley MF, McLaren KM. Cytokeratin 19 and galectin-3 immunohistochemistry in the differential diagnosis of solitary thyroid nodules. Histopathology. 2002;41:236–243.PubMedCrossRefGoogle Scholar
  68. 68.
    Raphael SJ, McKeown-Eyssen G, Asa SL. High-molecular-weight cytokeratin and cytokeratin-19 in the diagnosis of thyroid tumors. Mod Pathol. 1994;7:295–300.PubMedGoogle Scholar
  69. 69.
    Fonseca E, Nesland JM, Hoie J, Sobrinho-Simoes M. Pattern of expression of intermediate cytokeratin filaments in the thyroid gland: an immunohistochemical study of simple and stratified epithelial-type cytokeratins. Virchows Arch. 1997;430:239–245.PubMedCrossRefGoogle Scholar
  70. 70.
    Kjellman P, Wallin G, Hoog A, Auer G, Larsson C, Zedenius J. MIB-1 index in thyroid tumors: a predictor of the clinical course in papillary thyroid carcinoma. Thyroid. 2003;13:371–380.PubMedCrossRefGoogle Scholar
  71. 71.
    Rickert D, Mittermayer C, Lindenfelser R, Biesterfeld S. MIB-1 immunohistometry of follicular adenoma and follicular carcinoma of the thyroid gland. Anal Quant Cytol Histol. 2000;22:229–234.PubMedGoogle Scholar
  72. 72.
    Erickson LA, Jin L, Wollan PC, Thompson GB, van Heerden J, Lloyd RV. Expression of p27kip1 and Ki-67 in benign and malignant thyroid tumors. Mod Pathol. 1998;11:169–174.PubMedGoogle Scholar
  73. 73.
    Erickson LA, Jin L, Goellner JR, et al. Pathologic features, proliferative activity, and cyclin D1 expression in Hürthle cell neoplasms of the thyroid. Mod Pathol. 2000;13:186–192.PubMedCrossRefGoogle Scholar
  74. 74.
    Zeng L, Geng Y, Tretiakova M, Yu X, Sicinski P, Kroll T. Peroxisome proliferator-activated receptor-delta induces cell proliferation by a novel cyclin E1-dependent mechanism and is upregulated in thyroid tumors. Cancer Res. 2008;68(16):6578–6586.PubMedCrossRefGoogle Scholar
  75. 75.
    Kashima K, Yokoyama S, Daa T, Nakayama I, Nickerson PA, Noguchi S. Cytoplasmic biotin-like activity interferes with immunohistochemical analysis of thyroid lesions: a comparison of antigen retrieval methods. Mod Pathol. 1997;10:515–519.PubMedGoogle Scholar
  76. 76.
    Srivastava A, Tischler AS, Delellis RA. Endogenous biotin staining as an artifact of antigen retrieval with automated immunostaining. Endocr Pathol. 2004;15:175–178.PubMedCrossRefGoogle Scholar
  77. 77.
    Volante M, Bozzalla-Cassione F, DePompa R, et al. Galectin-3 and HBME-1 expression in oncocytic cell tumors of the thyroid. Virchows Arch. 2004;445:183–188.PubMedCrossRefGoogle Scholar
  78. 78.
    Murray MJ, Cunningham JM, Parada LF, Dautry F, Lebowitz P, Weinberg RA. The HL-60 transforming sequence: a ras oncogene coexisting with altered myc genes in hematopoietic tumors. Cell. 1983;33:749–757.PubMedCrossRefGoogle Scholar
  79. 79.
    Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol. 2008;9:517–531.PubMedCrossRefGoogle Scholar
  80. 80.
    Bos JL. ras oncogenes in human cancer: a review. Cancer Res. 1989;49:4682–4689.PubMedGoogle Scholar
  81. 81.
    Shi YF, Zou MJ, Schmidt H, et al. High rates of ras codon 61 mutation in thyroid tumors in an iodide-deficient area. Cancer Res. 1991;51:2690–2693.PubMedGoogle Scholar
  82. 82.
    Wright PA, Lemoine NR, Mayall ES, et al. Papillary and follicular thyroid carcinomas show a different pattern of ras oncogene mutation. Br J Cancer. 1989;60:576–577.PubMedCrossRefGoogle Scholar
  83. 83.
    Wright PA, Williams ED, Lemoine NR, Wynford-Thomas D. Radiation-associated and ‘spontaneous’ human thyroid carcinomas show a different pattern of ras oncogene mutation. Oncogene. 1991;6:471–473.PubMedGoogle Scholar
  84. 84.
    Lemoine NR, Mayall ES, Wyllie FS, et al. Activated ras oncogenes in human thyroid cancers. Cancer Res. 1988;48:4459–4463.PubMedGoogle Scholar
  85. 85.
    Manenti G, Pilotti S, Re FC, Della Porta G, Pierotti MA. Selective activation of ras oncogenes in follicular and undifferentiated thyroid carcinomas. Eur J Cancer. 1994;30A:987–993.PubMedCrossRefGoogle Scholar
  86. 86.
    Lemoine NR, Mayall ES, Wyllie FS, et al. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene. 1989;4:159–164.PubMedGoogle Scholar
  87. 87.
    Fukushima T, Suzuki S, Mashiko M, et al. BRAF mutations in papillary carcinomas of the thyroid. Oncogene. 2003;22:6455–6457.PubMedCrossRefGoogle Scholar
  88. 88.
    Namba H, Rubin SA, Fagin JA. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol. 1990;4:1474–1479.PubMedCrossRefGoogle Scholar
  89. 89.
    Soares P, Trovisco V, Rocha AS, et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene. 2003;22:4578–4580.PubMedCrossRefGoogle Scholar
  90. 90.
    Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol. 2003;120:71–77.PubMedCrossRefGoogle Scholar
  91. 91.
    Banito A, Pinto AE, Espadinha C, Marques AR, Leite V. Aneuploidy and RAS mutations are mutually exclusive events in the development of well-differentiated thyroid follicular tumours. Clin Endocrinol (Oxf). 2007;67:706–711.CrossRefGoogle Scholar
  92. 92.
    Oyama T, Suzuki T, Hara F, et al. N-ras mutation of thyroid tumor with special reference to the follicular type. Pathol Int. 1995;45:45–50.PubMedCrossRefGoogle Scholar
  93. 93.
    Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C. Specific pattern of RAS oncogene mutations in folli­cular thyroid tumors. J Clin Endocrinol Metab. 2003;88:2745–2752.PubMedCrossRefGoogle Scholar
  94. 94.
    Garcia-Rostan G, Zhao H, Camp RL, et al. ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 2003;21:3226–3235.PubMedCrossRefGoogle Scholar
  95. 95.
    Hara H, Fulton N, Yashiro T, Ito K, DeGroot LJ, Kaplan EL. N-ras mutation: an independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery. 1994;116:1010–1016.PubMedGoogle Scholar
  96. 96.
    Basolo F, Pisaturo F, Pollina LE, et al. N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid. 2000;10:19–23.PubMedCrossRefGoogle Scholar
  97. 97.
    Santelli G, de Franciscis V, Chiappetta G, et al. Thyroid specific expression of the Ki-ras oncogene in transgenic mice. Adv Exp Med Biol. 1993;348:59–62.PubMedGoogle Scholar
  98. 98.
    Aguirre AJ, Bardeesy N, Sinha M, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 2003;17:3112–3126.PubMedCrossRefGoogle Scholar
  99. 99.
    Rochefort P, Caillou B, Michiels FM, et al. Thyroid pathologies in transgenic mice expressing a human activated Ras gene driven by a thyroglobulin promoter. Oncogene. 1996;12:111–118.PubMedGoogle Scholar
  100. 100.
    Santoro M, Melillo RM, Grieco M, Berlingieri MT, Vecchio G, Fusco A. The TRK and RET tyrosine kinase oncogenes cooperate with ras in the neoplastic transformation of a rat thyroid epithelial cell line. Cell Growth Differ. 1993;4:77–84.PubMedGoogle Scholar
  101. 101.
    Fusco A, Berlingieri MT, Di Fiore PP, Portella G, Grieco M, Vecchio G. One- and two-step transformations of rat thyroid epithelial cells by retroviral oncogenes. Mol Cell Biol. 1987;7:3365–3370.PubMedGoogle Scholar
  102. 102.
    Gire V, Marshall CJ, Wynford-Thomas D. Activation of mitogen-activated protein kinase is necessary but not sufficient for proliferation of human thyroid epithelial cells induced by mutant Ras. Oncogene. 1999;18:4819–4832.PubMedCrossRefGoogle Scholar
  103. 103.
    Gire V, Wynford-Thomas D. RAS oncogene activation induces proliferation in normal human thyroid epithelial cells without loss of differentiation. Oncogene. 2000;19:737–744.PubMedCrossRefGoogle Scholar
  104. 104.
    Fagin JA. Minireview: branded from the start-distinct oncogenic initiating events may determine tumor fate in the thyroid. Mol Endocrinol. 2002;16:903–911.PubMedCrossRefGoogle Scholar
  105. 105.
    Kroll TG, Sarraf P, Pecciarini L, et al. PAX8-PPARg1 fusion oncogene in human thyroid carcinoma. Science. 2000;289:1357–1360.PubMedCrossRefGoogle Scholar
  106. 106.
    Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol. 2002;26:1016–1023.PubMedCrossRefGoogle Scholar
  107. 107.
    Marques AR, Espadinha C, Catarino AL, et al. Expression of PAX8-PPARgamma1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab. 2002;87:3947–3952.PubMedCrossRefGoogle Scholar
  108. 108.
    Lacroix L, Mian C, Barrier T, et al. PAX8 and peroxisome proliferator-activated receptor gamma 1 gene expression status in benign and malignant thyroid tissues. Eur J Endocrinol. 2004;151:367–374.PubMedCrossRefGoogle Scholar
  109. 109.
    Giordano TJ, Au AY, Kuick R, et al. Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the PAX8-PPARG translocation. Clin Cancer Res. 2006;12:1983–1993.PubMedCrossRefGoogle Scholar
  110. 110.
    Dwight T, Thoppe SR, Foukakis T, et al. Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab. 2003;88:4440–4445.PubMedCrossRefGoogle Scholar
  111. 111.
    Cheung L, Messina M, Gill A, et al. Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab. 2003;88:354–357.PubMedCrossRefGoogle Scholar
  112. 112.
    Jenkins RB, Hay ID, Herath JF, et al. Frequent occurrence of cytogenetic abnormalities in sporadic nonmedullary thyroid carcinoma. Cancer. 1990;66:1213–1220.PubMedCrossRefGoogle Scholar
  113. 113.
    Roque L, Castedo S, Clode A, Soares J. Deletion of 3p25→pter in a primary follicular thyroid carcinoma and its metastasis. Genes Chromosomes Cancer. 1993;8:199–203.PubMedCrossRefGoogle Scholar
  114. 114.
    Bondeson L, Bengtsson A, Bondeson AG, et al. Chromosome studies in thyroid neoplasia. Cancer. 1989;64:680–685.PubMedCrossRefGoogle Scholar
  115. 115.
    Roque L, Castedo S, Gomes P, Soares P, Clode A, Soares J. Cytogenetic findings in 18 follicular thyroid adenomas. Cancer Genet Cytogenet. 1993;67:1–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Teyssier JR, Liautaud-Roger F, Ferre D, Patey M, Dufer J. Chromosomal changes in thyroid tumors. Relation with DNA content, karyotypic features, and clinical data. Cancer Genet Cytogenet. 1990;50:249–263.PubMedCrossRefGoogle Scholar
  117. 117.
    Sozzi G, Miozzo M, Cariani TC, et al. A t(2;3)(q12-13;p24-25) in follicular thyroid adenomas. Cancer Genet Cytogenet. 1992;64:38–41.PubMedCrossRefGoogle Scholar
  118. 118.
    Lui WO, Kytola S, Anfalk L, Larsson C, Farnebo LO. Balanced translocation (3;7)(p25;q34): another mechanism of tumorigenesis in follicular thyroid carcinoma? Cancer Genet Cytogenet. 2000;119:109–112.PubMedCrossRefGoogle Scholar
  119. 119.
    Lui W, Zeng L, Rehrmann V, et al. CREB3L2-PPARg fusion mutation identifies a thyroid signaling pathway regulated by intra-membrane proteolysis. Cancer Res. 2008;68(17):7156–7164.PubMedCrossRefGoogle Scholar
  120. 120.
    Lacroix L, Lazar V, Michiels S, et al. Follicular thyroid tumors with the PAX8-PPARgamma1 rearrangement display characteristic genetic alterations. Am J Pathol. 2005;167:223–231.PubMedGoogle Scholar
  121. 121.
    Castro P, Rebocho AP, Soares RJ, et al. PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2006;91:213–220.PubMedCrossRefGoogle Scholar
  122. 122.
    Lui WO, Foukakis T, Liden J, et al. Expression profiling reveals a distinct transcription signature in follicular thyroid carcinomas with a PAX8-PPAR(gamma) fusion oncogene. Oncogene. 2005;24:1467–1476.PubMedCrossRefGoogle Scholar
  123. 123.
    French C, Fletcher J, Cibas E, Caulfield C, Allard P, Kroll T. Molecular detection of PPARg rearrangements and thyroid carcinoma in pre-operative fine needle aspiration biopsies. Endocr Pathol. 2008;19(3):166–174.PubMedCrossRefGoogle Scholar
  124. 124.
    Mansouri A, Chowdhury K, Gruss P. Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet. 1998;19:87–90.PubMedCrossRefGoogle Scholar
  125. 125.
    Maulbecker CC, Gruss P. The oncogenic potential of Pax genes. EMBO J. 1993;12:2361–2367.PubMedGoogle Scholar
  126. 126.
    Cazzaniga G, Daniotti M, Tosi S, et al. The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res. 2001;61:4666–4670.PubMedGoogle Scholar
  127. 127.
    Iida S, Rao PH, Nallasivam P, et al. The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood. 1996;88:4110–4117.PubMedGoogle Scholar
  128. 128.
    Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446:758–764.PubMedCrossRefGoogle Scholar
  129. 129.
    Galili N, Davis RJ, Fredericks WJ, et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyo­sarcoma. Nat Genet. 1993;5:230–235.PubMedCrossRefGoogle Scholar
  130. 130.
    Barr FG, Galili N, Holick J, Biegel JA, Rovera G, Emanuel BS. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993;3:113–117.PubMedCrossRefGoogle Scholar
  131. 131.
    Shapiro DN, Sublett JE, Li B, Downing JR, Naeve CW. Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res. 1993;53:5108–5112.PubMedGoogle Scholar
  132. 132.
    Storlazzi CT, Mertens F, Nascimento A, et al. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet. 2003;12:2349–2358.PubMedCrossRefGoogle Scholar
  133. 133.
    Williams DW, Wynford-Thomas D. Human thyroid epithelial cells. Methods Mol Biol. 1997;75:163–172.PubMedGoogle Scholar
  134. 134.
    Martelli ML, Iuliano R, Le Pera I, et al. Inhibitory effects of peroxisome proliferator-activated receptor gamma on thyroid carcinoma cell growth. J Clin Endocrinol Metab. 2002;87:4728–4735.PubMedCrossRefGoogle Scholar
  135. 135.
    Powell J, Wang X, Allard B, et al. The PAX8/PPARg fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARg inhibition. Oncogene. 2004;23:3634–3641.CrossRefGoogle Scholar
  136. 136.
    Klopper JP, Hays WR, Sharma V, Baumbusch MA, Hershman JM, Haugen BR. Retinoid X receptor-gamma and peroxisome proliferator-activated receptor-gamma expression predicts thyroid carcinoma cell response to retinoid and thiazolidinedione treatment. Mol Cancer Ther. 2004;3:1011–1020.PubMedGoogle Scholar
  137. 137.
    Park JW, Zarnegar R, Kanauchi H, et al. Troglitazone, the peroxisome proliferator-activated receptor-gamma agonist, induces antiproliferation and redifferentiation in human thyroid cancer cell lines. Thyroid. 2005;15:222–231.PubMedCrossRefGoogle Scholar
  138. 138.
    Aiello A, Pandini G, Frasca F, et al. Peroxisomal proliferator-activated receptor-gamma agonists induce partial reversion of epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Endocrinology. 2006;147:4463–4475.PubMedCrossRefGoogle Scholar
  139. 139.
    Hayashi N, Nakamori S, Hiraoka N, et al. Antitumor effects of peroxisome proliferator activate receptor gamma ligands on anaplastic thyroid carcinoma. Int J Oncol. 2004;24:89–95.PubMedGoogle Scholar
  140. 140.
    Kato Y, Ying H, Zhao L, et al. PPARgamma insufficiency promotes follicular thyroid carcinogenesis via activation of the nuclear factor-kappaB signaling pathway. Oncogene. 2006;25:2736–2747.PubMedCrossRefGoogle Scholar
  141. 141.
    Ohta K, Endo T, Haraguchi K, Hershman JM, Onaya T. Ligands for peroxisome proliferator-activated receptor gamma inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells. J Clin Endocrinol Metab. 2001;86:2170–2177.PubMedCrossRefGoogle Scholar
  142. 142.
    Copland JA, Marlow LA, Kurakata S, et al. Novel high-affinity PPARgamma agonist alone and in combination with paclitaxel inhibits human anaplastic thyroid carcinoma tumor growth via p21WAF1/CIP1. Oncogene. 2006;25:2304–2317.PubMedCrossRefGoogle Scholar
  143. 143.
    Chen Y, Wang SM, Wu JC, Huang SH. Effects of PPARgamma agonists on cell survival and focal adhesions in a Chinese thyroid carcinoma cell line. J Cell Biochem. 2006;98:1021–1035.PubMedCrossRefGoogle Scholar
  144. 144.
    Frohlich E, Machicao F, Wahl R. Action of thiazolidinediones on differentiation, proliferation and apoptosis of normal and transformed thyrocytes in culture. Endocr Relat Cancer. 2005;12:291–303.PubMedCrossRefGoogle Scholar
  145. 145.
    Aldred MA, Morrison C, Gimm O, et al. Peroxisome proliferator-activated receptor gamma is frequently downregulated in a diversity of sporadic nonmedullary thyroid carcinomas. Oncogene. 2003;22:3412–3416.PubMedCrossRefGoogle Scholar
  146. 146.
    Sarraf P, Mueller E, Smith WM, et al. Loss-of-function mutations in PPAR gamma associated with human colon cancer. Mol Cell. 1999;3:799–804.PubMedCrossRefGoogle Scholar
  147. 147.
    Ying H, Suzuki H, Furumoto H, et al. Alterations in genomic profiles during tumor progression in a mouse model of follicular thyroid carcinoma. Carcinogenesis. 2003;24:1467–1479.PubMedCrossRefGoogle Scholar
  148. 148.
    Ying H, Suzuki H, Zhao L, Willingham MC, Meltzer P, Cheng SY. Mutant thyroid hormone receptor beta represses the expression and transcriptional activity of peroxisome proliferator-activated receptor gamma during thyroid carcinogenesis. Cancer Res. 2003;63:5274–5280.PubMedGoogle Scholar
  149. 149.
    Au AY, McBride C, Wilhelm KG Jr, et al. PAX8-peroxisome proliferator-activated receptor gamma (PPARgamma) disrupts normal PAX8 or PPARgamma transcriptional function and stimulates follicular thyroid cell growth. Endocrinology. 2006;147:367–376.PubMedCrossRefGoogle Scholar
  150. 150.
    Baek SJ, Wilson LC, Hsi LC, Eling TE. Troglitazone, a peroxisome proliferator-activated receptor gamma (PPAR gamma) ligand, selectively induces the early growth response-1 gene independently of PPAR gamma. A novel mechanism for its anti-tumorigenic activity. J Biol Chem. 2003;278:5845–5853.PubMedCrossRefGoogle Scholar
  151. 151.
    Palakurthi SS, Aktas H, Grubissich LM, Mortensen RM, Halperin JA. Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor gamma and mediated by inhibition of translation initiation. Cancer Res. 2001;61:6213–6218.PubMedGoogle Scholar
  152. 152.
    Shi Y, Hon M, Evans RM. The peroxisome proliferator-activated receptor delta, an integrator of transcriptional repression and nuclear receptor signaling. Proc Natl Acad Sci USA. 2002;99:2613–2618.PubMedCrossRefGoogle Scholar
  153. 153.
    Foukakis T, Au AY, Wallin G, et al. The Ras effector NORE1A is suppressed in follicular thyroid carcinomas with a PAX8-PPARgamma fusion. J Clin Endocrinol Metab. 2006;91:1143–1149.PubMedCrossRefGoogle Scholar
  154. 154.
    Garcia-Rostan G, Costa AM, Pereira-Castro I, et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 2005;65:10199–10207.PubMedCrossRefGoogle Scholar
  155. 155.
    Wang Y, Hou P, Yu H, et al. High prevalence and mutual exclu­sivity of genetic alterations in the phosphatidylinositol-3-kinase/akt pathway in thyroid tumors. J Clin Endocrinol Metab. 2007;92:2387–2390.PubMedCrossRefGoogle Scholar
  156. 156.
    Hou P, Liu D, Shan Y, et al. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res. 2007;13:1161–1170.PubMedCrossRefGoogle Scholar
  157. 157.
    Wu G, Mambo E, Guo Z, et al. Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J Clin Endocrinol Metab. 2005;90:4688–4693.PubMedCrossRefGoogle Scholar
  158. 158.
    Santarpia L, El-Naggar AK, Cote GJ, Myers JN, Sherman SI. Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J Clin Endocrinol Metab. 2008;93:278–284.PubMedCrossRefGoogle Scholar
  159. 159.
    Broderick DK, Di C, Parrett TJ, et al. Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res. 2004;64:5048–5050.PubMedCrossRefGoogle Scholar
  160. 160.
    Campbell IG, Russell SE, Choong DY, et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004;64:7678–7681.PubMedCrossRefGoogle Scholar
  161. 161.
    Saal LH, Holm K, Maurer M, et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res. 2005;65:2554–2559.PubMedCrossRefGoogle Scholar
  162. 162.
    Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554.PubMedCrossRefGoogle Scholar
  163. 163.
    Kang S, Bader AG, Vogt PK. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci USA. 2005;102:802–807.PubMedCrossRefGoogle Scholar
  164. 164.
    Bader AG, Kang S, Vogt PK. Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci USA. 2006;103:1475–1479.PubMedCrossRefGoogle Scholar
  165. 165.
    Eng C. Role of PTEN, a lipid phosphatase upstream effector of protein kinase B, in epithelial thyroid carcinogenesis. Ann N Y Acad Sci. 2002;968:213–221.PubMedCrossRefGoogle Scholar
  166. 166.
    Liaw D, Marsh DJ, Li J, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997;16:64–67.PubMedCrossRefGoogle Scholar
  167. 167.
    Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP. Pten is essential for embryonic development and tumour suppression. Nat Genet. 1998;19:348–355.PubMedCrossRefGoogle Scholar
  168. 168.
    Podsypanina K, Ellenson LH, Nemes A, et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA. 1999;96:1563–1568.PubMedCrossRefGoogle Scholar
  169. 169.
    Dahia PL, Marsh DJ, Zheng Z, et al. Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res. 1997;57:4710–4713.PubMedGoogle Scholar
  170. 170.
    Halachmi N, Halachmi S, Evron E, et al. Somatic mutations of the PTEN tumor suppressor gene in sporadic follicular thyroid tumors. Genes Chromosomes Cancer. 1998;23:239–243.PubMedCrossRefGoogle Scholar
  171. 171.
    Yeh JJ, Marsh DJ, Zedenius J, et al. Fine-structure deletion mapping of 10q22-24 identifies regions of loss of heterozy­gosity and suggests that sporadic follicular thyroid adenomas and follicular thyroid carcinomas develop along distinct neoplastic pathways. Genes Chromosomes Cancer. 1999;26:322–328.PubMedCrossRefGoogle Scholar
  172. 172.
    Frisk T, Foukakis T, Dwight T, et al. Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosomes Cancer. 2002;35:74–80.PubMedCrossRefGoogle Scholar
  173. 173.
    Gimm O, Perren A, Weng LP, et al. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am J Pathol. 2000;156:1693–1700.PubMedGoogle Scholar
  174. 174.
    Bruni P, Boccia A, Baldassarre G, et al. PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1. Oncogene. 2000;19:3146–3155.PubMedCrossRefGoogle Scholar
  175. 175.
    Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–1457.PubMedGoogle Scholar
  176. 176.
    Santoro M, Carlomagno F, Hay ID, et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest. 1992;89:1517–1522.PubMedCrossRefGoogle Scholar
  177. 177.
    Fusco A, Grieco M, Santoro M, et al. A new oncogene in human thyroid papillary carcinomas and their lymph- nodal metastases. Nature. 1987;328:170–172.PubMedCrossRefGoogle Scholar
  178. 178.
    Grieco M, Santoro M, Berlingieri MT, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell. 1990;60:557–563.PubMedCrossRefGoogle Scholar
  179. 179.
    Maxwell EL, Palme CE, Freeman J. Hürthle cell tumors: applying molecular markers to define a new management algorithm. Arch Otolaryngol Head Neck Surg. 2006;132:54–58.PubMedCrossRefGoogle Scholar
  180. 180.
    Carcangiu ML, Bianchi S, Savino D, Voynick IM, Rosai J. Follicular Hürthle cell tumors of the thyroid gland. Cancer. 1991;68:1944–1953.PubMedCrossRefGoogle Scholar
  181. 181.
    Berho M, Suster S. The oncocytic variant of papillary carcinoma of the thyroid: a clinicopathologic study of 15 cases. Hum Pathol. 1997;28:47–53.PubMedCrossRefGoogle Scholar
  182. 182.
    Herrera MF, Hay ID, Wu PS, et al. Hürthle cell (oxyphilic) papillary thyroid carcinoma: a variant with more aggressive biologic behavior. World J Surg. 1992;16:669-674. discussion 774–775.PubMedCrossRefGoogle Scholar
  183. 183.
    Rodrigues-Serpa A, Catarino A, Soares J. Loss of heterozygosity in follicular and papillary thyroid carcinomas. Cancer Genet Cytogenet. 2003;141:26–31.PubMedCrossRefGoogle Scholar
  184. 184.
    Roque L, Clode A, Belge G, et al. Follicular thyroid carcinoma: chromosome analysis of 19 cases. Genes Chromosomes Cancer. 1998;21:250–255.PubMedCrossRefGoogle Scholar
  185. 185.
    Roque L, Rodrigues R, Pinto A, Moura-Nunes V, Soares J. Chromosome imbalances in thyroid follicular neoplasms: a comparison between follicular adenomas and carcinomas. Genes Chromosomes Cancer. 2003;36:292–302.PubMedCrossRefGoogle Scholar
  186. 186.
    Kitamura Y, Shimizu K, Ito K, Tanaka S, Emi M. Allelotyping of follicular thyroid carcinoma: frequent allelic losses in chromosome arms 7q, 11p, and 22q. J Clin Endocrinol Metab. 2001;86:4268–4272.PubMedCrossRefGoogle Scholar
  187. 187.
    Ward LS, Brenta G, Medvedovic M, Fagin JA. Studies of allelic loss in thyroid tumors reveal major differences in chromosomal instability between papillary and follicular carcinomas. J Clin Endocrinol Metab. 1998;83:525–530.PubMedCrossRefGoogle Scholar
  188. 188.
    Segev DL, Saji M, Phillips GS, et al. Polymerase chain reaction-based microsatellite polymorphism analysis of follicular and Hürthle cell neoplasms of the thyroid. J Clin Endocrinol Metab. 1998;83:2036–2042.PubMedCrossRefGoogle Scholar
  189. 189.
    Hunt JL, Yim JH, Tometsko M, Finkelstein SD, Swalsky P, Carty SE. Loss of heterozygosity of the VHL gene identifies malignancy and predicts death in follicular thyroid tumors. Surgery. 2003;134:1043-1047. discussion 1047–1048.PubMedCrossRefGoogle Scholar
  190. 190.
    Herrmann MA, Hay ID, Bartelt DH Jr, et al. Cytogenetic and molecular genetic studies of follicular and papillary thyroid cancers. J Clin Invest. 1991;88:1596–1604.PubMedCrossRefGoogle Scholar
  191. 191.
    Zhang JS, Nelson M, McIver B, et al. Differential loss of heterozygosity at 7q31.2 in follicular and papillary thyroid tumors. Oncogene. 1998;17:789–793.PubMedCrossRefGoogle Scholar
  192. 192.
    Trovato M, Fraggetta F, Villari D, et al. Loss of heterozygosity of the long arm of chromosome 7 in follicular and anaplastic thyroid cancer, but not in papillary thyroid cancer. J Clin Endocrinol Metab. 1999;84:3235–3240.PubMedCrossRefGoogle Scholar
  193. 193.
    Frisk T, Kytola S, Wallin G, Zedenius J, Larsson C. Low frequency of numerical chromosomal aberrations in follicular thyroid tumors detected by comparative genomic hybridization. Genes Chromosomes Cancer. 1999;25:349–353.PubMedCrossRefGoogle Scholar
  194. 194.
    Kitamura Y, Shimizu K, Tanaka S, Ito K, Emi M. Allelotyping of anaplastic thyroid carcinoma: frequent allelic losses on 1q, 9p, 11, 17, 19p, and 22q. Genes Chromosomes Cancer. 2000;27:244–251.PubMedCrossRefGoogle Scholar
  195. 195.
    Zedenius J, Wallin G, Svensson A, et al. Deletions of the long arm of chromosome 10 in progression of follicular thyroid tumors. Hum Genet. 1996;97:299–303.PubMedCrossRefGoogle Scholar
  196. 196.
    Zedenius J, Wallin G, Svensson A, et al. Allelotyping of follicular thyroid tumors. Hum Genet. 1995;96:27–32.PubMedCrossRefGoogle Scholar
  197. 197.
    Nord B, Larsson C, Wong FK, Wallin G, Teh BT, Zedenius J. Sporadic follicular thyroid tumors show loss of a 200-kb region in 11q13 without evidence for mutations in the MEN1 gene. Genes Chromosomes Cancer. 1999;26:35–39.PubMedCrossRefGoogle Scholar
  198. 198.
    Matsuo K, Tang SH, Fagin JA. Allelotype of human thyroid tumors: loss of chromosome 11q13 sequences in follicular neoplasms. Mol Endocrinol. 1991;5:1873–1879.PubMedCrossRefGoogle Scholar
  199. 199.
    Grebe SK, McIver B, Hay ID, et al. Frequent loss of heterozygosity on chromosomes 3p and 17p without VHL or p53 mutations suggests involvement of unidentified tumor suppressor genes in follicular thyroid carcinoma. J Clin Endocrinol Metab. 1997;82:3684–3691.PubMedCrossRefGoogle Scholar
  200. 200.
    Hemmer S, Wasenius VM, Knuutila S, Franssila K, Joensuu H. DNA copy number changes in thyroid carcinoma. Am J Pathol. 1999;154:1539–1547.PubMedGoogle Scholar
  201. 201.
    Hemmer S, Wasenius VM, Knuutila S, Joensuu H, Franssila K. Comparison of benign and malignant follicular thyroid tumours by comparative genomic hybridization. Br J Cancer. 1998;78:1012–1017.PubMedCrossRefGoogle Scholar
  202. 202.
    Hunt JL, Livolsi VA, Baloch ZW, et al. A novel microdissection and genotyping of follicular-derived thyroid tumors to predict aggressiveness. Hum Pathol. 2003;34:375–380.PubMedCrossRefGoogle Scholar
  203. 203.
    Hunt JL, Yim JH, Carty SE. Fractional allelic loss of tumor suppressor genes identifies malignancy and predicts clinical outcome in follicular thyroid tumors. Thyroid. 2006;16:643–649.PubMedCrossRefGoogle Scholar
  204. 204.
    Ruan Y, Ooi HS, Choo SW, et al. Fusion transcripts and transcribed retrotransposed loci discovered through comprehensive transcriptome analysis using Paired-End diTags (PETs). Genome Res. 2007;17:828–838.PubMedCrossRefGoogle Scholar
  205. 205.
    Greenman C, Stephens P, Smith R, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–158.PubMedCrossRefGoogle Scholar
  206. 206.
    Davies H, Hunter C, Smith R, et al. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res. 2005;65:7591–7595.PubMedGoogle Scholar
  207. 207.
    Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–274.PubMedCrossRefGoogle Scholar
  208. 208.
    Wood LD, Parsons DW, Jones S, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–1113.PubMedCrossRefGoogle Scholar
  209. 209.
    Barden CB, Shister KW, Zhu B, et al. Classification of follicular thyroid tumors by molecular signature: results of gene profiling. Clin Cancer Res. 2003;9:1792–1800.PubMedGoogle Scholar
  210. 210.
    Chevillard S, Ugolin N, Vielh P, et al. Gene expression profiling of differentiated thyroid neoplasms: diagnostic and clinical implications. Clin Cancer Res. 2004;10:6586–6597.PubMedCrossRefGoogle Scholar
  211. 211.
    Finley DJ, Zhu B, Barden CB, Fahey TJ 3rd. Discrimination of benign and malignant thyroid nodules by molecular profiling. Ann Surg. 2004;240:425-436. discussion 436–437.PubMedCrossRefGoogle Scholar
  212. 212.
    Fryknas M, Wickenberg-Bolin U, Goransson H, et al. Molecular markers for discrimination of benign and malignant follicular thyroid tumors. Tumour Biol. 2006;27:211–220.PubMedCrossRefGoogle Scholar
  213. 213.
    Weber F, Shen L, Aldred MA, et al. Genetic classification of benign and malignant thyroid follicular neoplasia based on a three-gene combination. J Clin Endocrinol Metab. 2005;90:2512–2521.PubMedCrossRefGoogle Scholar
  214. 214.
    Aldred MA, Huang Y, Liyanarachchi S, et al. Papillary and follicular thyroid carcinomas show distinctly different microarray expression profiles and can be distinguished by a minimum of five genes. J Clin Oncol. 2004;22:3531–3539.PubMedCrossRefGoogle Scholar
  215. 215.
    Huang Y, Prasad M, Lemon WJ, et al. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci USA. 2001;98:15044–15049.PubMedCrossRefGoogle Scholar
  216. 216.
    Takano T, Miyauchi A, Yoshida H, Kuma K, Amino N. High-throughput differential screening of mRNAs by serial analysis of gene expression: decreased expression of trefoil factor 3 mRNA in thyroid follicular carcinomas. Br J Cancer. 2004;90:1600–1605.PubMedCrossRefGoogle Scholar
  217. 217.
    Cerutti JM, Delcelo R, Amadei MJ, et al. A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma based on gene expression. J Clin Invest. 2004;113:1234–1242.PubMedGoogle Scholar
  218. 218.
    Netea-Maier RT, Hunsucker SW, Hoevenaars BM, et al. Discovery and validation of protein abundance differences between folli­cular thyroid neoplasms. Cancer Res. 2008;68:1572–1580.PubMedCrossRefGoogle Scholar
  219. 219.
    Baris O, Mirebeau-Prunier D, Savagner F, et al. Gene profiling reveals specific oncogenic mechanisms and signaling pathways in oncocytic and papillary thyroid carcinoma. Oncogene. 2005;24:4155–4161.PubMedGoogle Scholar
  220. 220.
    Lacroix L, Ripoche H, Lazar V, et al. Molecular signatures of thyroid follicular tumors presenting the PAX8-PPARG1 rearrangement. Thyroid. 2003;13:699.Google Scholar
  221. 221.
    Giordano TJ, Kuick R, Thomas DG, et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene. 2005;24:6646–6656.PubMedCrossRefGoogle Scholar
  222. 222.
    Schetter AJ, Leung SY, Sohn JJ, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 2008;299:425–436.PubMedCrossRefGoogle Scholar
  223. 223.
    Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–269.PubMedCrossRefGoogle Scholar
  224. 224.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–866.PubMedCrossRefGoogle Scholar
  225. 225.
    Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–838.PubMedCrossRefGoogle Scholar
  226. 226.
    Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103:2257–2261.PubMedCrossRefGoogle Scholar
  227. 227.
    Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355.PubMedCrossRefGoogle Scholar
  228. 228.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297.PubMedCrossRefGoogle Scholar
  229. 229.
    Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab. 2008;93:1600–1608.PubMedCrossRefGoogle Scholar
  230. 230.
    He H, Jazdzewski K, Li W, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA. 2005;102:19075–19080.PubMedCrossRefGoogle Scholar
  231. 231.
    Pallante P, Visone R, Ferracin M, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 2006;13:497–508.PubMedCrossRefGoogle Scholar
  232. 232.
    Visone R, Russo L, Pallante P, et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carci­nomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer. 2007;14:791–798.PubMedCrossRefGoogle Scholar
  233. 233.
    Cahill S, Smyth P, Denning K, et al. Effect of BRAFV600E mutation on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol Cancer. 2007;6:21.PubMedCrossRefGoogle Scholar
  234. 234.
    Cahill S, Smyth P, Finn SP, et al. Effect of ret/PTC 1 rearrangement on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol Cancer. 2006;5:70.PubMedCrossRefGoogle Scholar
  235. 235.
    Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C. A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab. 2006;91:3584–3591.PubMedCrossRefGoogle Scholar
  236. 236.
    Malchoff CD, Malchoff DM. The genetics of hereditary nonmedullary thyroid carcinoma. J Clin Endocrinol Metab. 2002;87:2455–2459.PubMedCrossRefGoogle Scholar
  237. 237.
    Hemminki K, Eng C, Chen B. Familial risks for nonmedullary thyroid cancer. J Clin Endocrinol Metab. 2005;90:5747–5753.PubMedCrossRefGoogle Scholar
  238. 238.
    Canzian F, Amati P, Harach HR, et al. A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2. Am J Hum Genet. 1998;63:1743–1748.PubMedCrossRefGoogle Scholar
  239. 239.
    Harach HR, Lesueur F, Amati P, et al. Histology of familial thyroid tumours linked to a gene mapping to chromosome 19p13.2. J Pathol. 1999;189:387–393.PubMedCrossRefGoogle Scholar
  240. 240.
    Maximo V, Botelho T, Capela J, et al. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hürthle cell) tumours of the thyroid. Br J Cancer. 2005;92:1892–1898.PubMedCrossRefGoogle Scholar
  241. 241.
    Coghlan DW, Morley AA, Matthews JP, Bishop JF. The incidence and prognostic significance of mutations in codon 13 of the N-ras gene in acute myeloid leukemia. Leukemia. 1994;8:1682–1687.PubMedGoogle Scholar
  242. 242.
    Neubauer A, Dodge RK, George SL, et al. Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia. Blood. 1994;83:1603–1611.PubMedGoogle Scholar
  243. 243.
    Radich JP, Kopecky KJ, Willman CL, et al. N-ras mutations in adult de novo acute myelogenous leukemia: prevalence and clinical significance. Blood. 1990;76:801–807.PubMedGoogle Scholar
  244. 244.
    Stirewalt DL, Kopecky KJ, Meshinchi S, et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood. 2001;97:3589–3595.PubMedCrossRefGoogle Scholar
  245. 245.
    Jansen JH, Mahfoudi A, Rambaud S, Lavau C, Wahli W, Dejean A. Multimeric complexes of the PML-retinoic acid receptor alpha fusion protein in acute promyelocytic leukemia cells and interference with retinoid and peroxisome-proliferator signaling pathways. Proc Natl Acad Sci USA. 1995;92:7401–7405.PubMedCrossRefGoogle Scholar
  246. 246.
    Okuda T, Cai Z, Yang S, et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood. 1998;91:3134–3143.PubMedGoogle Scholar
  247. 247.
    Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10:1911–1918.PubMedGoogle Scholar
  248. 248.
    Gilliland DG, Griffin JD. Role of FLT3 in leukemia. Curr Opin Hematol. 2002;9:274–281.PubMedCrossRefGoogle Scholar
  249. 249.
    Ross DM, Hughes TP. Current and emerging tests for the laboratory monitoring of chronic myeloid leukaemia and related disorders. Pathology. 2008;40:231–246.PubMedCrossRefGoogle Scholar
  250. 250.
    Gilliland DG, Tallman MS. Focus on acute leukemias. Cancer Cell. 2002;1:417–420.PubMedCrossRefGoogle Scholar
  251. 251.
    Mrozek K, Bloomfield CD. Clinical significance of the most common chromosome translocations in adult acute myeloid leukemia. J Natl Cancer Inst Monogr. 2008;(39):52–57.Google Scholar
  252. 252.
    Cheung CC, Carydis B, Ezzat S, Bedard YC, Asa SL. Analysis of ret/PTC gene rearrangements refines the fine needle aspiration diagnosis of thyroid cancer. J Clin Endocrinol Metab. 2001;86:2187–2190.PubMedCrossRefGoogle Scholar
  253. 253.
    Chung KW, Yang SK, Lee GK, et al. Detection of BRAFV600E mutation on fine needle aspiration specimens of thyroid nodule refines cyto-pathology diagnosis, especially in BRAF600E mutation-prevalent area. Clin Endocrinol (Oxf). 2006;65:660–666.CrossRefGoogle Scholar
  254. 254.
    Cohen Y, Rosenbaum E, Clark DP, et al. Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res. 2004;10:2761–2765.PubMedCrossRefGoogle Scholar
  255. 255.
    Jin L, Sebo TJ, Nakamura N, et al. BRAF mutation analysis in fine needle aspiration (FNA) cytology of the thyroid. Diagn Mol Pathol. 2006;15:136–143.PubMedCrossRefGoogle Scholar
  256. 256.
    Pizzolanti G, Russo L, Richiusa P, et al. Fine-needle aspiration molecular analysis for the diagnosis of papillary thyroid carcinoma through BRAF V600E mutation and RET/PTC rearrangement. Thyroid. 2007;17:1109–1115.PubMedCrossRefGoogle Scholar
  257. 257.
    Rowe LR, Bentz BG, Bentz JS. Utility of BRAF V600E mutation detection in cytologically indeterminate thyroid nodules. Cytojournal. 2006;3:10.PubMedCrossRefGoogle Scholar
  258. 258.
    Salvatore G, Giannini R, Faviana P, et al. Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2004;89:5175–5180.PubMedCrossRefGoogle Scholar
  259. 259.
    Sapio MR, Posca D, Raggioli A, et al. Detection of RET/PTC, TRK and BRAF mutations in preoperative diagnosis of thyroid nodules with indeterminate cytological findings. Clin Endocrinol (Oxf). 2007;66:678–683.CrossRefGoogle Scholar
  260. 260.
    Xing M, Tufano RP, Tufaro AP, et al. Detection of BRAF mutation on fine needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer. J Clin Endocrinol Metab. 2004;89:2867–2872.PubMedCrossRefGoogle Scholar
  261. 261.
    Foukakis T, Gusnanto A, Au AY, et al. A PCR-based expression signature of malignancy in follicular thyroid tumors. Endocr Relat Cancer. 2007;14:381–391.PubMedCrossRefGoogle Scholar
  262. 262.
    Denning KM, Smyth PC, Cahill SF, et al. A molecular expression signature distinguishing follicular lesions in thyroid carcinoma using preamplification RT-PCR in archival samples. Mod Pathol. 2007;20:1095–1102.PubMedCrossRefGoogle Scholar
  263. 263.
    Tallman MS, Andersen JW, Schiffer CA, et al. All-trans retinoic acid in acute promyelocytic leukemia: long-term outcome and prognostic factor analysis from the North American Intergroup protocol. Blood. 2002;100:4298–4302.PubMedCrossRefGoogle Scholar
  264. 264.
    Weisberg E, Boulton C, Kelly LM, et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell. 2002;1:433–443.PubMedCrossRefGoogle Scholar
  265. 265.
    Kelly LM, Yu JC, Boulton CL, et al. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell. 2002;1:421–432.PubMedCrossRefGoogle Scholar
  266. 266.
    Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344:1038–1042.PubMedCrossRefGoogle Scholar
  267. 267.
    Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–1037.PubMedCrossRefGoogle Scholar
  268. 268.
    Carlomagno F, Vitagliano D, Guida T, et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 2002;62:7284–7290.PubMedGoogle Scholar
  269. 269.
    Carlomagno F, Vitagliano D, Guida T, et al. The kinase inhibitor PP1 blocks tumorigenesis induced by RET oncogenes. Cancer Res. 2002;62:1077–1082.PubMedGoogle Scholar
  270. 270.
    Carlomagno F, Vitagliano D, Guida T, et al. Efficient inhibition of RET/papillary thyroid carcinoma oncogenic kinases by 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3, 4-d]pyrimidine (PP2). J Clin Endocrinol Metab. 2003;88:1897–1902.PubMedCrossRefGoogle Scholar
  271. 271.
    Yin Y, Yuan H, Wang C, et al. 3-phosphoinositide-dependent protein kinase-1 activates the peroxisome proliferator-activated receptor-gamma and promotes adipocyte differentiation. Mol Endocrinol. 2006;20:268–278.PubMedCrossRefGoogle Scholar
  272. 272.
    Lubitz CC, Ugras SK, Kazam JJ, et al. Microarray analysis of thyroid nodule fine-needle aspirates accurately classifies benign and malignant lesions. J Mol Diagn. 2006;8:490–498.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Todd G. Kroll
    • 1
  1. 1.Department of PathologyLoyola University Medical CenterChicagocUSA

Personalised recommendations