Medullary Thyroid Carcinoma

  • Ronald A. DeLellis
Part of the Molecular Pathology Library book series (MPLB, volume 3)


Medullary thyroid carcinoma (MTC) is currently defined as a malignant thyroid tumor with evidence of C-cell differentiation.1,2 While earlier reports had alluded to the existence of this tumor type, Robert Horn in 1951 reported a series of 7 cases of a thyroid cancer characterized by sharply defined rounded or ovoid compact cell groups of moderate size in a background of hyalinized connective tissue.3 He noted that “while not pursuing the rapid course characteristic of the giant cell, spindle cell and small cell thyroid carcinoma, these tumors have by no means the favorable prognosis of malignant adenoma and papillary tumors”. The major histopathologic features of this tumor, including the presence of stromal amyloid deposits, were defined in 1959 by Hazard and coworkers who suggested the term, medullary thyroid carcinoma (MTC).4


Papillary Thyroid Carcinoma Medullary Thyroid Carcinoma Medullary Carcinoma Glial Cell Line Derive Neurotrophic Factor Nodular Thyroid Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rosai J, Carcangiu MI, DeLellis RA. Tumors of the Thyroid Gland Atlas of Tumor Pathology. Armed Forces Institute of Pathology: Washington, DC; 1992:207–258.Google Scholar
  2. 2.
    Matias-Guiu X, DeLellis RA, Moley JF, et al. Medullary thyroid carcinoma. In: DeLellis RA, Lloyd RV, Heitz PU, Eng C, eds. Pathology and Genetics of Tumours of Endocrine Organs. WHO Classification of Tumours. Lyon: IARC Press; 2004:86–91.Google Scholar
  3. 3.
    Horn RC. Carcinoma of the thyroid. Description of a distinctive morphological variant and report of seven cases. Cancer. 1951;4:697–707.CrossRefGoogle Scholar
  4. 4.
    Hazard JB, Hawke WA, Crile G. Medullary (solid) carcinoma of the thyroid: a clinicopathological entity. J Clin Endocrinol Metab. 1959;19:152–161.PubMedCrossRefGoogle Scholar
  5. 5.
    Williams ED. Histogenesis of medullary carcinoma of the thyroid. J Clin Pathol. 1966;19:114–118.PubMedCrossRefGoogle Scholar
  6. 6.
    Bussolati G, Pearse AGE. Immunofluorescent localization of calcitonin in the ‘C’-cells of the dog and pig thyroid. J Endocrinol. 1967;37:205–209.PubMedCrossRefGoogle Scholar
  7. 7.
    Tashjian AH, Melvin EW. Medullary carcinoma of the thyroid gland. Studies of thyrocalcitonin in plasma and tumor extracts. N Engl J Med. 1968;279:279–283.PubMedCrossRefGoogle Scholar
  8. 8.
    Melvin KE, Miller HH, Tashjian AH Jr. Early diagnosis of medullary carcinoma of the thyroid means of calcitonin assay. N Engl J Med. 1971;285:1115–1120.PubMedCrossRefGoogle Scholar
  9. 9.
    DeLellis RA, Wolfe HJ. The pathology of human calcitonin (C)-cell. Annu Rev Pathol. 1981;16:25–52.Google Scholar
  10. 10.
    Pacini F, Fontanelli M, Fugazzola L, et al. Routine measurement of serum calcitonin in nodular thyroid disease allows the preoperative diagnosis of unsuspected sporadic medullary thyroid carcinoma. J Clin Endocrinol Metab. 1994;78:826–829.PubMedCrossRefGoogle Scholar
  11. 11.
    Cheung K, Roman SA, Wang TS, et al. Calcitonin measurement in the evaluation of thyroid nodules in the United States: a cost effectiveness and discussion analysis. J Clin Endocrinol Metab. 2008;93:2173–2218.PubMedCrossRefGoogle Scholar
  12. 12.
    Thurston V, Williams ED. Experimental induction of C-cell tumours in thyroid by increased dietary content of vitamin D3. Acta Endocrinol. 1982;100:41–45.PubMedGoogle Scholar
  13. 13.
    Triggs SM, Williams ED. Experimental carcinogenesis in the rat thyroid follicular and C-cells. A comparison of the effect of variation in dietary calcium and of radiation. Acta Endocrinol. 1977;858:4–92.Google Scholar
  14. 14.
    DeLellis RA. Multiple endocrine neoplasia syndromes revisited. Clinical, morphological and molecular features. Lab Invest. 1995;72:494–505.PubMedGoogle Scholar
  15. 15.
    Lips CMJ, Vasen HFA, Lamers CBHW. Multiple endocrine neoplasia syndromes. CRC Crit Rev Oncol Hematol. 1988;2:117–184.CrossRefGoogle Scholar
  16. 16.
    Gimm O, Morrison CD, Suster S, et al. Multiple endocrine neoplasia type 2. In: DeLellis RA, Lloyd RV, Heitz PU, Eng C, eds. Pathology and Genetics of Tumours of Endocrine Organs. WHO Classification of Tumours. Lyon: IARC Press; 2004:211–217.Google Scholar
  17. 17.
    Kebebew E, Ituarte PHG, Siperstein AE, et al. Medullary thyroid carcinoma. Clinical characteristics; treatment, prognostic factors and a comparison of staging systems. Cancer. 2000;88:1139–1148.PubMedCrossRefGoogle Scholar
  18. 18.
    Barbosa SL-S, Rodien P, Leboulleux S, et al. Ectopic adrenocorticotropic hormone-syndrome in medullary carcinoma of the thyroid: a retrospective analysis and review of the literature. Thyroid. 2005;15:618–623.PubMedCrossRefGoogle Scholar
  19. 19.
    Gagel RF, Tashjian AH Jr, Cummings T, et al. The clinical outcome of prospective screening for multiple endocrine neoplasia type 2a: an 18 year experience. N Engl J Med. 1988;318:478–484.PubMedCrossRefGoogle Scholar
  20. 20.
    Verga U, Fugazzola L, Cambiaghi S, et al. Frequent association between MEN2A and cutaneous lichen amyloidosis. Clin Endocrinol (Oxf). 2005;59:156–161.CrossRefGoogle Scholar
  21. 21.
    Verdy M, Weber AM, Roy CC, et al. Hirschsprung’s disease in a family with multiple endocrine neoplasia type 2. J Pediatr Gastroenterol Nutr. 1982;1:603–607.PubMedCrossRefGoogle Scholar
  22. 22.
    DeLellis RA, Wolfe HJ, Gagel RF, et al. Adrenal medullary hyperplasia a morphometric analysis in patients with familial medullary thyroid carcinoma. Am J Pathol. 1976;183:177–196.Google Scholar
  23. 23.
    Carney JA, Sizemore GW, Tyce GM. Bilateral adrenal medullary hyperplasia in multiple endocrine neoplasia type 2: the precursor of bilateral pheochromocytoma. Mayo Clin Proc. 1975;50:3–10.PubMedGoogle Scholar
  24. 24.
    Carney JA, Sizemore GW, Hayles AB. Multiple endocrine neoplasia type 2B. Pathobiol Annu. 1978;8:105–153.PubMedGoogle Scholar
  25. 25.
    Leboulleux S, Travagli JP, Caillou B, et al. Medullary thyroid carcinoma as part of a multiple endocrine neoplasia type 2B syndrome. Influence of the stage on the clinical course. Cancer. 2002;94:44–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Farndon JR, Leight GS, Dilley WG, et al. Familial medullary thyroid carcinoma without associated endocrinopathies: a distinct clinical entity. Br J Surg. 1986;73(4):278–281.PubMedCrossRefGoogle Scholar
  27. 27.
    Elisei R, Romei C, Cosci B, et al. RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center. J Clin Endocrinol Metab. 2007;92:4725–4729.PubMedCrossRefGoogle Scholar
  28. 28.
    Mizukami Y, Kurumaya H, Nonomura A, et al. Sporadic medullary microcarcinoma of the thyroid. Histopathology. 1992;21:373–377.CrossRefGoogle Scholar
  29. 29.
    Zaatari GS, Saigo PC, Huvos AG. Mucin production in medullary carcinoma of the thyroid. Arch Pathol Lab Med. 1983;107:70–74.PubMedGoogle Scholar
  30. 30.
    Sletton K, Westermark P, Natwig JB. Characterization of amyloid fibril proteins from medullary carcinoma of the thyroid. J Exp Med. 1976;143:993–998.CrossRefGoogle Scholar
  31. 31.
    Khurana R, Agarwal A, Bajpai VK, et al. Unraveling the amyloid associated with human medullary carcinoma. Endocrinology. 2004;154:5465–5470.CrossRefGoogle Scholar
  32. 32.
    Kini S. Thyroid Cytopathology: An Atlas and Text. Philadelphia: Lippencott Williams and Wilkins; 2008.Google Scholar
  33. 33.
    Kaufmann O, Dietel M. Expression of thyroid transcription factor-1 in pulmonary and extrapulmonary small cell carcinomas and other neuroendocrine carcinomas of various primary sites. Histopathology. 2000;36:415–420.PubMedCrossRefGoogle Scholar
  34. 34.
    Bejarano PA, Nikiforov YE, Swenson ES, Biddinger PW. Thyroid transcription factor-1, thyroglobulin, cytokeratin 7 and cytokeratin 20 in thyroid neoplasms. Appl Immunohistochem Mol Morphol. 2000;8:189–194.PubMedCrossRefGoogle Scholar
  35. 35.
    Kimura N, Nakazato Y, Nagura H, Sasano N. Expression of intermediate filaments in neuroendocrine tumors. Arch Pathol Lab Med. 1990;114:506–510.PubMedGoogle Scholar
  36. 36.
    DeLellis RA. The pathology of medullary thyroid carcinoma and its precursors. In: LiVolsi VA, DeLellis RA, eds. Pathology of the Parathyroid and Thyroid Glands. Baltimore: Williams and Wilkins; 1993:77–102.Google Scholar
  37. 37.
    Holm R, Sobrinho-Simoes M, Fould NJM, VE JJV. Medullary carcinoma of the thyroid gland: and immunocytochemical study. Ultrastruct Pathol. 1985;8:25–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Portela-Gomes GM, Luckinius GM, Grimeluis L. synaptic vesicle protein 2, a new neuroendocrine cell marker. Am J Pathol. 2000;157:1299–1309.PubMedGoogle Scholar
  39. 39.
    Schmid KW, Fisher-Colbrie R, Hagn C, Jasani B, Williams E, Winkler H. Chromogranin A and B and secretogranin II in medullary carcinomas of the thyroid. Am J Surg Pathol. 1987;11:551–556.PubMedCrossRefGoogle Scholar
  40. 40.
    Katsetos CD, Jami MM, Krishna L, Jackson R, Patchefsky AS, Cooper HS. Novel immunohistochemical localization of 28, 000 molecular weight (Mr) calcium binding protein (Calbindin-D28k) in enterochromaffin cells of the human appendix and neuroendocrine tumors (carcinoids and small cell carcinomas) of the midgut and foregut. Arch Pathol Lab Med. 1994;11:633–639.Google Scholar
  41. 41.
    Komminoth P, Roth J, Saremaslani P, Matias-Guiu T, Wolfe HF, Heitz PU. Polysialic acid of the neural cell adhesion molecule in the human thyroid: a marker for medullary thyroid carcinoma and primary C-cell hyperplasia. An immumohistochemical study of 70 thyroid lesions. Am J Surg Pathol. 1994;18:399–411.PubMedCrossRefGoogle Scholar
  42. 42.
    Saad MF, Ordonez NG, Guido JJ, Samaan N. The prognostic value of calcitonin immunostaining in medullary carcinoma of the thyroid. J Clin Endocrinol Metab. 1984;59:850–856.PubMedCrossRefGoogle Scholar
  43. 43.
    Sikri KL, Varndell IM, Hamid QA, et al. Medullary carcinoma of the thyroid. An immunocytochemical and histochemical study of 25 cases using 8 separate markers. Cancer. 1985;56:2481–2491.PubMedCrossRefGoogle Scholar
  44. 44.
    Steenbergh PH, Heppner JW, Zandberg J, et al. Calcitonin gene related peptide coding sequence is conserved in the human genome and is expressed in medullary thyroid carcinoma. J Clin Endocrinol Metab. 1984;5:358–360.CrossRefGoogle Scholar
  45. 45.
    Zajac JD, Penschow J, Mason T, et al. Identification of calcitonin and calcitonin gene-related peptide messenger RNA in medullary thyroid carcinoma by hybridization histochemistry. J Clin Endocrinol Metab. 1986;62:1037–1043.PubMedCrossRefGoogle Scholar
  46. 46.
    Scopsi L, Ferrari C, Pilotti S, et al. Immunocytochemical localization and identification of prosomatostatin gene products in medullary carcinoma of human thyroid gland. Hum Pathol. 1990;21:820–830.PubMedCrossRefGoogle Scholar
  47. 47.
    Sunday ME, Wolfe HJ, Roos BA, Chin WW, Spindel ER. Gastrin releasing peptide gene expression in developing, hyperplastic and neoplastic thyroid C-cell. Endocrinology. 1988;122:1551–1558.PubMedCrossRefGoogle Scholar
  48. 48.
    Williams ED, Morales AM, Horn RC. Thyroid carcinoma and Cushing’s syndrome. A report of two cases with review of the common features of the non-endocrine tumours associated with Cushing’s syndrome. J Clin Pathol. 1968;21:129–135.PubMedCrossRefGoogle Scholar
  49. 49.
    Roth KA, Bensch KG, Hoffman AR. Characterization of opioid peptides in human thyroid medullary carcinoma. Cancer. 1987;59:850–856.CrossRefGoogle Scholar
  50. 50.
    Birkenhäger JC, Upton GV, Seldenrath HJ, Krieger DT, Tashjian AH Jr. Medullary thyroid carcinoma: ectoic production of peptides with ACTH-like, corticotropin-releasing factor-like and prolactin production - stimulating activities. Acta Endocrinol (Copenh). 1976;83:280–292.Google Scholar
  51. 51.
    Uribe M, Fenoglio-Preiser CN, Grimes M, Feind C. Medullary carcinoma of the thyroid gland. Clinical, pathological, and immunohistochemical features with review of the literature. Am J Surg Pathol. 1985;9:577–594.PubMedCrossRefGoogle Scholar
  52. 52.
    Faggiano A, Talbot M, Lacroix L, et al. Differential expression of galectin-3 in medullary thyroid carcinoma and C-cell hyperplasia. Clin Endocrinol. 2002;57:813–819.CrossRefGoogle Scholar
  53. 53.
    DeLellis RA, Rule AH, Spiler I, Nathanson L, Tashjian AH Jr, Wolfe HJ. Calcitonin and carcinoembryonic antigen as tumor markers in medullary thyroid carcinoma. Am J Clin Pathol. 1978;70:587–594.PubMedGoogle Scholar
  54. 54.
    Schroder S, Klöppel G. Carcinoembryonic antigen and non-specific cross-reacting antigen in thyroid cancer. An immunocytochemical study using polyclonal and monoclonal antibodies. Am J Surg Pathol. 1987;11:100–108.PubMedCrossRefGoogle Scholar
  55. 55.
    Mendelsohn G, Wells SA, Baylin SB. Relationship of tissue carcinoembryonic antigen and calcitonin to tumor virulence in medul­lary thyroid carcinoma. An immunohistochemical study in early, localized and virulent disseminated stages of disease. Cancer. 1984;54:657–662.PubMedCrossRefGoogle Scholar
  56. 56.
    Kakudo K, Miyauchi A, Yakai SI, et al. C-cell carcinoma of the thyroid, papillary type. Acta Pathol Jpn. 1979;29:653–659.PubMedGoogle Scholar
  57. 57.
    Harach HR, Williams ED. Glandular (tubular and follicular) variants of medullary carcinoma of the thyroid. Histopathology. 1983;7:83–97.PubMedCrossRefGoogle Scholar
  58. 58.
    Harach HR, Bergholm U. Small cell variant of medullary carcinoma of the thyroid with neuroblastoma-like features. Histopathology. 1992;21:378–380.PubMedCrossRefGoogle Scholar
  59. 59.
    Eusebi V, Damiani S, Riva C, Lloyd RV, Capella C. Calcitonin free oat cell carcinoma of the thyroid gland. Virchows Arch A Pathol Anat Histopathol. 1990;417:267–271.PubMedCrossRefGoogle Scholar
  60. 60.
    Mendelsohn G, Baylin SB, Bigner SH, et al. Anaplastic variants of medullary thyroid carcinoma: a light microscopic and immunohistochemical study. Am J Surg Pathol. 1980;4:333–341.PubMedCrossRefGoogle Scholar
  61. 61.
    Landon G, Ordóñex NG. Clear cell variant of medullary carcinoma of the thyroid. Hum Pathol. 1985;16:844–847.PubMedCrossRefGoogle Scholar
  62. 62.
    Marcus JN, Dise CA, LiVolsi VA. Melanin production in a medullary thyroid carcinoma. Cancer. 1982;49:2518–2526.PubMedCrossRefGoogle Scholar
  63. 63.
    Beerman H, Rigaud C, Bogomeletz WV, Hollander H, Veldhuizen H. Melanin production in black medullary thyroid cancer (MTC). Histopathology. 1990;16:227–234.PubMedCrossRefGoogle Scholar
  64. 64.
    Dominguez-Malagon H, Delgardo-Chavez R, Torres-Najera M, Gould E, Albores-Saavedra J. Oxyphil and squamous variants of medullary thyroid carcinoma. Cancer. 1989;63:1183–1188.PubMedCrossRefGoogle Scholar
  65. 65.
    Golough R, Us-Krasovec M, Auersperg M, Jancar J, Bondi A, Eusebi V. Amphicrine-composite calcitonin and mucin producing carcinoma of the thyroid. Ultrastruct Pathol. 1985;8:197–206.CrossRefGoogle Scholar
  66. 66.
    Huss LJ, Mendlesohn G. Medullary carcinoma of the thyroid gland: an encapsulated variant resembling the hyalinizing trabecular (paraganglioma-like) adenoma of thyroid. Mod Pathol. 1990;3:581–585.PubMedGoogle Scholar
  67. 67.
    Laforga JB, Aranda FI. Pseudoangiosarcomatous features in medullary thyroid carcinoma spindle cell variant. Report of a case studied by FNA and immunohistochemistry. Diagn Cytopathol. 2007;34:424–428.CrossRefGoogle Scholar
  68. 68.
    Beskid M, Lorenc R, Rôsciszewska A. C-cell thyroid adenoma in man. J Pathol. 1971;103:3343–3346.CrossRefGoogle Scholar
  69. 69.
    Kodama T, Okamoto T, Fujjimoto Y, et al. C-cell adenoma in the thyroid: a rare but distinct clinical entity. Surgery. 1988;104:997–1003.PubMedGoogle Scholar
  70. 70.
    Mendelsohn G, Oertel JE. Encapsulated medullary thyroid carcinoma [Abstract]. Lab Invest. 1981;44:43A.Google Scholar
  71. 71.
    Matias-Guiu X, LaGuette J, Puras-Gil AM, Rosai J. Metastatic neuroendocrine tumors to the thyroid mimicking medullary carcinoma: a pathological and immunohistochemical study of six cases. Am J Surg Pathol. 1997;21:754–762.PubMedCrossRefGoogle Scholar
  72. 72.
    Shikama Y, Osawa T, Yagihashis N, et al. Neuroendocrine differentiation in hyalinizing trabecular tumors of the thyroid. Virchows Arch. 2003;443:792–796.PubMedCrossRefGoogle Scholar
  73. 73.
    Wolfe HJ, Melvin KE, Cervi-Skinner SJ, et al. C-cell hyperplasia preceding medullary thyroid carcinoma. N Engl J Med. 1973;289:437–441.PubMedCrossRefGoogle Scholar
  74. 74.
    Wells SA, Ontjes DA, Cooper CW, et al. The early diagnosis of medullary carcinoma of the thyroid gland in patients with multiple endocrine neoplasia type II. Ann Surg. 1975;182:362–370.PubMedCrossRefGoogle Scholar
  75. 75.
    DeLellis RA, Nunnemacher G, Wolfe HJ. C-cell hyperplasia: an ultrastructural analysis. Lab Invest. 1977;36:237–248.PubMedGoogle Scholar
  76. 76.
    McDermott MB, Swanson PE, Wick MR. Immunostains for collagen type IV discriminate between C-cell hyperplasia and microscopic medullary carcinoma in multiple endocrine neoplasia, type 2A. Hum Pathol. 1995;26:1308–1312.PubMedCrossRefGoogle Scholar
  77. 77.
    Albores-Saavedra J, Monforte H, Nadji M, Morales AR. C-cell hyperplasia in thyroid tissue adjacent to follicular cell tumors. Hum Pathol. 1988;19:795–799.PubMedCrossRefGoogle Scholar
  78. 78.
    Guyetant S, Rousselet MC, Durigon M, et al. Sex related C-cell hyperplasia in the normal human thyroid: a quantitative autopsy study. J Clin Endocrinol Metab. 1997;82:42–47.PubMedCrossRefGoogle Scholar
  79. 79.
    Perry A, Molberg K, Albores-Saavedra J. Physiologic versus neoplastic C-cell hyperplasia of the thyroid: separation of distinct histologic and biologic entities. Cancer. 1996;77:750–756.PubMedCrossRefGoogle Scholar
  80. 80.
    Carney JA, Sizemore GW, Hales AB. Multiple endocrine neoplasia, type 2B. Pathobiol Annu. 1978;8:105–153.PubMedGoogle Scholar
  81. 81.
    Diaz-Cano S, DeMiguel M, Blanes A, et al. Germline RET634 mutation positive MEN2A related C-cell hyperplasias have genetic features consistent with intraepithelial neoplasias. J Clin Endocrinol Metab. 2001;86:3948–3951.PubMedCrossRefGoogle Scholar
  82. 82.
    Kaserer K, Scheuba C, Neuhold N, et al. C-cell hyperplasia and medullary thyroid carcinoma in patients routinely screened for serum calcitonin. Am J Surg Pathol. 1998;22:722–728.PubMedCrossRefGoogle Scholar
  83. 83.
    Kaserer K, Scheuba C, Neuhold N, et al. sporadic versus familial medullary thyroid microcarcinoma: a histopathologic study of 50 consecutive patients. Am J Surg Pathol. 2001;25:1245–1251.PubMedCrossRefGoogle Scholar
  84. 84.
    Mears L, Diaz-Cano S. Difference between familial and sporadic medullary thyroid carcinomas (Letter). Am J Surg Pathol. 2003;27:266–267.PubMedCrossRefGoogle Scholar
  85. 85.
    Mathew CG, Chin KS, Easton DF, et al. A linked genetic marker for multiple endocrine neoplasia type 2A on chromosome 10. Nature. 1987;328:527–528.PubMedCrossRefGoogle Scholar
  86. 86.
    Simpson NE, Kidd KK, Goodfellow PJ, et al. Assignment of multiple endocrine neoplasia type 2A to chromosome 10 by linkage. Nature. 1987;328:528–530.PubMedCrossRefGoogle Scholar
  87. 87.
    Ponder BA, Coffe R, Gagel RF, et al. Risk estimation and screening of families of patients with medullary thyroid carcinoma. Lancet. 1988;1:397–401.PubMedCrossRefGoogle Scholar
  88. 88.
    Sobol H, Narod SA, Nakamura Y, et al. Screening for multiple endocrine neoplasia type 2A with DNA polymorphism analysis. N Engl J Med. 1989;321:996–1001.PubMedCrossRefGoogle Scholar
  89. 89.
    Gardner E, Papi L, Easton DF, et al. Genetic linkage studies map the multiple endocrine neoplasia type 2 loci to a small interval of chromosome 10q 11.2. Hum Mol Genet. 1993;2:241–246.PubMedCrossRefGoogle Scholar
  90. 90.
    Lairmore TC, Dou S, Howe JR, et al. A1.5 megabase yeast artificial chromosome contig from human chromosome 10q 11.2 connecting 3 genetic loci (RET, D10S94, and D10S102) closely linked to the MEN2A locus. Proc Natl Acad Sci USA. 1993;90:492–496.PubMedCrossRefGoogle Scholar
  91. 91.
    Mole SE, Mulligan LM, Healey CS, et al. Localization of the gene for localization of the gene for multiple endocrine neoplasia type 2A to a 480 kb region in chromosome band 10q 11.2. Hum Mol Genet. 1993;2:247–252.PubMedCrossRefGoogle Scholar
  92. 92.
    Mulligan LM, Kwok JBJ, Healey CS, et al. Germline mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature. 1993;363:458–460.PubMedCrossRefGoogle Scholar
  93. 93.
    Donis-Keller H, Dou S, Chi D, et al. Mutations in the RET proto-oncogene are associated with MEN2A and FMTC. Hum Mol Genet. 1993;2:851–856.PubMedCrossRefGoogle Scholar
  94. 94.
    Mulligan LM, Eng C, Healey CS, et al. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN2A and FMTC. Nat Genet. 1994;6:70–74.PubMedCrossRefGoogle Scholar
  95. 95.
    Hofstra RM, Landsvater RM, Ceccherini I, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature. 1994;367:375–376.PubMedCrossRefGoogle Scholar
  96. 96.
    Eng C, Smith DP, Mulligan LM, et al. Point mutations within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumors. Hum Mol Genet. 1994;3:237–241.PubMedCrossRefGoogle Scholar
  97. 97.
    Carlson KM, Dou S, Chi D, et al. single missense mutation in the tyrosine kinase catalytic domain of the RET proto-oncogene is associated with multiple endocrine neoplasia type 2B. Proc Natl Acad Sci USA. 1994;91:1579–1583.PubMedCrossRefGoogle Scholar
  98. 98.
    Eng C, Clayton D, Schuffenecker I, et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA. 1996;276:1575–1579.PubMedCrossRefGoogle Scholar
  99. 99.
    Eng C. RET proto-oncogene in the development of human cancer. J Clin Oncol. 1999;17:380–393.PubMedGoogle Scholar
  100. 100.
    Hoff AO, Cote GJ, Gagel RF. Multiple endocrine neoplasias. Annu Rev Physiol. 2000;62:377–411.PubMedCrossRefGoogle Scholar
  101. 101.
    Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gener, ret by DNA rearrangement. Cell. 1985;42:581–588.PubMedCrossRefGoogle Scholar
  102. 102.
    Takahashi M, Buma Y, Iwamoto T. Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene. 1988;3:571–578.PubMedGoogle Scholar
  103. 103.
    Grieco M, Santoro M, Berlingiere MT, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human papillary carcinomas. Cell. 1990;60:557–563.PubMedCrossRefGoogle Scholar
  104. 104.
    Santoro M, Dathan NA, Berlingieri MT, et al. Molecular characterization of RET/PTC3, a novel rearranged version of the RET proto-oncogene n a human papillary thyroid carcinoma. Oncogene. 1990;9:509–516.Google Scholar
  105. 105.
    Klugbauer S, Demidchik EP, Lengfelder E, Rabes HM. Detection of a novel type of RET rearrangement (PTC5) in thyroid carcinomas after Chernobyl and analysis of the involved RET-fused gene RFG5. Cancer Res. 1998;58:198–203.PubMedGoogle Scholar
  106. 106.
    LiVolsi VA, Albores-Saavedra J, Asa SL, et al. Papillary carcinoma. In: DeLellis RA, Lloyd RV, Heitz PU, Eng C, eds. WHO Classification of Tumours. Lyon: IARC Press; 2004:57–66.Google Scholar
  107. 107.
    Lam AKY, Montore KT, Nolan KA, LiVolsi VA. RET oncogene acti­vation in papillary thyroid carcinoma: Prevalence and implication of the histological parameters. Hum Pathol. 1998;19:565–568.CrossRefGoogle Scholar
  108. 108.
    Jhiang SM, Sagartz JE, Tong Q, et al. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology. 1996;137:375–378.PubMedCrossRefGoogle Scholar
  109. 109.
    Fischer AH, Bond JA, Taysavang P, Battles OE, Wynford-Thomas D. Papillary thyroid carcinoma oncogene (RET/PTC) alters the nuclear envelope and chromatin structure. Am J Pathol. 1998;153:1443–1450.PubMedGoogle Scholar
  110. 110.
    Nagao M, Ishizaka Y, Nakagawora A, et al. expression of ret proto-oncogene in human in neuroblastomas. Jpn J Cancer Res. 1990;81:309–312.PubMedGoogle Scholar
  111. 111.
    Santoro M, Rosati R, Grieco M, et al. The ret- proto-oncogene is consistently expressed in human pheochromocytomas and thyroid medullary carcinomas. Oncogene. 1990;5:1595–1598.PubMedGoogle Scholar
  112. 112.
    Pasini B, Hofstra RM, Yin L, et al. The physical map of the RET proto-oncogene. Oncogene. 1995;11:1737–1743.PubMedGoogle Scholar
  113. 113.
    Pachnis V, Mankoo B, Costantiri F. Expression of the C-ret proto-oncogene during mouse embryogenesis. Development. 1993;119:1005–1017.PubMedGoogle Scholar
  114. 114.
    Schuchardt A, D’Agati V, Larsson-Bloomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor ret. Nature. 1994;367:380–383.PubMedCrossRefGoogle Scholar
  115. 115.
    Durbee P, Marcos-Guiterrez CV, Kilkenny C, et al. Glial cell line derived neurotrophic factor signaling through the RET receptor tyrosine kinase. Nature. 1996;381:789–793.CrossRefGoogle Scholar
  116. 116.
    Jing S, Wen D, Yu Y, et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-δ, a novel receptor for GDNF. Cell. 1996;85:1113–11124.PubMedCrossRefGoogle Scholar
  117. 117.
    Treanor JJ, Goodman L, deSauvage F, et al. Characterization of a multicomponent receptor. Nature. 1996;381:80–83.CrossRefGoogle Scholar
  118. 118.
    Sanicola M, Hession C, Worlely D, et al. GDNF-dependent RET activation can be mediated by two different cell surface accessory proteins. Proc Natl Acad Sci USA. 1997;94:6238–6243.PubMedCrossRefGoogle Scholar
  119. 119.
    Kotzbauer PT, Lampe PA, Heuckeroth RO, et al. Neurtusin, a relative of glial cell line derived neurotropic factor. Nature. 1996;384:467–470.PubMedCrossRefGoogle Scholar
  120. 120.
    Jing S, Yu Y, Fang M, et al. GFR-alpha-2 and GFR-alpha 3 are two new receptors for ligands of the GDNF family. J Biol Chem. 1997;272:33111–33117.PubMedCrossRefGoogle Scholar
  121. 121.
    Baloh RH, Tansey MG, Lampe PA, et al. Artemin, a novel member of GDNF ligand family, supports peripheral and central neurons and signals through the GFR alpha 3-RET receptor complex. Neuron. 1998;21:1291–1302.PubMedCrossRefGoogle Scholar
  122. 122.
    Lai AZ, Gujral TS, Mulligan LM. RET signalling in endocrine tumors: delving deeper into molecular mechanisms. Endocr Pathol. 2007;18:57–67.PubMedCrossRefGoogle Scholar
  123. 123.
    Santoro M, Carlomagno F, Romano A, et al. Activation of RET as a dominant transforming by germline mutations of MEN2A and MEN2B. Science. 1995;267:381–383.PubMedCrossRefGoogle Scholar
  124. 124.
    Iwashita T, Asai N, Murakami H, et al. Identification of tyrosine residues that are essential for transforming activity of the ret proto-oncogene with MEN2A or MEN2B mutations. Oncogene. 1976;12:481–487.Google Scholar
  125. 125.
    Gimm O, Marsh DJ, Andrew SD, et al. Germline dinucleotide mutation in codon 883 of the RET proto-oncogene in multiple endocrine neoplasia type 2B without codon 918 mutation. J Clin Endocrinol Metab. 1997;81:3902–3904.CrossRefGoogle Scholar
  126. 126.
    Smith DP, Houghton C, Ponder BA. Germline mutation of RET codon 883 in two cases of de novo MEN2B. Oncogene. 1997;15:1213–1217.PubMedCrossRefGoogle Scholar
  127. 127.
    Kawai K, Iwashita T, Murakami H, et al. Tissue specific carcinogenesis in neoplasia type 2A mutation. Cancer Res. 2000;60:5254–5260.PubMedGoogle Scholar
  128. 128.
    Marsh DJ, Zheng Z, Arnold A, et al. Mutation analysis of glial cell line derived neurotropic factor, a ligand for the RET/co-receptor complex in MEN2 and sporadic neuroendocrine tumors. J Clin Endocrinol Metab. 1997;81:3025–3028.CrossRefGoogle Scholar
  129. 129.
    Peacock ML, Borst MJ, Sweet JD, Decker RA. Detection of RET mutations in multiple endocrine neoplasia type 2A and familial medullary thyroid carcinoma by denaturing gel electrophoresis. Hum Mutat. 1996;7:100–104.PubMedCrossRefGoogle Scholar
  130. 130.
    Wohllk N, Cote GJ, Evans DB, et al. Application of genetic screening information to the management of medullary thyroid carcinoma and multiple endocrine neoplasia type 2. Endocrinol Metab Clinics North Am. 1996;25:1–25.CrossRefGoogle Scholar
  131. 131.
    Wells SA, Chi DD, Toshima K, et al. Predictive DNA testing and prophylactic thyroidectomy in patients at risk for multiple endocrine neoplasia type 2A. Ann Surg. 1994;220:237–250.PubMedCrossRefGoogle Scholar
  132. 132.
    Lips CJ, Landsvater RM, Hoppener JW, et al. Clinical screening as compared with DNA analysis in families with multiple endocrine neoplasia type 2A. N Engl J Med. 1994;331:828–835.PubMedCrossRefGoogle Scholar
  133. 133.
    Dralle H, Gimm O, Simon D, et al. Prophylactic thyroidectomy in 75 children and adolescents with hereditary mudullary thyroid carcinoma: German and Austrian experience. World J Surg. 1998;22(7):744–751.PubMedCrossRefGoogle Scholar
  134. 134.
    Offit K, Biesecker BB, Burt RW, et al. Statement of the American Society of Oncology: genetic testing for cancer susceptibility. J Clin Oncol. 1996;14:1730–1736.Google Scholar
  135. 135.
    Wohllk N, Cote GJ, Bugalho MM, et al. Relevance of RET proto-oncogene mutations in sporadic medullary thyroid carcinoma. J Clin Endocrinol Metab. 1996;81:3740–3745.PubMedCrossRefGoogle Scholar
  136. 136.
    Zedenius J, Wallin G, Hamberger B, et al. Somatic and MEN2A de novo mutations identified in the RET proto-oncogene by screening of sporadic MTCs. Hum Mol Genet. 1994;3:1259–1262.PubMedCrossRefGoogle Scholar
  137. 137.
    Eng C, Mulligan LM, Healey CS, et al. Heterogeneous mutation of the RET proto-oncogene in subpopulations of medullary thyroid carcinoma. Cancer Res. 1996;56:2167–2170.PubMedGoogle Scholar
  138. 138.
    Marsh DJ, Learoyd DL, Andrew SD, et al. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinoma. Clin Endocrinol. 1996;44:249–257.CrossRefGoogle Scholar
  139. 139.
    Saggiorato E, Rapa I, Garino F, et al. Absence of RET gene point mutation in sporadic C-cell hyperplasia. J Mol Diagn. 2007;9:214–219.PubMedCrossRefGoogle Scholar
  140. 140.
    Eng C, Crossey PA, Mulligan LM, et al. Mutations of the RET proto-oncogene and von Hippel Lindau disease tumour suppressor gene in sporadic and syndromic pheochromocytoma. J Med Genet. 1995;32:934–937.PubMedCrossRefGoogle Scholar
  141. 141.
    Lindor LM, Honchel R, Khosla S, et al. Mutations in the RET proto-oncogene in sporadic pheochromocytomas. J Clin Endocrinol Metab. 1995;80:627–629.PubMedCrossRefGoogle Scholar
  142. 142.
    Beldjord B, Desclaux-Arranond F, Raffin-Samson M, et al. The RET proto-oncogene in sporadic pheochromocytomas. Frequent MEN2-like mutations and new molecular defects. J Clin Endocrinol Metab. 1995;80:2063–2068.PubMedCrossRefGoogle Scholar
  143. 143.
    Padberg BC, Schroder S, Jochum W, et al. Absence of RET proto-oncogene point mutations in sporadic hyperplastic and neoplastic lesions of the parathyroid gland. Am J Pathol. 1995;147:1600–1607.PubMedGoogle Scholar
  144. 144.
    Komminoth P, Roth J, Mulletta-Feurer S, et al. RET proto-oncogene point mutations in sporadic neuroendocrine tumors. J Clin Endocrinol Metab. 1996;81:2041–2046.PubMedCrossRefGoogle Scholar
  145. 145.
    Eng C, Mulligan LM. Mutations of the RET proto-oncogene in the multiple endocrine neoplasia type 2 syndrome, related sporadic tumours and Hirschsprung disease. Hum Mut. 1997;9:97–109.PubMedCrossRefGoogle Scholar
  146. 146.
    Fialkowski EA, Moley JF. Current approaches to medullary thyroid carcinoma, sporadic and familial. J Surg Oncol. 2006;94:737–747.PubMedCrossRefGoogle Scholar
  147. 147.
    Moley JF, Fialkowski EA. Evidence based approach to the managementof sporadic medullary thyroid carcinoma. World J Surg. 2007;31:946–956.PubMedCrossRefGoogle Scholar
  148. 148.
    Ball DW. Medullary thyroid carcinoma: therapeutic targets and molecular markers. Curr Opin Oncol. 2007;19:18–23.PubMedCrossRefGoogle Scholar
  149. 149.
    Modigliani E, Cohen R, Campos JM, et al. Prognostic factors for survival and for biochemical cure in medullary thyroid carcinoma: results in 819 patients. The GETC Study Group. Groupe d’etude des tumeurs a calcitonine. Clin Endocrinol (Oxf). 1998;48:265–273.CrossRefGoogle Scholar
  150. 150.
    Vezzosi D, Bennet A, Caron P. Recent advances in treatment of medullary thyroid carcinoma. Ann Endocrinol (Paris). 2007;68:147–153.Google Scholar
  151. 151.
    Schröder S, Böcker W, Baisch H, et al. Prognostic factors in medullary thyroid carcinoma. Survival in relation to age, sex, stage, histology, immunohistochemistry and DNA content. Cancer. 1998;61:806–816.CrossRefGoogle Scholar
  152. 152.
    Koporek O, Scheuba C, Cherenko M, et al. Desmoplasia in medullary thyroid carcinoma: a reliable indicator of metastatic potential. Histopathology. 2008;52:623–630.CrossRefGoogle Scholar
  153. 153.
    Barbet J, Campion L, Kraeber-Bodere F, Chatal JF. Prognostic impact of serum calcitonin and carcinoembryonic antigen doubling times in patients with medullary thyroid carcinoma. J Clin Endocrinol Metab. 2005;90:6077–6084.PubMedCrossRefGoogle Scholar
  154. 154.
    Elisei R, Cosci B, Romei C, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid carcinoma: a 10-year follow-up study. J Clin Endocrinol Metab. 2008;93:682–687.PubMedCrossRefGoogle Scholar
  155. 155.
    Hales M, Rosenau W, Okerlund MD, Galante M. Carcinoma of the thyroid with a mixed medullary and follicular pattern: morphological, immunohistochemical and clinical laboratory studies. Cancer. 1982;50:1352–1359.PubMedCrossRefGoogle Scholar
  156. 156.
    Pfaltz M, Hedinger CE, Muhlethales JP. Mixed medullary and follicular carcinoma of the thyroid. Virchows Arch [Pathol Anat]. 1983;400:53–59.CrossRefGoogle Scholar
  157. 157.
    Ljungberg O, Ericsson U-B, Bondeson L, Thorell J. A compound follicular-parafollicular cell carcinoma of the thyroid: a new tumor entity? Cancer. 1984;52:1053–1061.CrossRefGoogle Scholar
  158. 158.
    Ljungberg OB, Bondeson L, Bondeson AG. Differentiated thyroid carcinoma, intermediate type: a new tumor entity with features of follicular and parafollicular cell carcinoma. Hum Pathol. 1984;15:218–228.PubMedCrossRefGoogle Scholar
  159. 159.
    Holm R, Sobrinho-Simoes M, Nesland JM, Sambade C, Johannessen JV. Medullary thyroid carcinoma with thyroglo­bulin immunoreactivity. A special entity? Lab Invest. 1987;57:258–268.PubMedGoogle Scholar
  160. 160.
    LiVolsi VA. Mixed thyroid carcinoma: a real entity? Lab Invest. 1987;57:237–239.PubMedGoogle Scholar
  161. 161.
    Albores-Saavedra J, de la Mora TG, de la Torra-Rendon F, Gould E. Mixed medullary-papillary carcinoma of the thyroid: a previously unrecognized variant of thyroid carcinoma. Hum Pathol. 1990;21:1151–1155.PubMedCrossRefGoogle Scholar
  162. 162.
    Mizukami Y, Michigishi T, Nonomura A, et al. Mixed medullary-follicular carcinoma of the thyroid occurring in familial form. Histopathology. 1993;22:284–287.PubMedCrossRefGoogle Scholar
  163. 163.
    Matias-Guiu X, Caixas A, Costa I, Cabezas R, Prat J. Compound medullary-papillary carcinoma of the thyroid: true mixed versus collision tumour. Histopathology. 1994;25:183–185.PubMedCrossRefGoogle Scholar
  164. 164.
    Lax SF, Beham A, Kronberger-Schönecker D, Langsteger W, Denk H. Coexistence of papillary and medullary carcinoma of the thyroid gland-mixed or collision tumors? Clinicopathological analysis of three cases. Virchows Arch. 1994;424:441–447.PubMedCrossRefGoogle Scholar
  165. 165.
    Kobayashi K, Teramoto S, Maeta H, Ishiguro S, Mori T, Horie Y. Simultaneous occurrence of medullary carcinoma and papillary carcinoma of the thyroid. J Surg Oncol. 1995;59:276–279.PubMedCrossRefGoogle Scholar
  166. 166.
    Mizukami Y, Nonomura A, Michigishi T, Noguchi M, Ishizaki T. Mixed medullary-follicular carcinoma of the thyroid gland: a clinicopathologic variant of medullary thyroid carcinoma. Mod Pathol. 1996;9:631–635.PubMedGoogle Scholar
  167. 167.
    Papotti M, Negro F, Carney JA, Bussolati G, Lloyd RV. Mixed medullary-follicular carcinoma of the thyroid. A morphological, immunohistochemical and in situ hybridization analysis of 11 cases. Virchows Arch. 1997;430:397–405.PubMedCrossRefGoogle Scholar
  168. 168.
    Matias-Guiu X. Mixed medullary and follicular carcinoma of the thyroid. On the search for its histogenesis. Am J Pathol. 1999;155:1413–1418.PubMedGoogle Scholar
  169. 169.
    Volante M, Papotti M, Roth J, et al. Mixed medullary-follicular thyroid carcinoma. Molecular evidence for a dual origin of tumor components. Am J Pathol. 1999;155:1499–1509.PubMedGoogle Scholar
  170. 170.
    Pappoti M, Volante M, Komminoth P, Sobrinho-Simoes M, Bussolati G. Thyroid carcinomas with mixed follicular and C-cell differentiation patterns. Semin Diagn Pathol. 2000;17:109–119.Google Scholar
  171. 171.
    Katoh R, Jasani B, Williams ED. Hyalinizing trabecular adenomas of the thyroid: a report of three cases with immunohistochemical and ultrastructural studies. Histopathology. 1989;15:211–224.PubMedGoogle Scholar
  172. 172.
    Carcangiu ML, Zampi G, Rosai J. Poorly differentiated (“insular”) thyroid carcinoma. A reinterpretation of Langhans “wuchernde struma”. Am J Surg Pathol. 1984;8:655–668.PubMedCrossRefGoogle Scholar
  173. 173.
    Sobrinho-Simoes M. Poorly differentiated carcinomas of the thyroid. Endocr Pathol. 1996;7:99–102.CrossRefGoogle Scholar
  174. 174.
    Papotti M, Bussolati G, Kommoth P, et al. Mixed medullary and follicular cell carcinoma. In: DeLellis RA, Lloyd RV, Heitz PU, Eng C, eds. Pathology and Genetics of Tumours of Endocrine Organs. WHO Classification of Tumours. Lyon: IARC Press; 2004:92–92.Google Scholar
  175. 175.
    Mellilo RM, Cirafici AM, DeFalco V, et al. The oncogenic activity of RET point mutants for follicular thyroid cells may account for the occurrence of papillary thyroid carcinoma in patients affected by familial medullary thyroid carcinoma. Am J Pathol. 2004;165:511–521.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ronald A. DeLellis
    • 1
    • 2
  1. 1.Department of PathologyAlpert Medical School, Brown UniversityProvidenceUSA
  2. 2.Rhode Island HospitalProvidenceUSA

Personalised recommendations