MicroRNAs in Endocrine Diseases

  • Simion Chiosea
Part of the Molecular Pathology Library book series (MPLB, volume 3)


MicroRNAs are noncoding single-stranded 18- to 24-nt long RNAs that regulate diverse cellular processes, including cell death and proliferation.1 Production and function of microRNA requires a set of proteins.2.


Thyroid Carcinoma Pituitary Adenoma Papillary Thyroid Carcinoma Follicular Carcinoma Multinodular Goiter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006;94(6):776–780.CrossRefPubMedGoogle Scholar
  2. 2.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297.CrossRefPubMedGoogle Scholar
  3. 3.
    Matera AG, Terns RM, Terns MP. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol. 2007;8:209–220.CrossRefPubMedGoogle Scholar
  4. 4.
    Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293:834–838.CrossRefPubMedGoogle Scholar
  5. 5.
    Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14:1902–1910.CrossRefPubMedGoogle Scholar
  6. 6.
    Altuvia Y, Landgraf P, Lithwick G, et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 2005;33:2697–2706.CrossRefPubMedGoogle Scholar
  7. 7.
    Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell. 2007;130:89–100.CrossRefPubMedGoogle Scholar
  8. 8.
    Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007;448:83–86.CrossRefPubMedGoogle Scholar
  9. 9.
    He H, Jazdzewski K, Li W, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA. 2005;102:19075–19080.CrossRefPubMedGoogle Scholar
  10. 10.
    Pallante P, Visone R, Ferracin M, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 2006;13:497–508.CrossRefPubMedGoogle Scholar
  11. 11.
    Tetzlaff MT, Liu A, Xu X, et al. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocr Pathol. 2007;18:163–173.CrossRefPubMedGoogle Scholar
  12. 12.
    Visone R, Pallante P, Vecchione A, et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene. 2007;26:7590–7595.CrossRefPubMedGoogle Scholar
  13. 13.
    Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C. A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab. 2006;91:3584–3591.CrossRefPubMedGoogle Scholar
  14. 14.
    Bottoni A, Zatelli MC, Ferracin M, et al. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol. 2007;210:370–377.CrossRefPubMedGoogle Scholar
  15. 15.
    Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti C. miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol. 2005;204:280–285.CrossRefPubMedGoogle Scholar
  16. 16.
    Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635–647.CrossRefPubMedGoogle Scholar
  17. 17.
    Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA. 2005;102: 18081–18086.CrossRefPubMedGoogle Scholar
  18. 18.
    Visone R, Russo L, Pallante P, et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer. 2007;14:791–798.CrossRefPubMedGoogle Scholar
  19. 19.
    Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102: 13944–13949.CrossRefPubMedGoogle Scholar
  20. 20.
    Natali PG, Berlingieri MT, Nicotra MR, et al. Transformation of thyroid epithelium is associated with loss of c-kit receptor. Cancer Res. 1995;55:1787–1791.PubMedGoogle Scholar
  21. 21.
    Hunt J. Understanding the genotype of follicular thyroid tumors. Endocr Pathol. 2005;16:311–321.CrossRefPubMedGoogle Scholar
  22. 22.
    Cahill S, Smyth P, Finn SP, et al. Effect of ret/PTC 1 rearrangement on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol Cancer. 2006;5:70.CrossRefPubMedGoogle Scholar
  23. 23.
    Cahill S, Smyth P, Denning K, et al. Effect of BRAFV600E mutation on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol Cancer. 2007;6:21.CrossRefPubMedGoogle Scholar
  24. 24.
    Ko YG, Park H, Kim T, et al. A cofactor of tRNA synthetase, p43, is secreted to up-regulate proinflammatory genes. J Biol Chem. 2001;276:23028–23033.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Simion Chiosea
    • 1
  1. 1.Department of PathologyUniversity of Pittsburg Medical CenterPittsburghUSA

Personalised recommendations