Clinical Detection and Treatment of Thyroid Diseases

  • Jamie C. Mitchell
  • Mira Milas
Part of the Molecular Pathology Library book series (MPLB, volume 3)


While thyroid cancer is relatively rare overall, accounting for less than 1% of all human malignancies, it is the most common endocrine malignancy, comprising nearly 90% of all endocrine cancers.1 The vast majority are well-differentiated cancers derived from follicular epithelium and most of these are papillary carcinomas (PTC). Prognosis is generally favorable, with only 1,500 thyroid cancer-related deaths per year,2 and a 10-year survival of greater than 90%. However, the incidence of PTC has been on the rise during recent years, perhaps due to increased rates of detection with the almost ubiquitous use of imaging studies with ever-increasing sensitivity.3,4


Thyroid Cancer Papillary Thyroid Cancer Differentiate Thyroid Cancer Medullary Thyroid Cancer Thyroid Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Correa P, Chen VW. Endocrine gland cancer. Cancer. 1995;75(1 Suppl):338–352.PubMedGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57(1):43–66.CrossRefPubMedGoogle Scholar
  3. 3.
    Colonna M, Guizard AV, Schvartz C, et al. A time trend analysis of papillary and follicular cancers as a function of tumour size: a study of data from six cancer registries in France (1983-2000). Eur J Cancer. 2007;43(5):891–900.CrossRefPubMedGoogle Scholar
  4. 4.
    Mitchell J, Parangi S. The thyroid incidentaloma: an increasingly frequent consequence of radiologic imaging. Semin Ultrasound CT MR. 2005;26(1):37–46.CrossRefPubMedGoogle Scholar
  5. 5.
    Nunez C, Mendelsohn G. Fine-needle aspiration and needle biopsy of the thyroid gland. Pathol Annu. 1989;24(Pt 1):161–198.PubMedGoogle Scholar
  6. 6.
    Mazzaferri EL, Massoll N. Management of papillary and follicular (differentiated) thyroid cancer: new paradigms using recombinant human thyrotropin. Endocr Relat Cancer. 2002;9(4):227–247.CrossRefPubMedGoogle Scholar
  7. 7.
    Schlumberger MJ. Papillary and follicular thyroid carcinoma. N Engl J Med. 1998;338(5):297–306.CrossRefPubMedGoogle Scholar
  8. 8.
    Coelho SM, de Carvalho DP, Vaisman M. New perspectives on the treatment of differentiated thyroid cancer. Arq Bras Endocrinol Metabol. 2007;51(4):612–624.PubMedGoogle Scholar
  9. 9.
    Haugen BR. Management of the patient with progressive radioiodine non-responsive disease. Semin Surg Oncol. 1999;16(1):34–41.CrossRefPubMedGoogle Scholar
  10. 10.
    Yano Y, Uematsu N, Yashiro T, et al. Gene expression profiling identifies platelet-derived growth factor as a diagnostic molecular marker for papillary thyroid carcinoma. Clin Cancer Res. 2004;10(6):2035–2043.CrossRefPubMedGoogle Scholar
  11. 11.
    Weber F, Shen L, Aldred MA, et al. Genetic classification of benign and malignant thyroid follicular neoplasia based on a three-gene combination. J Clin Endocrinol Metab. 2005;90(5):2512–2521.CrossRefPubMedGoogle Scholar
  12. 12.
    Rosen J, He M, Umbricht C, et al. A six-gene model for differentiating benign from malignant thyroid tumors on the basis of gene expression. Surgery. 2005;138(6):1050-1056. discussion 1056–1057.CrossRefPubMedGoogle Scholar
  13. 13.
    Barden CB, Shister KW, Zhu B, et al. Classification of follicular thyroid tumors by molecular signature: results of gene profiling. Clin Cancer Res. 2003;9(5):1792–1800.PubMedGoogle Scholar
  14. 14.
    Huang Y, Prasad M, Lemon WJ, et al. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci USA. 2001;98(26):15044–15049.CrossRefPubMedGoogle Scholar
  15. 15.
    Reddi HV, McIver B, Grebe SK, Eberhardt NL. The paired box-8/peroxisome proliferator-activated receptor-gamma oncogene in thyroid tumorigenesis. Endocrinology. 2007;148(3):932–935.CrossRefPubMedGoogle Scholar
  16. 16.
    O’Donovan N, Fischer A, Abdo EM, et al. Differential expression of IgG Fc binding protein (FcgammaBP) in human normal thyroid tissue, thyroid adenomas and thyroid carcinomas. J Endocrinol. 2002;174(3):517–524.CrossRefPubMedGoogle Scholar
  17. 17.
    Gimm O, Perren A, Weng LP, et al. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am J Pathol. 2000;156(5):1693–1700.PubMedGoogle Scholar
  18. 18.
    Ringel MD, Ladenson PW, Levine MA. Molecular diagnosis of residual and recurrent thyroid cancer by amplification of thyroglobulin messenger ribonucleic acid in peripheral blood. J Clin Endocrinol Metab. 1998;83(12):4435–4442.CrossRefPubMedGoogle Scholar
  19. 19.
    Tallini G, Ghossein RA, Emanuel J, et al. Detection of thyroglobulin, thyroid peroxidase, and RET/PTC1 mRNA transcripts in the peripheral blood of patients with thyroid disease. J Clin Oncol. 1998;16(3):1158–1166.PubMedGoogle Scholar
  20. 20.
    Biscolla RP, Cerutti JM, Maciel RM. Detection of recurrent thyroid cancer by sensitive nested reverse transcription-polymerase chain reaction of thyroglobulin and sodium/iodide symporter messenger ribonucleic acid transcripts in peripheral blood. J Clin Endocrinol Metab. 2000;85(10):3623–3627.CrossRefPubMedGoogle Scholar
  21. 21.
    Chinnappa P, Taguba L, Arciaga R, et al. Detection of thyrotropin-receptor messenger ribonucleic acid (mRNA) and thyroglobulin mRNA transcripts in peripheral blood of patients with thyroid disease: sensitive and specific markers for thyroid cancer. J Clin Endocrinol Metab. 2004;89(8):3705–3709.CrossRefPubMedGoogle Scholar
  22. 22.
    Savagner F, Rodien P, Reynier P, Rohmer V, Bigorgne JC, Malthiery Y. Analysis of Tg transcripts by real-time RT-PCR in the blood of thyroid cancer patients. J Clin Endocrinol Metab. 2002;87(2):635–639.CrossRefPubMedGoogle Scholar
  23. 23.
    Ringel MD, Balducci-Silano PL, Anderson JS, et al. Quantitative reverse transcription-polymerase chain reaction of circulating thyroglobulin messenger ribonucleic acid for monitoring patients with thyroid carcinoma. J Clin Endocrinol Metab. 1999;84(11):4037–4042.CrossRefPubMedGoogle Scholar
  24. 24.
    Bojunga J, Roddiger S, Stanisch M, et al. Molecular detection of thyroglobulin mRNA transcripts in peripheral blood of patients with thyroid disease by RT-PCR. Br J Cancer. 2000;82(10):1650–1655.CrossRefPubMedGoogle Scholar
  25. 25.
    Bugalho MJ, Domingues RS, Pinto AC, et al. Detection of thyroglobulin mRNA transcripts in peripheral blood of individuals with and without thyroid glands: evidence for thyroglobulin expression by blood cells. Eur J Endocrinol. 2001;145(4):409–413.CrossRefPubMedGoogle Scholar
  26. 26.
    Chia SY, Milas M, Reddy SK, et al. Thyroid-stimulating hormone receptor messenger ribonucleic acid measurement in blood as a marker for circulating thyroid cancer cells and its role in the preoperative diagnosis of thyroid cancer. J Clin Endocrinol Metab. 2007;92(2):468–475.CrossRefPubMedGoogle Scholar
  27. 27.
    Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang SH, Koeffler HP. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest. 1993;91(1):179–184.CrossRefPubMedGoogle Scholar
  28. 28.
    Battista S, Martelli ML, Fedele M, et al. A mutated p53 gene alters thyroid cell differentiation. Oncogene. 1995;11(10):2029–2037.PubMedGoogle Scholar
  29. 29.
    Fagin JA, Tang SH, Zeki K, Di Lauro R, Fusco A, Gonsky R. Reexpression of thyroid peroxidase in a derivative of an undifferentiated thyroid carcinoma cell line by introduction of wild-type p53. Cancer Res. 1996;56(4):765–771.PubMedGoogle Scholar
  30. 30.
    Nanni P, Forni G, Lollini PL. Cytokine gene therapy: hopes and pitfalls. Ann Oncol. 1999;10(3):261–266.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang R, Baunoch D, DeGroot LJ. Genetic immunotherapy for medullary thyroid carcinoma: destruction of tumors in mice by in vivo delivery of adenoviral vector transducing the murine interleukin-2 gene. Thyroid. 1998;8(12):1137–1146.CrossRefPubMedGoogle Scholar
  32. 32.
    Nishihara E, Nagayama Y, Mawatari F, et al. Retrovirus-mediated herpes simplex virus thymidine kinase gene transduction renders human thyroid carcinoma cell lines sensitive to ganciclovir and radiation in vitro and in vivo. Endocrinology. 1997;138(11):4577–4583.CrossRefPubMedGoogle Scholar
  33. 33.
    Cerutti J, Trapasso F, Battaglia C, et al. Block of c-myc expression by antisense oligonucleotides inhibits proliferation of human thyroid carcinoma cell lines. Clin Cancer Res. 1996;2(1):119–126.PubMedGoogle Scholar
  34. 34.
    Chomienne C, Fenaux P, Degos L. Retinoid differentiation therapy in promyelocytic leukemia. FASEB J. 1996;10(9):1025–1030.PubMedGoogle Scholar
  35. 35.
    Grunwald F, Menzel C, Bender H, et al. Redifferentiation therapy-induced radioiodine uptake in thyroid cancer. J Nucl Med. 1998;39(11):1903–1906.PubMedGoogle Scholar
  36. 36.
    de Capoa A, Grappelli C, Volpino P, et al. Nuclear methylation levels in normal and cancerous thyroid cells. Anticancer Res. 2004;24(3a):1495–1500.PubMedGoogle Scholar
  37. 37.
    Venkataraman GM, Yatin M, Marcinek R, Ain KB. Restoration of iodide uptake in dedifferentiated thyroid carcinoma: relationship to human Na+/I-symporter gene methylation status. J Clin Endocrinol Metab. 1999;84(7):2449–2457.CrossRefPubMedGoogle Scholar
  38. 38.
    Massart C, Denais A, Gibassier J. Effect of all-trans retinoic acid and sodium butyrate in vitro and in vivo on thyroid carcinoma xenografts. Anticancer Drugs. 2006;17(5):559–563.CrossRefPubMedGoogle Scholar
  39. 39.
    Furuya F, Shimura H, Suzuki H, et al. Histone deacetylase inhibitors restore radioiodide uptake and retention in poorly differentiated and anaplastic thyroid cancer cells by expression of the sodium/iodide symporter thyroperoxidase and thyroglobulin. Endocrinology. 2004;145(6):2865–2875.CrossRefPubMedGoogle Scholar
  40. 40.
    Kelly WK, O’Connor OA, Krug LM, et al. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol. 2005;23(17):3923–3931.CrossRefPubMedGoogle Scholar
  41. 41.
    Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–1186.CrossRefPubMedGoogle Scholar
  42. 42.
    Gupta-Abramson V, Troxel AB, Nellore A, et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol. 2008;26(29):4714–4719.CrossRefPubMedGoogle Scholar
  43. 43.
    Kundra P, Burman KD. Thyroid cancer molecular signaling pathways and use of targeted therapy. Endocrinol Metab Clin North Am. 2007;36(3):839-853, viii.Google Scholar
  44. 44.
    Mrozek E, Kloos RT, Ringel MD, et al. Phase II study of celecoxib in metastatic differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2006;91(6):2201–2204.CrossRefPubMedGoogle Scholar
  45. 45.
    de Groot JW, Zonnenberg BA, van Ufford-Mannesse PQ, et al. A phase II trial of imatinib therapy for metastatic medullary thyroid carcinoma. J Clin Endocrinol Metab. 2007;92(9):3466–3469.CrossRefPubMedGoogle Scholar
  46. 46.
    Dziba JM, Ain KB. Imatinib mesylate (gleevec; STI571) monotherapy is ineffective in suppressing human anaplastic thyroid carcinoma cell growth in vitro. J Clin Endocrinol Metab. 2004;89(5):2127–2135.CrossRefPubMedGoogle Scholar
  47. 47.
    Sharkey RM, Hajjar G, Yeldell D, et al. A phase I trial combining high-dose 90Y-labeled humanized anti-CEA monoclonal antibody with doxorubicin and peripheral blood stem cell rescue in advanced medullary thyroid cancer. J Nucl Med. 2005;46(4):620–633.PubMedGoogle Scholar
  48. 48.
    Kane RC, Bross PF, Farrell AT, Pazdur R. Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist. 2003;8(6):508–513.CrossRefPubMedGoogle Scholar
  49. 49.
    Montagut C, Rovira A, Albanell J. The proteasome: a novel target for anticancer therapy. Clin Transl Oncol. 2006;8(5):313–317.CrossRefPubMedGoogle Scholar
  50. 50.
    Conticello C, Adamo L, Giuffrida R, et al. Proteasome inhibitors synergize with tumor necrosis factor-related apoptosis-induced ligand to induce anaplastic thyroid carcinoma cell death. J Clin Endocrinol Metab. 2007;92(5):1938–1942.CrossRefPubMedGoogle Scholar
  51. 51.
    Namba H, Saenko V, Yamashita S. Nuclear factor-kB in thyroid carcinogenesis and progression: a novel therapeutic target for advanced thyroid cancer. Arq Bras Endocrinol Metabol. 2007;51(5):843–851.PubMedGoogle Scholar
  52. 52.
    Marsee DK, Venkateswaran A, Tao H, et al. Inhibition of heat shock protein 90, a novel RET/PTC1-associated protein, increases radioiodide accumulation in thyroid cells. J Biol Chem. 2004;279(42):43990–43997.CrossRefPubMedGoogle Scholar
  53. 53.
    Dziba JM, Marcinek R, Venkataraman G, Robinson JA, Ain KB. Combretastatin A4 phosphate has primary antineoplastic activity against human anaplastic thyroid carcinoma cell lines and xenograft tumors. Thyroid. 2002;12(12):1063–1070.CrossRefPubMedGoogle Scholar
  54. 54.
    Dowlati A, Robertson K, Cooney M, et al. A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res. 2002;62(12):3408–3416.PubMedGoogle Scholar
  55. 55.
    Ohta K, Endo T, Haraguchi K, Hershman JM, Onaya T. Ligands for peroxisome proliferator-activated receptor gamma inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells. J Clin Endocrinol Metab. 2001;86(5):2170–2177.CrossRefPubMedGoogle Scholar
  56. 56.
    Mazzanti C, Zeiger MA, Costouros NG, et al. Using gene expression profiling to differentiate benign versus malignant thyroid tumors. Cancer Res. 2004;64(8):2898–2903.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jamie C. Mitchell
    • 1
  • Mira Milas
    • 1
  1. 1.Department of Endocrine SurgeryThe Cleveland ClinicClevelandUSA

Personalised recommendations