Structural Chromosome Rearrangements



The subject of structural chromosome rearrangements is an immense one, to which entire catalogs have been devoted. Indeed, there are theoretically an almost infinite number of ways in which chromosomes can reconfigure themselves from the familiar, normal, 23-pair arrangement. While structural rearrangements are often thought of in terms of chromosome pathology, some rearrangements are fairly innocuous. In fact, a few such benign rearrangements (such as certain pericentric inversions of chromosome 9) are seen frequently enough to be considered polymorphic variants of no clinical significance.


Williams Syndrome Pericentric Inversion Ring Chromosome Robertsonian Translocation Recombinant Chromosome 


  1. 1.
    Warburton D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Med Genet. 1991;49:995–1013.Google Scholar
  2. 2.
    Love DR, England SB, Speer A, Marsden RF, Bloomfield JF, Roche AL, Cross GS, Mountford C, Smith TJ, Davies KE. Sequences of junction fragments in the deletion-prone region of the dystrophin gene. Genomics. 1991;10:57–67.PubMedCrossRefGoogle Scholar
  3. 3.
    Giacalone JP, Francke U. Common sequence motifs at the rearrangement sites of a constitutional X/autosome translocation and associated deletion. Am J Hum Genet. 1992;50:725–41.PubMedGoogle Scholar
  4. 4.
    Cohen O, Cans C, Cuillel M, Gilardi JL, Roth H, Mermet M-A, Jalbert P, Demongeot J. Cartographic study: breakpoints in 1574 families carrying human reciprocal translocations. Hum Genet. 1996;97:659–67.PubMedCrossRefGoogle Scholar
  5. 5.
    Shaffer LG, Lupski JR. Molecular mechanisms for constitutional chromosomal rearrangements in humans. Ann Rev Genet. 2000;34:297–329.PubMedCrossRefGoogle Scholar
  6. 6.
    Stankiewicz P, Lupski JR. Genome architecture, rearrangements and genomic disorders. Trends Genet. 2002;18(2):74–82.PubMedCrossRefGoogle Scholar
  7. 7.
    Gu W, Zhang F, Lupski JR. Mechanisms for human genomic rearrangements. PathoGenetics. 2008;1:4. doi: 10.1186/1755-8417-1-1-4.PubMedCrossRefGoogle Scholar
  8. 8.
    Giglio S, Calvari V, Gregato G, Gimelli G, Camanini C, et al. Heterozygous submicroscopic inversion involving olfactory receptor-gene clusters mediate the recurrent t(4;8)(p16;p23) translocation. Am J Hum Genet. 2002;71:276–85.PubMedCrossRefGoogle Scholar
  9. 9.
    Kumar D. Disorders of the genome architecture: a review. Genomic Med. 2008;2:69–76.PubMedCrossRefGoogle Scholar
  10. 10.
    Deininger PL, Batzer MA. Alu repeats in human disease. Mol Genet Metabol. 1999;67:183–93.CrossRefGoogle Scholar
  11. 11.
    Rouyer F, Simmler MC, Page DC, Weissenbach J. A sex chromosome rearrangement in a human XX male caused by Alu-Alu recombination. Cell. 1987;51:417–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Samonte RV, Conte RA, Ramesh KH, Verma RS. Molecular cytogenetic characterization of breakpoints involving pericentric inversions of chromosome 9. Hum Genet. 1996;98:576–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Sheridan MB, Kato T, Haldeman-Englert C, et al. A palindrome-mediated recurrent translocation with 3:1 meiotic nondisjunction: the t(8;22)(q24.13;q11.21). Am J Hum Genet. 2010;87(2):209–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Kehrer-Sawatzki H, Haussler J, Drone W, Bode H, Jenne DE, Mehnert KU, Tmmers U, Assum G. The second case of a t(17;22) in a family with neurofibromatosis type 1: sequence analysis of the breakpoint regions. Hum Genet. 1997;99:237–47.PubMedCrossRefGoogle Scholar
  15. 15.
    Kurahashi H, Shaikh T, Takata M, Toda T, Emanuel BS. The constitutional t(17;22): another translocation mediated by palindromic AT-rich repeats. Am J Hum Genet. 2003;72:733–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Nimmakayalu MA, Gotter AL, Shaikh TH, Emanuel BS. A novel sequence-based approach to localize translocation breakpoints identifies the molecular basis of a t(4;22). Hum Mol Genet. 2003;12(21):2817–25.PubMedCrossRefGoogle Scholar
  17. 17.
    Gotter AL, Shaikh TH, Budarf ML, Rhodes CH, Emanuel BS. A palindrome-mediated mechanism distinguishes translocations involving LCR-B of chromosome 22q11.2. Hum Mol Genet. 2004;13:103–15.PubMedCrossRefGoogle Scholar
  18. 18.
    Gotter AL, Nimmakayalu MA, Jalali GR, Hacker AM, Vorstman J, et al. A palindrome-driven complex rearrangement of 22q11.2 and 8q24.1 elucidated using novel technologies. Genome Res. 2007;17:470–81.PubMedCrossRefGoogle Scholar
  19. 19.
    Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-jointing pathway. Annu Rev Biochem. 2010;79:181–211.PubMedCrossRefGoogle Scholar
  20. 20.
    Bena F, Gimelli S, Migliavacca E, et al. A recurrent 14q32.2 microdeletion mediated by expanded TGG repeats. Hum Mol Genet. 2010;19(10):1967–73.PubMedCrossRefGoogle Scholar
  21. 21.
    De Mollerat XJ, Gurrieri F, Morgan CT, et al. A genomic rearrangement resulting in a tandem duplication is associated with split hand–split foot malformation 3 (SHFM3) at 10q24. Hum Mol Genet. 2003;12(16):1959–71.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee JA, Carvalho CM, Lupski JR. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell. 2007;131:1235–47.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang F, Khajavil M, Connolly AM, Towne CF, Batish SD, Lupski JR. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat Genet. 2009;41:849–53.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang F, Carvalho CMB, Lupski JR. Complex human chromosomal and genomic rearrangements. Trends Genet. 2009;25(7):298–307.PubMedCrossRefGoogle Scholar
  25. 25.
    Olson SB, Magenis RE. Preferential paternal origin of de novo structural chromosome rearrangements. In: Daniel A, editor. The cytogenetics of mammalian autosomal rearrangements. New York: Alan R. Liss Inc.; 1988. p. 583–9.Google Scholar
  26. 26.
    Chandley AC. On the parental origin of de novo mutations in man. J Med Genet. 1991;28:217–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Chandley AC. Meiotic studies and fertility in human translocation carriers. In: Daniel A, editor. The cytogenetics of mammalian autosomal rearrangements. New York: Alan R. Liss Inc.; 1988. p. 361–82.Google Scholar
  28. 28.
    Page SL, Shaffer LG. Nonhomologous Robertsonian translocations form predominantly during female meiosis. Nat Genet. 1997;15:231–2.PubMedCrossRefGoogle Scholar
  29. 29.
    Wu Y-Q, Heilstedt HA, Bedell JA, May KM. Molecular refinement of the 1p36 deletion syndrome reveals size diversity and a preponderance of maternally derived deletions. Hum Mol Genet. 1999;8:312–21.CrossRefGoogle Scholar
  30. 30.
    Floridia G, Piantanida M, Minelli A, Dellavecchia C, Bonaglia C, Rossi E, Gimelli G, et al. The same molecular mechanism at the maternal meiosis I produces mono- and dicentric 8p duplications. Am J Hum Genet. 1996;58:785–96.PubMedGoogle Scholar
  31. 31.
    Dutley F, Balmer D, Baumer A, Binkert F, Schinzel A. Isochromosomes 12p and 9p: parental origin and possible mechanisms of formation. Eur J Hum Genet. 1998;6:140–4.CrossRefGoogle Scholar
  32. 32.
    Eggermann T, Schubert R, Engels H, Apacik C, Stengel-Rutkowski S, Haefliger C, Emiliani V, Ricagni C, Schwanitz G. Formation of supernumerary euchromatic short arm isochromosomes: parent and cell stage of origin in new cases and review of the literature. Ann Genet. 1999;42(2):75–80.PubMedGoogle Scholar
  33. 33.
    Struthers JL, Cuthbert CD, Khalifa MM. Parental origin of the isochromosome 12p in Pallister-Killian syndrome: molecular analysis of one patient and review of the reported cases. Am J Med Genet. 1999;84:111–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Morrow B, Goldberg R, Carlson C, Das Gupta R, Sirotkin H, Collins J, Dunham I, O’Donnell H, Scambler P, Shprintzen R, Kucherlapati R. Molecular definition of the 22q11 deletions in velo-cardio-facial syndrome. Am J Hum Genet. 1995;56:1391–403.PubMedGoogle Scholar
  35. 35.
    Perez-Jurado LA, Peoples R, Kaplan P, Hamel BCJ, Francke U. Molecular definition of the chromosome 7 deletion in Williams syndrome and parent-of-origin effects on growth. Am J Hum Genet. 1996;59:781–92.PubMedGoogle Scholar
  36. 36.
    Sagoo GS, Butterworth AS, Sanderson S, Shaw-Smith C, Higgins JPT, Burton H. Array CGH in patients with learning disability (mental retardation) and congenital anomalies: updated systematic review and meta-analysis of 19 studies and 13,926 subjects. Genet Med. 2009;11(3):139–46.PubMedCrossRefGoogle Scholar
  37. 37.
    MillerDT AMP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86:749–64.CrossRefGoogle Scholar
  38. 38.
    Hochstenbach R, van Binsbergen E, Engelen J, et al. Array analysis and karyotyping: workflow consequences based on a retrospective study of 36,325 patients with idiopathic developmental delay in the Netherlands. Eur J Med Genet. 2009;52:161–9.PubMedCrossRefGoogle Scholar
  39. 39.
    De Gregori M, Ciccone R, Magini P, et al. Cryptic deletions are a common finding in “balanced” reciprocal and complex chromosome rearrangements: a study of 59 patients. J Med Genet. 2007;44:750–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Lindstrand A, Schoumans J, Gustavsson P, et al. Improved structural characterization of chromosomal breakpoints using high resolution custom array-CGH. Clin Genet. 2010;77:552–62.PubMedCrossRefGoogle Scholar
  41. 41.
    Gribble SM, Prigmore E, Burford DC, et al. The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes. J Med Genet. 2005;42:8–16.PubMedCrossRefGoogle Scholar
  42. 42.
    Schluth-Bolard C, Delobel B, Sanlaville D, et al. Cryptic genomic imbalances in de novo and inherited apparently balanced chromosomal rearrangements: array CGH study of 47 unrelated cases. Eur J Med Genet. 2009;52(5):291–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Warburton D. De novo structural rearrangements: implications for prenatal diagnosis. In: Willey AM, Carter TP, Kelly S, Porter IH, editors. Clinical genetics: problems in diagnosis and counseling. New York: Academic Press, Inc.; 1982. p. 63–73.Google Scholar
  44. 44.
    Boyd Y, Cockburn D, Holt S, Munro E, Van Ommen GJ, Gillard B, Affara N, Ferguson-Smith M, Craig I. Mapping of 12 translocation breakpoints in the Xp21 region with respect to the locus for Duchenne muscular dystrophy. Cytogenet Cell Genet. 1988;48:28–34.PubMedCrossRefGoogle Scholar
  45. 45.
    De Braekeleer M, Dao T-N. Cytogenetic studies in male infertility. Hum Reprod. 1991;6:245–50.PubMedGoogle Scholar
  46. 46.
    James RS, Temple IK, Patch C, Thompson EM, Hassold T, Jacobs PA. A systematic search for uniparental disomy carriers of chromosome translocations. Eur J Hum Genet. 1994;2:83–95.PubMedGoogle Scholar
  47. 47.
    Wagstaff J, Hemann M. A familial “balanced” 3;9 translocation with cryptic 8q insertion leading to deletion and duplication of 9p23 loci in siblings. Am J Hum Genet. 1995;56:302–9.PubMedGoogle Scholar
  48. 48.
    Girirajan S, Rosenfeld JA, Cooper GM, et al. A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat Genet. 2010;42:203–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Girirajan S, Eichler EE. Phenotypic variability and genetic susceptibility to genomic disorders. Hum Mol Genet. 2010;19(Review Issue 2):R176–87. doi: 10.1093/hmg/ddq366.PubMedCrossRefGoogle Scholar
  50. 50.
    Gardner RJM, Sutherland GR. In: Bobrow M, Epstein CJ, Hall JG, Harper PS, Motulsky AG, Scriver C, editors. Chromosome abnormalities and genetic counseling. 3rd ed. New York: Oxford University Press; 2004. p. 166.Google Scholar
  51. 51.
    Schinzel A, editor. Catalogue of unbalanced chromosome aberrations in man. 2nd ed. New York: Walter de Gruyter; 2001.Google Scholar
  52. 52.
    Wilkie AOM, Lamb J, Harris PC, Finney RD, Higgs DR. A truncated human chromosome 16 associated with alpha thalassemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature. 1990;346:868–71.PubMedCrossRefGoogle Scholar
  53. 53.
    Flint J, Craddock CF, Villegas A, Bentley DP, Williams HJ, Galenello R, Cao A, Wood WG, Ayyub H, Higs DR. Healing of broken human chromosomes by the addition of telomeric repeats. Am J Hum Genet. 1994;55(3):505–12.PubMedGoogle Scholar
  54. 54.
    Varley H, Di S, Scherer SW, Royle NJ. Characterization of terminal deletions at 7q32 and 22q13.3 healed by de novo telomere addition. Am J Hum Genet. 2000;67(3):610–22.PubMedCrossRefGoogle Scholar
  55. 55.
    Ballif BC, Kahork CD, Shaffer LG. FISHing for mechanisms of cytogenetically defined terminal deletions using chromosome-specific subtelomeric probes. Eur J Hum Genet. 2000;8:764–70.PubMedCrossRefGoogle Scholar
  56. 56.
    Meltzer PS, Guan X-Y, Trent JM. Telomere capture stabilizes chromosome breakage. Nat Genet. 1993;4(3):252–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Schwartz S, Kumar A, Becker LA, Crowe CA, Haren JM, Tsuchiya K, Wandstrat AE, Wolff DJ. Molecular and cytogenetic analysis of de novo “terminal” deletions: implications for mechanism of formation. Am J Hum Genet. 1997;61(Suppl):A7.Google Scholar
  58. 58.
    Helstedt HA, Ballif BC, Howard LA, Lewis RA, Stal S, Kashork CD, Bacino CA, Shapira SK, Shaffer LG. Physical map of 1p36, placement of breakpoints in monosomy 1p36, and clinical characterization of the syndrome. Am J Hum Genet. 2003;72:1200–12.CrossRefGoogle Scholar
  59. 59.
    Yatsenko SA, Brundage EK, Roney EK, Cheung SW, Chinault AC, Lupski JR. Molecular mechanisms for subtelomeric rearrangements associated with the 9q34.3 microdeletion syndrome. Hum Mol Genet. 2009;18(11):1924–36.PubMedCrossRefGoogle Scholar
  60. 60.
    Schmickel RD. Contiguous gene syndromes: a component of recognizable syndromes. J Pediatr. 1986;109:231–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Budarf ML, Emanuel BS. Progress in the autosomal segmental aneusomy syndromes (SASs): single or multi-locus disorders. Hum Mol Genet. 1997;6:1657–65.PubMedCrossRefGoogle Scholar
  62. 62.
    Morris CA. Williams Syndrome. GeneTests. (2006).
  63. 63.
    Dutly F, Schinzel A. Unequal interchromosomal rearrangements may result in elastin gene deletions causing the Williams-Beuren syndrome. Hum Mol Genet. 1996;5:1893–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Urban Z, Helms C, Fekete G, Csiszar K, Bonnet D, Munnich A, Donis-Keller H, Boyd CD. 7q11.23 deletions in Williams syndrome arise as a consequence of unequal meiotic crossover. Am J Hum Genet. 1996;59:958–62.PubMedGoogle Scholar
  65. 65.
    Peoples R, Franke Y, Wang Y-K, Perez-Jurado L, Paperna T, Cisco M, Francke U. A physical map, including a BAC/PAC clone contig, of the Williams-Beuren syndrome-deletion region at 7q11.23. Am J Hum Genet. 2000;66:47–88.PubMedCrossRefGoogle Scholar
  66. 66.
    Osborne LR, Li M, Pober B, Chitayat D, Bodurtha J, Mandel A, Costa T, Grebe T, Cox S, Tsui L-C, Scherer SW. A 1.5 million-base pair inversion polymorphism in families with Williams-Beuren syndrome. Nat Genet. 2001;29:321–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Bayes M, Magano LF, Rivera N, Flores R, Perez Jurado LA. Mutational mechanisms of Williams-Beuren syndrome deletions. Am J Hum Genet. 2003;73:131–51.PubMedCrossRefGoogle Scholar
  68. 68.
    Hobart HH, Morris CA, Mervis CB, et al. Inversion of the Williams syndrome region is a common polymorphism found more frequently in parents of children with Williams syndrome. Am J Med Genet C. 2010;154C(2):220–8.CrossRefGoogle Scholar
  69. 69.
    Morris CA, Mervis CB, Osborne LR. Frequency of the 7q11.23 inversion polymorphism in transmitting parents of children with Williams syndrome and in the general population does not differ between North America and Europe. Mol Cytogenet. 2011;4:7. doi: 10.1186/1755-8166-4-7.PubMedCrossRefGoogle Scholar
  70. 70.
    Lupski JR. Genome structural variation and sporadic disease traits. Nat Genet. 2006;38(9):974–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Makoff A, Flomen R. Common inversion polymorphisms and rare microdeletions at 15q13.3. Eur J Hum Genet. 2009;17:149–50.PubMedCrossRefGoogle Scholar
  72. 72.
    Wellcome Trust Sanger Institute. Accessed 6 July 2011.
  73. 73.
    European Cytogeneticists Association Register of Unbalanced Chromosome Aberrations. Accessed 6 July 2011.
  74. 74.
    Unique-The Rare Chromosome Disorder Support Group. Accessed 6 July 2011.
  75. 75.
    Wieczorek D, Krause M, Majewski F, Albrecht B, Horn D, Riess O, Gillessen-Kaesback G. Effect of the size of the deletion and clinical manifestations in Wolf-Hirschhorn syndrome: analysis of 13 patients with a de novo deletion. Eur J Hum Genet. 2000;8:519–26.PubMedCrossRefGoogle Scholar
  76. 76.
    Mainardi PC, Perfumo C, Cali A, Coucourde G, Pastore G, Cavani S, Zara F, Overhauser J, Pierluigi M, Bricarelli FD. Clinical and molecular characterization of 80 patients with 5p deletion: genotype-phenotype correlation. J Med Genet. 2002;38:151–8.CrossRefGoogle Scholar
  77. 77.
    Stankiewicz P, Shaw CJ, Dapper JD, Wakui K, Shaffer LG, Withers M, Elizondo L, Park S-S, Lupski JR. Genome architecture catalyzes nonrecurrent chromosomal rearrangements. Am J Hum Genet. 2003;72:1101–16.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang F, Seeman P, Liu P, et al. Mechanisms for nonrecurrent genomic rearrangements associated with CMT1A or HNPP: rare CNVs as a cause for missing heritability. Am J Hum Genet. 2010;86(6):892–903.PubMedCrossRefGoogle Scholar
  79. 79.
    Van Dyke DL. Isochromosomes and interstitial tandem direct and inverted duplications. In: Daniel A, editor. The cytogenetics of mammalian autosomal rearrangements. New York: Alan R. Liss, Inc.; 1988. p. 635–66.Google Scholar
  80. 80.
    Brown KW, Gardner A, Williams JC, Mott MG, McDermott A, Maitland NJ. Paternal origin of 11p15 duplications in the Beckwith-Wiedemann syndrome. A new case and review of the literature. Cancer Genet Cytogenet. 1992;58:55–70.CrossRefGoogle Scholar
  81. 81.
    Pettenati MJ, Rao PN, Phelan MC, Grass F, Rao KW, Cosper P, Carroll AJ, Elder F, Smith JL, Higgins MD, Lanman JT, Higgins RR, Butler MG, Luthardt F, Keitges E, Jackson-Cook C, Brown J, Schwartz S, Van Dyke DL, Palmer CG. Paracentric inversions in humans: a review of 446 paracentric inversions with presentation of 120 new cases. Am J Med Genet. 1995;55:171–87.PubMedCrossRefGoogle Scholar
  82. 82.
    Kaiser P. Pericentric inversions: problems and significance for clinical genetics. Hum Genet. 1984;68:1–47.PubMedCrossRefGoogle Scholar
  83. 83.
    Youings S, Ellis K, Ennis S, Barber J, Jacobs P. A study of reciprocal translocations and inversions detected by light microscopy with special reference to origin, segregation, and recurrent abnormalities. Am J Med Genet. 2004;126A:46–60.PubMedCrossRefGoogle Scholar
  84. 84.
    Thomas NS, Bryant V, Maloney V, Cockwell AE, Jacobs PA. Investigation of the origins of human autosomal inversions. Hum Genet. 2008;123:607–16.PubMedCrossRefGoogle Scholar
  85. 85.
    Fickelscher I, Liehr T, Watts K, et al. The variant inv(2)(p11.2q13) is a genuinely recurrent rearrangement but displays some breakpoint heterogeneity. Am J Hum Genet. 2007;81:847–56.PubMedCrossRefGoogle Scholar
  86. 86.
    Dajalali M, Steinbach P, Bullerdiek J, Holmes-Siedle M, Verschraegen-Spae MR, Smith A. The significance of pericentric inversions of chromosome 2. Hum Genet. 1986;72:32–6.CrossRefGoogle Scholar
  87. 87.
    Sujansky E, Smith ACM, Peakman DC, McConnell TS, Baca P, Robinson A. Familial pericentric inversion of chromosome 8. Am J Med Genet. 1981;10:229–35.PubMedCrossRefGoogle Scholar
  88. 88.
    Smith ACM, Spuhler K, Williams TM, McConnell T, Sujansky E, Robinson A. Genetic risk for recombinant 8 syndrome and the transmission rate of balanced inversion 8 in the Hispanic population of the southwestern United States. Am J Hum Genet. 1987;41:1083–103.PubMedGoogle Scholar
  89. 89.
    Madan K, Pieters MHEC, Kuyt LP, van Asperen CJ, de Pater JM, Hamers AJH, Gerssen-Schoorl KBJ, Hustinx TWJ, Breed ASPM, Van Hemel JO, Smeets DFCM. Paracentric inversion inv(11)(q21q23) in the Netherlands. Hum Genet. 1990;85:15–20.PubMedCrossRefGoogle Scholar
  90. 90.
    Chodirker BN, Greenberg CR, Pabello PD, Chudley AE. Paracentric inversion 11q in Canadian Hutterites. Hum Genet. 1992;89:450–2.PubMedCrossRefGoogle Scholar
  91. 91.
    Maas NM, Van Vooren S, Hannes F, et al. The t(4;8) is mediated by homologous recombination between olfactory receptor gene clusters, but other 4p16 translocation occur at random. Genet Couns. 2007;18(4):357–65.PubMedGoogle Scholar
  92. 92.
    Giglio S, Broman KW, Matsumoto N, Calvari V, Gimelli G, et al. Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am J Hum Genet. 2001;68:874–83.PubMedCrossRefGoogle Scholar
  93. 93.
    Jobling MA, Williams GA, Schiebel GA, Pandya GA, McElreavey GA, Salas GA, Rappold GA, Affara NA, Tyler-Smith C. A selective difference between human Y-chromosomal DNA haplotypes. Curr Biol. 1998;8:1391–4.PubMedCrossRefGoogle Scholar
  94. 94.
    Madan K, Nieuwint AWM. Reproductive risks for paracentric inversion heterozygotes: inversion or insertion? That is the question. Am J Med Genet. 2002;107:340–3.PubMedCrossRefGoogle Scholar
  95. 95.
    Pettenati MJ, Rao PN. Response to Drs. Sutherland, Callen and Gardner. Am J Med Genet. 1995;59:391–2.CrossRefGoogle Scholar
  96. 96.
    Sutherland GR, Callen DF, Gardner RJM. Paracentric inversions do not normally generate monocentric recombinant chromosomes. Am J Med Genet. 1995;59:390.PubMedCrossRefGoogle Scholar
  97. 97.
    Warburton D, Twersky S. Risk of phenotypic abnormalities in paracentric inversion carriers. Am J Med Genet. 1997;69:219.PubMedCrossRefGoogle Scholar
  98. 98.
    Wolff DJ, Miller AP, Van Dyke DL, Schwartz S, Willard HF. Molecular definition of breakpoints associated with human Xq isochromosomes: implications for mechanisms of formation. Am J Hum Genet. 1996;58:154–60.PubMedGoogle Scholar
  99. 99.
    Schwartz S, Depinet TW. Studies of “acentric” and “dicentric” marker chromosomes: implications for definition of the functional centromere. Am J Hum Genet. 1996;59(4 (Suppl)):A14.Google Scholar
  100. 100.
    Sullivan BA, Willard HF. Functional status of centromeres in dicentric X chromosomes: evidence for the distance-dependence of centromere/kinetochore assembly and correlation with malsegregation in anaphase. Am J Hum Genet. 1996;59(4(Suppl)):A14.Google Scholar
  101. 101.
    Sullivan BA, Schwartz S. Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum Mol Genet. 1995;4(12):2189–97.PubMedCrossRefGoogle Scholar
  102. 102.
    Warburton PE, Dolled M, Mahmood B, Alonso A, Li S, et al. Molecular cytogenetics analysis of eight inversion duplication of human chromosome 13q that each contain a neocentromere. Am J Hum Genet. 2000;66:1794–806.PubMedCrossRefGoogle Scholar
  103. 103.
    Marshall OJ, Chueh AC, Wong LH, Choo KH. Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet. 2008;82:261–82.PubMedCrossRefGoogle Scholar
  104. 104.
    Barry AE, Bateman M, Howman EV, Cancilla MR, Tainton KM, Irvine DV, Saffery R, Choo KHA. The 10q25 neocentromere and its inactive progenitor have identical primary nucleotide sequence: further evidence for epigenetic modification. Genome Res. 2000;10:832–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Voullaire LE, Slater HR, Petrovic V, Choo KHA. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere. Am J Hum Genet. 1993;52:1153–63.PubMedGoogle Scholar
  106. 106.
    du Sart D, Cancilla MR, Earle E, Mao J-I, Saffery R, Tainton KM, Kalitsis P, Martyn J, Barry AE, Choo KHA. A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet. 1997;16:144–53.PubMedCrossRefGoogle Scholar
  107. 107.
    Darlington CD. Misdivision and the genetics of the centromere. J Genet. 1939;37:341–64.CrossRefGoogle Scholar
  108. 108.
    Therman E, Sarto GE, Patau K. Apparently isodicentric but functionally monocentric X chromosome in man. Am J Hum Genet. 1974;26:83–92.PubMedGoogle Scholar
  109. 109.
    Phelan MC, Prouty LA, Stevenson RE, Howard-Peebles PN, Page DC, Schwartz CE. The parental origin and mechanisms of formation of three dicentric X chromosomes. Hum Genet. 1988;80:81–4.PubMedCrossRefGoogle Scholar
  110. 110.
    Lorda-Sanchez I, Binkert F, Maechler M, Schinzel A. A molecular study of X isochromosomes: parental origin, centromeric structure and mechanisms of formation. Am J Hum Genet. 1991;49:1034–40.PubMedGoogle Scholar
  111. 111.
    Shaffer LG, McCaskill C, Haller V, Brown JA, Jackson-Cook CK. Further characterization of 19 cases of rea(21q21q) and delineation as isochromosomes or Robertsonian translocations in Down syndrome. Am J Med Genet. 1993;47:1218–22.PubMedCrossRefGoogle Scholar
  112. 112.
    Shaffer LG, McCaskill C, Han J-Y, Choo KHA, Cutillow DM, Donnenfeld AE, Weiss L, Van Dyke DL. Molecular characterization of de novo secondary trisomy 13. Am J Hum Genet. 1994;55:968–74.PubMedGoogle Scholar
  113. 113.
    Barbouti A, Stankiewicz P, Nusbaum C, et al. The breakpoint region of the most common isochromosome, i(17q), in human neoplasia is characterized by a complex genomic architecture with large, palindromic, low-copy repeats. Am J Hum Genet. 2004;74:1–10.PubMedCrossRefGoogle Scholar
  114. 114.
    Lange J, Skaletsky H, van Daalen SK, et al. Isodicentric Y chromosomes and sex disorders as byproducts of homologous recombination that maintains palindromes. Cell. 2009;138:855–69.PubMedCrossRefGoogle Scholar
  115. 115.
    Scott SA, Cohen N, Brandt T, Warburton PE, Edelmann L. Large inverted repeats within Xp11.2 are present at the breakpoints of isodicentric X chromosomes in Turner syndrome. Hum Mol Genet. 2010;19:3383–93.PubMedCrossRefGoogle Scholar
  116. 116.
    Koumbaris G, Hatzisevastou-Loukidou H, Alexandrou A, et al. FoSTeS, MMBIR and NAHR at the human proximal Xp region and the mechanisms of human Xq isochromosome formation. Hum Mol Genet. 2011;20(10):1925–36.PubMedCrossRefGoogle Scholar
  117. 117.
    Callen DF, Mulley JC, Baker EG, Sutherland GR. Determining the origin of human X isochromosomes by use of DNA sequence polymorphisms and detection of an apparent i(Xq) with Xp sequences. Hum Genet. 1987;77:236–40.PubMedCrossRefGoogle Scholar
  118. 118.
    Harbison M, Hassold T, Kobryn C, Jacobs PA. Molecular studies of the parental origin and nature of human X isochromosomes. Cytogenet Cell Genet. 1988;47:217–22.PubMedCrossRefGoogle Scholar
  119. 119.
    Antonarakis SE, Adelsberger PA, Petersen MB, Binkert F, Schinzel AA. Analysis of DNA polymorphisms suggests that most de novo dup(21q) chromosomes in patients with Down syndrome are isochromosomes and not translocations. Am J Hum Genet. 1990;47:968–72.PubMedGoogle Scholar
  120. 120.
    Robinson WP, Bernasconi F, Basaran S, Yuksel-Apak M, Neri G, Serville F, Balicek P, Haluza R, Farah LMS, Luleci G, Schinzel AA. A somatic origin of homologous Robertsonian translocations and isochromosomes. Am J Hum Genet. 1994;54:290–302.PubMedGoogle Scholar
  121. 121.
    Kotzot D, Bundscherer G, Bernasconi F, et al. Isochromosome 18p results from maternal meiosis II nondisjunction. Eur J Hum Genet. 1996;4(3):168–74.PubMedGoogle Scholar
  122. 122.
    Bugge M, Blennow E, Friedrich U, et al. Tetrasomy 18p de novo: parental origin and different mechanisms of formation. Eur J Hum Genet. 1996;4:160–7.PubMedGoogle Scholar
  123. 123.
    Wyandt HE. Ring autosomes: identification, familial transmission, causes of phenotypic effects and in vitro mosaicism. In: Daniel A, editor. The cytogenetics of mammalian autosomal rearrangements. New York: Alan R. Liss, Inc.; 1988. p. 667–96.Google Scholar
  124. 124.
    Baldwin EL, May LF, Justice AN, Martin CL, Ledbetter DH. Mechanisms and consequences of small supernumerary marker chromosomes: from Barbara McClintock to modern genetic-counseling issues. Am J Hum Genet. 2008;82:398–410.PubMedCrossRefGoogle Scholar
  125. 125.
    Callen DF, Eyre HJ, Ringenbergs ML, Freemantle CJ, Woodroffe P, Haan EA. Chromosomal origin of small ring marker ­chromosomes in man: characterization by molecular cytogenetics. Am J Hum Genet. 1991;48:769–82.PubMedGoogle Scholar
  126. 126.
    Pezzolo A, Gimelli G, Cohen A, Lavaggetto A, Romano C, Fogu G, Zuffardi O. Presence of telomeric and subtelomeric sequences at the fusion points of ring chromosomes indicates that the ring syndrome is caused by ring instability. Hum Genet. 1993;92:23–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Fang Y-Y, Eyre HJ, Bohlander SK, Estop A, McPherson E, Trager T, Riess O, Callen DF. Mechanisms of small ring formation suggested by the molecular characterization of two small accessory ring chromosomes derived from chromosome 4. Am J Hum Genet. 1995;57:1137–42.PubMedGoogle Scholar
  128. 128.
    Muroya K, Yamamoto K, Fukushima Y, Ogata T. Ring chromosome 21 in a boy and a derivative chromosome 21 in the mother: implication for ring chromosome formation. Am J Med Genet. 2002;110:332–7.PubMedCrossRefGoogle Scholar
  129. 129.
    McGinniss MJ, Kazazian Jr HH, Stetten G, Petersen MB, Boman H, Engel E, Greenberg F, Hertz JM, Johnson A, Laca Z, et al. Mechanisms of ring chromosome formation in 11 cases of human ring chromosome 21. Am J Hum Genet. 1992;50(1):15–28.PubMedGoogle Scholar
  130. 130.
    Ogata T, Matsuo N, Saito M, Fukushima Y, Nose O, Miharu N, Uehara S, Ishizuka B. FISH analysis for apparently simple terminal deletions of the X chromosome: identification of hidden structural abnormalities. Am J Med Genet. 2001;104:307–11.PubMedCrossRefGoogle Scholar
  131. 131.
    Petersen MB, Bartsch O, Adelsberger PA, Mikkelsen M, Schwinger E, Antonarakis SE. Uniparental isodisomy due to duplication of chromosome 21 occurring in somatic cells monosomic for chromosome 21. Genomics. 1992;13:269–74.PubMedCrossRefGoogle Scholar
  132. 132.
    Rothlisberger B, Zerova TE, Kotzot D, Buzhievskaya TI, Balmer D, Schinzel A. Supernumerary marker chromosome (1) of paternal origin and maternal uniparental disomy 1 in a developmentally delayed child. J Med Genet. 2001;38:885–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Cote GB, Katsantoni A, Deligeorgis D. The cytogenetic and clinical implications of a ring chromosome 2. Ann Genet. 1981;24:231–5.PubMedGoogle Scholar
  134. 134.
    Kosztolanyi G. Does “ring syndrome” exist? An analysis of 207 case reports on patients with a ring autosome. Hum Genet. 1987;75:174–9.PubMedCrossRefGoogle Scholar
  135. 135.
    Kosztolanyi G, Mehes K, Hook EB. Inherited ring chromosomes: an analysis of published cases. Hum Genet. 1991;87:320–4.PubMedCrossRefGoogle Scholar
  136. 136.
    Van Dyke LL, Weiss L, Roberson JR, Babu VR. The frequency and mutation rate of balanced autosomal rearrangements in man estimated from prenatal genetic studies for advanced maternal age. Am J Hum Genet. 1983;35:301–8.PubMedGoogle Scholar
  137. 137.
    Munne S, Bahce M, Schimmel T, Sadowy S, Cohen J. Case report: chromatid exchange and predivision of chromatids as other sources of abnormal oöcytes detected by preimplantation genetic diagnosis of translocations. Prenat Daign. 1998;18:1450–8.CrossRefGoogle Scholar
  138. 138.
    Escudero T, Lee M, Sandalinas M, Munne S. Female gamete segregation in two carriers of translocations involving 2q and 14q. Prenat Diagn. 2000;20:235–7.PubMedCrossRefGoogle Scholar
  139. 139.
    Gardner RJM, Sutherland GR. Chapter 4: Autosomal reciprocal translocations. In: Bobrow M, Epstein CJ, Hall JG, Harper PS, Motulsky AG, Scriver C, editors. Chromosome abnormalities and genetic counseling. New York: Oxford University Press; 2004. p. 63–6.Google Scholar
  140. 140.
    Kurahashi H, Emanuel BS. Long AT-rich palindromes and the constitutional t(11;22) breakpoint. Hum Mol Genet. 2001;10(23):2605–17.PubMedCrossRefGoogle Scholar
  141. 141.
    Edelmann L, Spiteri E, Koren K, Pulijaal V, Bialer MG, Shanske R, Goldberg R, Morrow BE. AT-rich palindromes mediate the constitutional t(11;22) translocation. Am J Hum Genet. 2001;68:1–13.PubMedCrossRefGoogle Scholar
  142. 142.
    Kurahashi H, Inagaki H, Ohye T, Kogo H, Tsutsumi M, Kato T, Tong M, Emanuel BS. The constitutional t(11;22): implications for a novel mechanism responsible for gross chromosomal rearrangements. Clin Genet. 2010;78(4):299–309.PubMedCrossRefGoogle Scholar
  143. 143.
    Tong M, Kato T, Yamada K, et al. Polymorphisms of the 22q11.2 breakpoint region influence the frequency of de novo constitutional t(11;22)s in sperm. Hum Mol Genet. 2010;19(13):2630–7.PubMedCrossRefGoogle Scholar
  144. 144.
    Iselius L, Lindsten J, Aurias A, et al. The 11q;22q translocation: a collaborative study of 20 new cases and analysis of 110 families. Hum Genet. 1983;64:343–55.PubMedCrossRefGoogle Scholar
  145. 145.
    Zackai EH, Emanuel BS. Site-specific reciprocal translocation, t(11;22)(q23;q11), in several unrelated families with 3:1 meiotic disjunction. Am J Med Genet. 1980;7:507–21.PubMedCrossRefGoogle Scholar
  146. 146.
    Lindblom A, Sandelin K, Iselius L, Dumanski J, White I, Nordenskjold M, Larsson C. Predisposition for breast cancer in carriers of constitutional translocation 11q;22q. Am J Hum Genet. 1994;54:871–6.PubMedGoogle Scholar
  147. 147.
    Griffin CA, McKeon C, Isreal MA, et al. Comparison of constitutional and tumor-associated 11;22 translocations: nonidentical breakpoints on chromosomes 11 and 22. Proc Natl Acad Sci U S A. 1986;83:6122–6.PubMedCrossRefGoogle Scholar
  148. 148.
    Delattre O, Grunwald M, Bernard A, Grunwald D, Thomas G, Frelat G, Aurias A. Recurrent t(11;22) breakpoint mapping by chromosome flow sorting and spot-blot hybridization. Hum Genet. 1988;78:140–3.PubMedCrossRefGoogle Scholar
  149. 149.
    Budarf M, Sellinger B, Griffin C, Emanuel BS. Comparative mapping of the constitutional and tumor-associated 11;22 translocation. Am J Hum Genet. 1989;45:128–39.PubMedGoogle Scholar
  150. 150.
    Wieczorek D, Krause M, Majewski F, Albrecht B, Meinecke P, Riess O, Gillessen-Kaebach G. Unexpected high frequency of de novo unbalanced translocations in patients with Wolf-Hirschhorn syndrome (WHS). J Med Genet. 2000;37:798–804.PubMedCrossRefGoogle Scholar
  151. 151.
    Tonnies H, Stumm M, Neumann L, Volleth M, Grumpelt U, Musebeck J, Annuss G, Neitzel H. Two further cases of WHS with unbalanced de novo translocation t(4;8) characterized by CGH and FISH. J Med Genet. 2001;38(6):e21. 1–4.PubMedCrossRefGoogle Scholar
  152. 152.
    Tranebjaerg L, Petersen A, Hove K, Rehder H, Mikkelsen M. Clinical and cytogenetic studies in a large (4;8) translocation family with pre- and postnatal Wolf syndrome. Ann Genet. 1984;27(4):224–9.PubMedGoogle Scholar
  153. 153.
    Schmutz SM, Pinno E. Morphology alone does not make an isochromosome. Hum Genet. 1986;72:253–5.PubMedCrossRefGoogle Scholar
  154. 154.
    Robertson W. Taxonomic relationships shown in the chromosome of Tettigidae and Acrididae: V-shaped chromosomes and their significance in Acrididae, Locustidae, and Gryllidae: chromosomes and variation. J Morphol. 1916;27:179–331.CrossRefGoogle Scholar
  155. 155.
    Hamerton JL, Canning N, Ray M, Smith S. A cytogenetic survey of 14,069 newborn infants: incidence of chromosomal abnormalities. Clin Genet. 1975;8:223–43.PubMedCrossRefGoogle Scholar
  156. 156.
    Jacobs PA. Mutation rates of structural chromosomal rearrangements in man. Am J Hum Genet. 1981;33:44–54.PubMedGoogle Scholar
  157. 157.
    Nielsen J, Wohlert M. Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus, Denmark. Hum Genet. 1991;87:81–3.PubMedCrossRefGoogle Scholar
  158. 158.
    Bandyopadhyay R, Heller A, Knox-Dubois C, McCaskill C, Berend SA, Page SL, Shaffer LG. Parental origin and timing of de novo Robertsonian translocation formation. Am J Hum Genet. 2002;71:1456–62.PubMedCrossRefGoogle Scholar
  159. 159.
    Earle E, Shaffer LG, Kalitsis P, McQuillan C, Dale S, Choo KHA. Identification of DNA sequences flanking the breakpoint of human t(14q21q) Robertsonian translocations. Am J Hum Genet. 1992;50:717–24.PubMedGoogle Scholar
  160. 160.
    Gravholt CH, Friedrich U, Caprani M, Jorgensen AL. Breakpoints in Robertsonian translocations are localized to satellite III DNA by fluorescence in situ hybridization. Genomics. 1992;14:924–30.PubMedCrossRefGoogle Scholar
  161. 161.
    Wolff DJ, Schwartz S. Characterization of Robertsonian translocations by using fluorescence in situ hybridizations. Am J Med Genet. 1992;50:174–81.Google Scholar
  162. 162.
    Han J-Y, Choo KHA, Shaffer LG. Molecular cytogenetic characterization of 17 rob(13q14q) Robertsonian translocations by FISH, narrowing the region containing the breakpoints. Am J Hum Genet. 1994;55:960–7.PubMedGoogle Scholar
  163. 163.
    Page SL, Shin J-C, Han J-Y, Choo KHA, Shaffer LG. Breakpoint diversity illustrates distinct mechanisms for Robertsonian translocation formation. Hum Mol Genet. 1996;5(9):1279–88.PubMedCrossRefGoogle Scholar
  164. 164.
    Sullivan BA, Jenkins LS, Karson EM, Leana-Cox J, Schwartz S. Evidence for structural heterogeneity from molecular cytogenetic analysis of dicentric Robertsonian translocations. Am J Hum Genet. 1996;59:167–75.PubMedGoogle Scholar
  165. 165.
    Sullivan BA, Wolff DJ, Schwartz S. Analysis of centromeric activity in Robertsonian translocations: implications for a functional acrocentric hierarchy. Chromosoma. 1994;103:459–67.PubMedCrossRefGoogle Scholar
  166. 166.
    Page SL, Shaffer LG. Chromosome stability is maintained by short intercentromeric distance in functionally dicentric human Robertsonian translocations. Chromosome Res. 1998;6:115–22.PubMedCrossRefGoogle Scholar
  167. 167.
    Blouin J-L, Binkert F, Antonarakis SE. Biparental inheritance of chromosome 21 polymorphic markers indicates that some Robertsonian translocations t(21;21) occur postzygotically. Am J Med Genet. 1994;49:363–8.PubMedCrossRefGoogle Scholar
  168. 168.
    Robinson WP, Bernasconi F, Dutly F, Lefort G, Romain DR, Binkert F, Schinzel AA. Molecular studies of translocations and trisomy involving chromosome 13. Am J Med Genet. 1996;61:158–63.PubMedCrossRefGoogle Scholar
  169. 169.
    Shaffer LG, Jackson-Cook CK, Meyer JM, Brown JA, Spence JE. A molecular genetic approach to the identification of isochromosomes of chromosome 21. Hum Genet. 1991;86:375–82.PubMedCrossRefGoogle Scholar
  170. 170.
    Berend SA, Horwitz J, McCaskill C, Shaffer LG. Identification of uniparental disomy following prenatal detection of Robertsonian translocations and isochromosomes. Am J Hum Genet. 2000;66:1787–93.PubMedCrossRefGoogle Scholar
  171. 171.
    Berend SA, Bejjani BA, McCaskill C, Shaffer LG. Identification of uniparental disomy in phenotypically abnormal carriers of isochromosomes or Robertsonian translocations. Am J Med Genet. 2002;111:362–5.PubMedCrossRefGoogle Scholar
  172. 172.
    Ledbetter DH, Engel E. Uniparental disomy in humans: development of an imprinting map and its implications for prenatal diagnosis. Hum Mol Genet. 1995;4:1757–64.PubMedGoogle Scholar
  173. 173.
    Nicholls RD, Knoll JHM, Butler MG, Karam S, Lalande M. Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature. 1989;342:281–5.PubMedCrossRefGoogle Scholar
  174. 174.
    Malcolm S, Clayton-Smith J, Nichols M, Robb S, Webb T, Armour JAL, Jeffreys AJ, Pembrey ME. Uniparental paternal disomy in Angelman syndrome. Lancet. 1991;337:694–7.PubMedCrossRefGoogle Scholar
  175. 175.
    Wang J-CC, Passage MB, Yen PH, Shapiro LJ, Mohandas TK. Uniparental heterodisomy for chromosome 14 in a phenotypically abnormal familial balanced 13/14 Robertsonian translocation carrier. Am J Hum Genet. 1991;48:1069–74.PubMedGoogle Scholar
  176. 176.
    Papenhausen PR, Mueller OT, Johnson VP, Sutcliff M, Diamond TM, Kousseff BG. Uniparental isodisomy of chromosome 14 in two cases: an abnormal child and a normal adult. Am J Med Genet. 1995;59:271–5.PubMedCrossRefGoogle Scholar
  177. 177.
    Healey S, Powell F, Battersby M, Chenevix-Trench G, McGill J. Distinct phenotype in maternal uniparental disomy of chromosome 14. Am J Med Genet. 1994;51:147–9.PubMedCrossRefGoogle Scholar
  178. 178.
    Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P. Maternal uniparental disomy for chromosome 14. J Med Genet. 1991;28:511–4.PubMedCrossRefGoogle Scholar
  179. 179.
    Sutton VR, Shaffer LG. A search for imprinted regions on chromosome 14: comparison of maternal and paternal UPD cases with cases of chromosome 14 deletion. Am J Med Genet. 2000;93:381–7.PubMedCrossRefGoogle Scholar
  180. 180.
    Boue’ A, Galano P. A collaborative study of the segregation of inherited chromosome structural rearrangements in 1356 prenatal diagnoses. Prenat Diagn. 1984;4:45–67.CrossRefGoogle Scholar
  181. 181.
    Munne S, Escudero T, Sandalinas M, Sable D, Cohen J. Gamete segregation in female carriers of Robertsonian translocations. Cytogenet Cell Genet. 2000;90:303–8.PubMedCrossRefGoogle Scholar
  182. 182.
    Gardner RJM, Sutherland GR. Chapter 6: Robertsonian translocations. In: Bobrow M, Epstein CJ, Hall JG, Harper PS, Motulsky AG, Scriver C, editors. Chromosome abnormalities and genetic counseling. New York: Oxford University Press; 2004.Google Scholar
  183. 183.
    Berger R, Bernard OA. Jumping translocations. Genes Chromosomes Cancer. 2007;46(8):717–23.PubMedCrossRefGoogle Scholar
  184. 184.
    Reddy KS. The conundrum of a jumping translocation (JT) in CVS from twins and review of JTs. Am J Med Genet A. 2010;152A(11):2924–36.PubMedCrossRefGoogle Scholar
  185. 185.
    Jewett T, Marnane D, Rao PN, Pettenati MJ. Evidence of telomere involvement in a jumping translocation involving chromosome 15 in a mildly affected infant. Am J Hum Genet. 1996;59(4(Suppl)):A121.Google Scholar
  186. 186.
    Tomkins DJ. Unstable familial translocations: a t(11;22)mat inherited as a t(11;15). Am J Hum Genet. 1981;33:745–51.PubMedGoogle Scholar
  187. 187.
    Farrell SA, Winsor EJT, Markovic VD. Moving satellites and unstable chromosome translocations: clinical and cytogenetic implications. Am J Med Genet. 1993;46:715–20.PubMedCrossRefGoogle Scholar
  188. 188.
    Park VM, Gustashaw KM, Wathen TM. The presence of interstitial telomeric sequences in constitutional chromosome abnormalities. Am J Hum Genet. 1992;50:914–23.PubMedGoogle Scholar
  189. 189.
    Giussani U, Facchinetti B, Cassina G, Zuffardi O. Mitotic recombination among acrocentric chromosomes’ short arms. Ann Hum Genet. 1996;60:91–7.CrossRefGoogle Scholar
  190. 190.
    Kang S-H L, Shaw C, Ou Z, et al. Insertional translocation detected using FISH confirmation of array-comparative genomic hybridization (aCGH) results. Am J Med Genet A. 2010;152A:1111–26.PubMedCrossRefGoogle Scholar
  191. 191.
    Neill NJ, Ballif BC, Lamb AN, et al. Recurrence, submicroscopic complexity, and potential clinical relevance of copy gains detected by array CGH that are shown to be unbalanced insertions by FISH. Genome Res. 2011;21(4):535–44. Epub 2011 March 7.PubMedCrossRefGoogle Scholar
  192. 192.
    Fryns JP, Kleczkowska A, Lebas E, Goffaux P, Van Den Berghe H. Complex chromosomal rearrangement in a mentally retarded boy without gross dysmorphic stigmata. Acta Paediatr. 1984;73(1):138–40.CrossRefGoogle Scholar
  193. 193.
    Van Hemel JO, Eussen HJ. Interchromosomal insertions; identification of five cases and a review. Hum Genet. 2000;107:415–32.PubMedCrossRefGoogle Scholar
  194. 194.
    Hoegerman SF. Chromosome 13 Long arm interstitial deletion may result from maternal inverted insertion. Science. 1979;205:1035–6.PubMedCrossRefGoogle Scholar
  195. 195.
    Callen DF, Woollatt E, Sutherland GR. Paracentric inversions in man. Clin Genet. 1985;27:87–92.Google Scholar
  196. 196.
    Madan K, Menko FH. Intrachromosomal insertions: a case report and a review. Hum Genet. 1992;89:1–9.PubMedCrossRefGoogle Scholar
  197. 197.
    Walker AP, Bocian M. Partial Duplication 8q12→q21.2 in Two sibs with maternally derived insertional and reciprocal translocations: case reports and review of partial duplications of chromosome 8. Am J Med Genet. 1987;27:3–22.PubMedCrossRefGoogle Scholar
  198. 198.
    Meer B, Wolff G, Back E. Segregation of a complex rearrangement of chromosomes 6, 7, 8, and 12 through three generations. Hum Genet. 1981;58(2):221–5.PubMedCrossRefGoogle Scholar
  199. 199.
    Pai GS, Thomas GH, Mahoney W, Migeon BR. Complex chromosome rearrangements; report of a new case and literature review. Clin Genet. 1980;18:436–44.PubMedCrossRefGoogle Scholar
  200. 200.
    Gorski JL, Kistenmacher ML, Punnett HH, Zackai EH, Emanuel BS. Reproductive risks for carriers of complex chromosome rearrangements: analysis of 25 families. Am J Med Genet. 1988;29:247–61.PubMedCrossRefGoogle Scholar
  201. 201.
    Daniel A, Hook EB, Wulf G. Risks of unbalanced progeny at amniocentesis to carriers of chromosomal rearrangements. Am J Med Genet. 1989;31:14–53.CrossRefGoogle Scholar
  202. 202.
    Batista DAS, Pai S, Stetten G. Molecular analysis of a complex chromosomal rearrangement and a review of familial cases. Am J Med Genet. 1994;53:255–63.PubMedCrossRefGoogle Scholar
  203. 203.
    Patsalis PC. Complex chromosome rearrangements. Genet Couns. 2007;18(1):57–69.PubMedGoogle Scholar
  204. 204.
    Wyandt HE, Tonk VS. Atlas of human chromosome heteromorphisms. Dordrecht: Kluwer Academic; 2003.Google Scholar
  205. 205.
    Gardner RJM, Sutherland GR. Variant chromosomes and abnormalities of no phenotypic consequence. In: Bobrow M, Epstein CJ, Hall JG, Harper PS, Motulsky AG, Scriver C, editors. Chromosome abnormalities and genetic counseling. New York: Oxford University Press; 2004. p. 233–46.Google Scholar
  206. 206.
    Howard-Peebles PN, Stanley WS, Corfmann A. Variant or real? The clinical cytogeneticist’s nightmare. Am J Hum Genet. 1995;57(4(Suppl)):A116.Google Scholar
  207. 207.
    Shaffer LG, Slovak ML, Campbell LJ. editors. ISCN 2009: An International system for Human Cytogenetic Nomenclature (2009). S. Karger, Unionville, CT:2009. pp 13, 53–4.Google Scholar
  208. 208.
    Ballif BC, Kashork CD, Shaffer LG. The promise and pitfalls of telomere region-specific probes. Am J Hum Genet. 2000;67:1356–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.UNC Hospitals Cytogenetics Laboratory, Department of Pathology and Laboratory Medicine, Pediatrics, and GeneticsUniversity of North Carolina HospitalsChapel HillUSA
  2. 2.Cytogenetics LaboratoryNorth Carolina Memorial HospitalChapel HillUSA
  3. 3.Department of Pediatrics, Pathology and Laboratory Medicine, and GeneticsThe University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations