Genomic Imprinting and Uniparental Disomy



Genomic imprinting refers to the process of differential modification and expression of parental alleles; the parental origin of the allele dictates whether it is transcribed. It is an epigenetic form of gene regulation that allows expression of only one parental allele. As a result, the same gene functions differently depending on whether it is maternally or paternally derived. This concept is contrary to that of the traditional Mendelian inheritance in which genetic information contributed by either parent is assumed to be equivalent.


Assist Reproductive Technology Imprint Gene Angelman Syndrome Paternal Allele Maternal Allele 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am grateful to Dr. David Wang for preparation of the diagrams.


  1. 1.
    Crouse HV. The controlling element in sex chromosome behaviour in Sciara. Genetics. 1960;45:1429–43.PubMedGoogle Scholar
  2. 2.
    Hall JG. Genomic imprinting: review and relevance to human diseases. Am J Hum Genet. 1990;46:857–73.PubMedGoogle Scholar
  3. 3.
    Hoppe PC, Illmensee K. Microsurgically produced homozygous-diploid uniparental mice. Proc Natl Acad Sci USA. 1977;74:5657–61.PubMedCrossRefGoogle Scholar
  4. 4.
    McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37:179–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Surani MAH, Barton SC, Norris ML. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature. 1984;308:548–50.PubMedCrossRefGoogle Scholar
  6. 6.
    Barton SC, Surani MAH, Norris ML. Role of paternal and maternal genomes in mouse development. Nature. 1984;311:374–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Surani MAH, Barton SC, Norris ML. Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell. 1986;45:127–36.PubMedCrossRefGoogle Scholar
  8. 8.
    Linder D, McCaw BK, Hecht F. Parthenogenic origin of benign ovarian teratomas. N Engl J Med. 1975;292:63–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Kajii T, Ohama K. Androgenetic origin of hydatidiform mole. Nature. 1977;268:633–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Lawler SD, Povey S, Fisher RA, Pickthal VJ. Genetic studies on hydatidiform moles. II. The origin of complete moles. Ann Hum Genet. 1982;46:209–22.PubMedCrossRefGoogle Scholar
  11. 11.
    McFadden DE, Kalousek DK. Two different phenotypes of fetuses with chromosomal triploidy: correlation with parental origin of the extra haploid set. Am J Med Genet. 1991;38:535–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Jacobs PA, Szulman AE, Funkhouser J, Matsuura JS, Wilson CC. Human triploidy: relationship between parental origin of the additional haploid complement and development of partial hydatidiform mole. Ann Hum Genet. 1982;46:223–31.PubMedCrossRefGoogle Scholar
  13. 13.
    McFadden DE, Kwong LC, Yam IY, Langlois S. Parental origin of triploidy in human fetuses: evidence for genomic imprinting. Hum Genet. 1993;92:465–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Cattanach BM. Parental origin effects in mice. J Embryol Exp Morphol. 1986;97(Suppl):137–50.PubMedGoogle Scholar
  15. 15.
    Lyon MF. The William Allan Memorial award address: X-chromosome inactivation and the location and expression of X-linked genes. Am J Hum Genet. 1988;42:8–16.PubMedGoogle Scholar
  16. 16.
    Sharman GB. Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature. 1971;230:231–2.PubMedCrossRefGoogle Scholar
  17. 17.
    Takagi N, Sasaki M. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature. 1975;256:640–2.PubMedCrossRefGoogle Scholar
  18. 18.
    West JD, Freis WI, Chapman VM, Papaioannou VE. Preferential expression of the maternally derived X chromosome in the mouse yolk sac. Cell. 1977;12:873–82.PubMedCrossRefGoogle Scholar
  19. 19.
    Harper MI, Fosten M, Monk M. Preferential paternal X inactivation in extra-embryonic tissues of early mouse embryos. J Embryol Exp Morphol. 1982;67:127–38.PubMedGoogle Scholar
  20. 20.
    Cheng MK, Disteche CM. Silence of the fathers: early X inactivation. Bioessays. 2004;26:821–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Harrison KB. X-chromosome inactivation in the human cytotrophoblast. Cytogenet Cell Genet. 1989;52:37–41.PubMedCrossRefGoogle Scholar
  22. 22.
    Goto T, Wright E, Monk M. Paternal X-chromosome inactivation in human trophoblastic cells. Mol Hum Reprod. 1997;3:77–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Migeon BR, Wolf SF, Axelman J, Kaslow DC, Schmidt M. Incomplete X chromosome dosage compensation in chorionic villi of human placenta. Proc Natl Acad Sci USA. 1985;82:3390–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Mohandas TK, Passage MB, Williams JWR, Sparks RS, Yen PH, Shapiro LJ. X-chromosome inactivation in cultured cells from human chorionic villi. Somat Cell Mol Genet. 1989;15:131–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Looijenga LHJ, Gillis AJM, Verkerk AJMH, van Putten WLJ, Ooserhuis JW. Heterogeneous X inactivation in trophoblastic cells of human full-term female placentas. Am J Hum Genet. 1999;64:1445–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Moreira de Mello JC, de Araújo ES, Stabellini R, Fraga AM, de Souza JE, Sumita DR, Camargo AA, Pereira LV. Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele-specific gene expression along the X chromosome. PLoS One. 2010;5:e10947.PubMedCrossRefGoogle Scholar
  27. 27.
    Ledbetter DH, Engel E. Uniparental disomy in humans: development of an imprinting map and its implications for prenatal diagnosis. Hum Mol Genet. 1995;4:1757–64.PubMedGoogle Scholar
  28. 28.
    Barlow DP. Gametic imprinting in mammals. Science. 1995;270:1610–3.PubMedCrossRefGoogle Scholar
  29. 29.
    Kopsida E, Mikaelsson MA, Davies W. The role of imprinted genes in mediating susceptibility to neuropsychiatric disorders. Horm Behav. 2011;59(3):375–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Brideau CM, Eilertson KE, Hagarman JA, Bustamante CD, Soloway PD. Successful computational prediction of novel imprinted genes from epigenomic features. Mol Cell Biol. 2010;30(13):3357–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Morison IM, Reeve AE. A catalogue of imprinted genes and parent- of-origin effects in humans and animals. Hum Mol Genet. 1998;7:1610–3.CrossRefGoogle Scholar
  32. 32.
    Glaser RL, Ramsay JP, Morison IM. The imprinted gene and parent-of-origin effect database now includes parental origin of de novo mutations. Nucleic Acids Res. 2006;34(Database issue):D29–31.PubMedCrossRefGoogle Scholar
  33. 33.
    Monk M. Genomic imprinting. Genes Dev. 1988;2:921–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Razin A, Cedar H. DNA methylation and genomic imprinting. Cell. 1994;77:473–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Paoloni-Giacobino A, D’Aiuto L, Cirio MC, Reinhart B, Chaillet JR. Conserved features of imprinted differentially methylated domains. Gene. 2007;399:33–45.PubMedCrossRefGoogle Scholar
  36. 36.
    Mohandas T, Sparkes RS, Shapiro LJ. Reactivation of an inactive human X-chromosome: evidence for inactivation by DNA methylation. Science. 1981;211:393–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Yen PH, Patel P, Chinault AC, Mohandas T, Shapiro LJ. Differential methylation of hypoxanthine phosphoribosyltransferase genes on active and inactive human X chromosomes. Proc Natl Acad Sci USA. 1984;81:1759–63.PubMedCrossRefGoogle Scholar
  38. 38.
    Keshet I, Lieman-Hurwitz J, Cedar H. DNA methylation affects the formation of active chromatin. Cell. 1986;44:535–43.PubMedCrossRefGoogle Scholar
  39. 39.
    Reik W, Collick A, Norris ML, Barton SC, Surani MA. Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature. 1987;328:248–51.PubMedCrossRefGoogle Scholar
  40. 40.
    Sapienza C, Peterson AC, Rossant J, Balling R. Degree of methylation of transgenes is dependent on gamete of origin. Nature. 1987;328:251–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Swain JL, Stewart TA, Leder P. Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell. 1987;50:719–27.PubMedCrossRefGoogle Scholar
  42. 42.
    Bartolomei M, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature. 1991;351:153–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Ferguson-Smith AC, Sasaki H, Cattanach BM, Surani MA. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature. 1993;362:751–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366:362–5.PubMedCrossRefGoogle Scholar
  45. 45.
    DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991;64:849–59.PubMedCrossRefGoogle Scholar
  46. 46.
    Sasaki H, Jones PA, Chaillet JR, Frguson-Smith AC, Barton SC, Reik W, Surani MA. Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (Igf2) gene. Genes Dev. 1992;6:1843–56.PubMedCrossRefGoogle Scholar
  47. 47.
    Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature. 2000;405:482–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature. 2000;405:486–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Barlow DP, Stöger R, Herrmann BG, Saito K, Schweifer N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature. 1991;349:84–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Stöger R, Kubicka P, Liu CG, Kafri T, Razin A, Cedar H, Barlow DP. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell. 1993;73:61–71.PubMedCrossRefGoogle Scholar
  51. 51.
    Driscoll DJ, Waters MF, Williams CA, Zori RT, Glenn CC, Avidano KM, Nicholls RD. A DNA methylation imprint, determined by the sex of the parent, distinguishes the Angelman and Prader-Willi syndromes. Genomics. 1992;13:917–24.PubMedCrossRefGoogle Scholar
  52. 52.
    Mowery-Rushton PA, Driscoll DJ, Nicholls RD, Locker J, Surti U. DNA methylation patterns in human tissues of uniparental origin using a zinc-finger gene (ZNF127) from the Angelman/Prader-Willi region. Am J Med Genet. 1996;61:140–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Glenn CC, Porter KA, Jong MT, Nicholls RD, Driscoll DJ. Functional imprinting and epigenetic modification of the human SNRPN gene. Hum Mol Genet. 1993;2:2001–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Glenn CC, Saitoh S, Jong MTC, Filbrandt MM, Surti U, Driscoll DJ, Nicholls RD. Gene Structure, DNA methylation, and imprinted expression of the human SNRPN gene. Am J Hum Genet. 1996;58:335–46.PubMedGoogle Scholar
  55. 55.
    Dittrich B, Buiting K, Gross S, Horsthemke B. Characterization of a methylation imprint in the Prader-Willi syndrome chromosome region. Hum Mol Genet. 1993;2:1995–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang Y, Shields T, Crenshaw T, Hao Y, Moulton T, Tycko B. Imprinting of human H19: allele-specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching. Am J Hum Genet. 1993;53:113–24.PubMedGoogle Scholar
  57. 57.
    Schneid H, Seurin D, Vazquez M-P, Gourmelen M, Cabrol S, Bouc YL. Parental allele specific methylation of the human insulin-like growth factor II gene and Beckwith-Wiedemann syndrome. J Med Genet. 1993;30:353–62.PubMedCrossRefGoogle Scholar
  58. 58.
    Ohlsson R, Nyström A, Pfeifer-Ohlsson S, Töhönen V, Hedborg F, Schofield P, Flam F, Ekström TJ. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nat Genet. 1993;4:94–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Kalscheuer VM, Mariman EC, Schepens MT, Rehder H, Ropers H-H. The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nat Genet. 1993;5:74–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Swales AK, Spears N. Genomic imprinting and reproduction. Reproduction. 2005;130:389–99.PubMedCrossRefGoogle Scholar
  61. 61.
    Kitsberg D, Selig S, Brandeis M, Simon I, Keshet I, Driscoll DJ, Nicholls RD, Cedar H. Allele-specific replication timing of imprinted gene regions. Nature. 1993;364:459–63.PubMedCrossRefGoogle Scholar
  62. 62.
    Knoll JHM, Cheng S-D, Lalande M. Allele specificity of DNA replication timing in the Angelman/Prader-Willi syndrome imprinted chromosomal region. Nat Genet. 1994;6:41–6.PubMedCrossRefGoogle Scholar
  63. 63.
    LaSalle JM, Lalande M. Domain organization of allele-specific replication within the GABRB3 gene cluster requires a biparental 15q11-13 contribution. Nat Genet. 1995;9:386–94.PubMedCrossRefGoogle Scholar
  64. 64.
    White LM, Rogan PK, Nicholls RD, Wu B-L, Korf B, Knoll JHM. Allele-specific replication of 15q11-q13 loci: a diagnostic test for detection of uniparental disomy. Am J Hum Genet. 1996;59:423–30.PubMedGoogle Scholar
  65. 65.
    Simon I, Tenzen T, Reubinoff BE, Hillman D, McCarrey JR, Cedar H. Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature. 1999;401(6756):929–32.PubMedCrossRefGoogle Scholar
  66. 66.
    Goldman MA, Holmquist GP, Gray MC, Caston LA, Nag A. Replication timing of genes and middle repetitive sequences. Science. 1984;224:686–92.PubMedCrossRefGoogle Scholar
  67. 67.
    Dhar V, Skoultchi AI, Schildkraut CL. Activation and repression of a beta-globin gene in cell hybrids is accompanied by a shift in its temporal replication. Mol Cell Biol. 1989;9:3524–32.PubMedGoogle Scholar
  68. 68.
    Selig S, Okumura K, Ward DC, Cedar H. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J. 1992;11:1217–25.PubMedGoogle Scholar
  69. 69.
    Feil R, Kelsey G. Genomic imprinting: a chromatin connection. Am J Hum Genet. 1997;61:1213–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Nicholls RD. New insights reveal complex mechanisms involved in genomic imprinting. Am J Hum Genet. 1994;54:733–40.PubMedGoogle Scholar
  71. 71.
    Simon A, Koppeschaar HP, Roijers JF, Hoppener JW, Lips CJ. Pseudohypoparathyroidism type Ia. Albright hereditary osteodystrophy: a model for research on G protein-coupled receptors and genomic imprinting. Neth J Med. 2000;56:100–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Weinstein LS, Liu J, Sakamoto A, Xie T, Chen M. Minireview: GNAS: normal and abnormal functions. Endocrinology. 2004;145:5459–64.PubMedCrossRefGoogle Scholar
  73. 73.
    Skuse DH, James RS, Bishop DV, Coppin B, Dalton P, Aamodt-Leeper G, Bacarese-Hamilton M, Creswell C, McGurk R, Jacobs PA. Evidence from Turner’s syndrome of an imprinted X-linked locus affecting cognitive function. Nature. 1997;387:705–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Nicholls RD. The impact of genomic imprinting for neurobehavioral and developmental disorders. J Clin Invest. 2000;105:413–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Rickard SJ, Wilson LC. Analysis of GNAS1 and overlapping transcripts identifies the parental origin of mutations in patients with sporadic Albright hereditary osteodystrophy and reveals a model system in which to observe the effects of splicing mutations on translated and untranslated messenger RNA. Am J Hum Genet. 2003;72:961–74.PubMedCrossRefGoogle Scholar
  76. 76.
    Mantovani G, de Sanctis L, Barbieri AM, Elli FM, Bollati V, Vaira V, Labarile P, Bondioni S, Peverelli E, Lania AG, Beck-Peccoz P, Spada A. Pseudohypoparathyroidism and GNAS epigenetic defects: clinical evaluation of albright hereditary osteodystrophy and molecular analysis in 40 patients. J Clin Endocrinol Metab. 2010;95:651–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Ledbetter DH, Riccardi VM, Airhart SD, Strobel RJ, Keenan BS, Crawford JD. Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. N Engl J Med. 1981;304:325–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Ledbetter DH, Mascarello JT, Riccardi VM, Harper VD, Airhart SD, Strobel RJ. Chromosome 15 abnormalities and the Prader-Willi syndrome: a follow-up report of 40 cases. Am J Hum Genet. 1982;34:278–85.PubMedGoogle Scholar
  79. 79.
    Magenis RE, Brown MG, Lacy DA, Budden S, LaFranchi S. Is Angelman syndrome an alternate result of del(15)(q11q13)? Am J Med Genet. 1987;28:829–38.PubMedCrossRefGoogle Scholar
  80. 80.
    Reed ML, Leff SE. Maternal imprinting of human SNRPN, a gene deleted in Prader-Willi syndrome. Nat Genet. 1994;6:163–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Matsuura T, Sutcliffe JS, Fang P, Galjaard R-J, Jiang Y-H, Benton CS, Rommens JM, Beaudet AL. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet. 1997;15:74–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Butler MG, Palmer CG. Parental origin of chromosome 15 deletion in Prader-Willi syndrome [letter]. Lancet. 1983;1:1285–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Knoll JH, Nicholls RD, Magenis RE, Graham Jr JM, Lalande M, Latt SA. Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am J Med Genet. 1989;32:285–90.PubMedCrossRefGoogle Scholar
  84. 84.
    Magenis RE, Toth-Fejel S, Allen LH, Black M, Brown MG, Budden S, Cohen R, Friedman JM, Kalousek D, Zonana J, Lacy D, LaFranchi S, Lahr M, Macfarlane J, Williams CPS. Comparison of the 15q deletions in Prader-Willi and Angelman syndromes: specific regions, extent of deletions, parental origin, and clinical consequences. Am J Med Genet. 1990;35:333–49.PubMedCrossRefGoogle Scholar
  85. 85.
    Williams CA, Zori RT, Stone JW, Gray BA, Cantu ES, Ostrer H. Maternal origin of 15q11-13 deletions in Angelman syndrome suggests a role for genomic imprinting. Am J Med Genet. 1990;35:350–3.PubMedCrossRefGoogle Scholar
  86. 86.
    Nicholls RD, Knoll JHM, Butler MG, Karam S, Lalande M. Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature. 1989;342:281–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Knoll JHM, Glatt KA, Nicholls RD, Malcolm S, Lalande M. Chromosome 15 uniparental disomy is not frequent in Angelman syndrome. Am J Hum Genet. 1991;48:16–21.PubMedGoogle Scholar
  88. 88.
    Malcolm S, Clayton-Smith J, Nicols M, Robb S, Webb T, Armour JA, Jeffreys AJ, Pembrey ME. Uniparental paternal disomy in Angelman’s syndrome. Lancet. 1991;337:694–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Mascari MJ, Gottlieb W, Rogan PK, Butler MG, Waller DA, Armour AL, Jeffreys AJ, Ladda RL, Nicholls RD. The frequency of uniparental disomy in Prader-Willi syndrome: implications for molecular diagnosis. N Engl J Med. 1992;326:1599–607.PubMedCrossRefGoogle Scholar
  90. 90.
    Bottani A, Robinson WP, DeLozier-Blanchet CD, Engel E, Morris MA, Schmitt B, Thun-Hohenstein L, Schinzel A. Angelman syndrome due to paternal uniparental disomy of chromosome 15: a milder phenotype? Am J Med Genet. 1994;51:35–40.PubMedCrossRefGoogle Scholar
  91. 91.
    Wagstaff J, Knoll JHM, Glatt KA, Shugart YY, Sommer A, Lalande M. Maternal but not paternal transmission of 15q11-13-linked nondeletion Angelman syndrome leads to phenotypic expression. Nat Genet. 1992;1:291–4.PubMedCrossRefGoogle Scholar
  92. 92.
    Glenn CC, Nicholls RD, Robinson WP, Saitoh S, Niikawa N, Schinzel A, Horsthemke B, Driscoll DJ. Modification of 15q11-q13 DNA methylation imprints in unique Angelman and Prader-Willi patients. Hum Mol Genet. 1993;2:1377–82.PubMedCrossRefGoogle Scholar
  93. 93.
    Reis A, Dittrich B, Greger V, Buiting K, Lalande M, Gillessen-Kaesbach G, Anvret M, Horsthemke B. Imprinting mutations suggested by abnormal DNA methylation patterns in familial Angelman and Prader-Willi syndromes. Am J Hum Genet. 1994;54:741–7.PubMedGoogle Scholar
  94. 94.
    Sutcliffe JS, Nakao M, Christian S, Orstavik KH, Tommerup N, Ledbetter DH, Beaudet AL. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nat Genet. 1994;8:52–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Bürger J, Buiting K, Dittrich B, Groß S, Lich C, Sperling K, Horsthemke B, Reis A. Different mechanisms and recurrence risks of imprinting defects in Angelman syndrome. Am J Hum Genet. 1997;61:88–93.PubMedCrossRefGoogle Scholar
  96. 96.
    Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet. 1997;15:70–3.PubMedCrossRefGoogle Scholar
  97. 97.
    Holm VA, Cassidy SB, Butler MG, Hanchett JM, Greenswag LR, Whitman BY, Greenberg F. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics. 1993;91:398–402.PubMedGoogle Scholar
  98. 98.
    Cassidy SB, Schwartz S. Prader-Willi syndrome. In: Pagon RA, Bird TC, Dolan CR, Stephens K, editors. GeneReviews [Internet]. Seattle: University of Washington; 1993–2012.Google Scholar
  99. 99.
    Pfeifer K. Mechanisms of genomic imprinting. Am J Hum Genet. 2000;67:777–87.PubMedCrossRefGoogle Scholar
  100. 100.
    Lee S, Kozlov S, Hernandez L, Chamberlain SJ, Brannan CI, Stewart CL, Wevrick R. Expression and imprinting of MAGEL2 suggest a role in Prader-Willi syndrome and the homologous murine imprinting phenotype. Hum Mol Genet. 2000;9:1813–9.PubMedCrossRefGoogle Scholar
  101. 101.
    de los Santos T, Schweizer J, Rees CA, Francke U. Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader-Willi deletion region, which is highly expressed in brain. Am J Hum Genet. 2000;67:1067–82.PubMedCrossRefGoogle Scholar
  102. 102.
    Lee S, Wevrick R. Identification of novel imprinted transcripts in the Prader-Willi syndrome and Angelman syndrome deletion region: further evidence for regional imprinting control. Am J Hum Genet. 2000;66:848–58.PubMedCrossRefGoogle Scholar
  103. 103.
    Ramsden SC, Clayton-Smith J, Birch R, Buiting K. Practice guidelines for the molecular analysis of Prader-Willi and Angelman syndromes. BMC Med Genet. 2010;11:70.PubMedCrossRefGoogle Scholar
  104. 104.
    Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, Garnica A, Cheung SW, Beaudet AL. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet. 2008;40:719–21.PubMedCrossRefGoogle Scholar
  105. 105.
    de Smith AJ, Purmann C, Walters RG, Ellis RJ, Holder SE, Van Haelst MM, Brady AF, Fairbrother UL, Dattani M, Keogh JM, Henning E, Yeo GS, O’Rahilly S, Froguel P, Farooqi IS, Blakemore AI. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet. 2009;18:3257–65.PubMedCrossRefGoogle Scholar
  106. 106.
    Angelman H. “Puppet” children: a report on three cases. Dev Med Child Neurol. 1965;7:681–8.CrossRefGoogle Scholar
  107. 107.
    Williams CA, Dagli AI, Driscoll DJ. Angelman syndrome. In: Pagon RA, Bird TC, Dolan CR, Stephens K, editors. GeneReviews [Internet]. Seattle: University of Washington; 1993–2012.Google Scholar
  108. 108.
    Jiang Y, Lev-Lehman E, Bressler J, Tsai T-F, Beaudet AL. Genetics of Angelman syndrome. Am J Hum Genet. 1999;65:1–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Williams CA, Driscoll DJ, Dagli AI. Clinical and genetic aspects of Angelman syndrome. Genet Med. 2010;12:385–95.PubMedCrossRefGoogle Scholar
  110. 110.
    Nakao M, Sutcliffe JS, Durtschi B, Mutirangura A, Ledbetter DH, Beaudet AL. Imprinting analysis of three genes in the Prader-Willi/Angelman region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Hum Mol Genet. 1994;3:309–15.PubMedCrossRefGoogle Scholar
  111. 111.
    Vu TH, Hoffman AR. Imprinting of the Angelman syndrome gene, UBE3A, is restricted to brain. Nat Genet. 1997;17:12–3.PubMedCrossRefGoogle Scholar
  112. 112.
    Rougeulle C, Glatt H, Lalande M. The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat Genet. 1997;17:14–5.PubMedCrossRefGoogle Scholar
  113. 113.
    Meguro M, Kashiwagi A, Mitsuya K, Nakao M, Kondo I, Saitoh S, Oshimura M. A novel maternally expressed gene, ATP10C, encodes a putative aminophospholipid translocase associated with Angelman syndrome. Nat Genet. 2001;28:19–20.PubMedGoogle Scholar
  114. 114.
    Buiting K, Saitoh S, Gross S, Dittrich B, Schwartz S, Nicholls RD, Horsthemke B. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet. 1995;9:395–400.PubMedCrossRefGoogle Scholar
  115. 115.
    Ohta T, Buiting K, Kokkonen H, McCandless S, Heeger S, Leisti H, Driscoll DJ, Cassidy SB, Horsthemke B, Nicholls RD. Molecular mechanism of Angelman syndrome in two large families involves an imprinting mutation. Am J Hum Genet. 1999;64:385–96.PubMedCrossRefGoogle Scholar
  116. 116.
    Buiting K, Lich C, Cottrell S, Barnicoat A, Horsthemke B. A 5-kb imprinting center deletion in a family with Angelman syndrome reduces the shortest region of deletion overlap to 880 bp. Hum Genet. 1999;105:665–6.PubMedCrossRefGoogle Scholar
  117. 117.
    Buiting K, Barnicoat A, Lich C, Pembrey M, Malcolm S, Horsthemke B. Disruption of the bipartite imprinting center in a family with Angelman syndrome. Am J Hum Genet. 2001;68:1290–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Beckwith JB. Macroglossia, omphalocele, adrenal cytomegaly, gigantism, and hyperplastic visceromegaly. Birth Defects. 1969;5:188.Google Scholar
  119. 119.
    Pettenati MJ, Haines JL, Higgins RR, Wappner RS, Palmer CG, Weaver DD. Wiedemann-Beckwith syndrome: presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Hum Genet. 1986;74:143–54.PubMedCrossRefGoogle Scholar
  120. 120.
    Henry I, Bonaiti-Pellie C, Chehensse V, Beldjord C, Schwartz C, Utermann G, Junien C. Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature. 1991;351:665–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Catchpoole D, Lam WWK, Valler D, Temple IK, Joyce JA, Reik W, Schofield PN, Maher ER. Epigenetic modification and uniparental inheritance of H19 in Beckwith-Wiedemann syndrome. J Med Genet. 1997;34:353–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Brown KW, Gardner A, Williams JC, Mott MG, McDermott A, Maitland NJ. Paternal origin of 11p15 duplications in the Beckwith-Wiedemann syndrome. A new case and review of the literature. Cancer Genet Cytogenet. 1992;58:66–70.PubMedCrossRefGoogle Scholar
  123. 123.
    Weksberg R, Teshima I, Williams BR, Greenberg CR, Pueschel SM, Chernos JE, Fowlow SB, Hoyme E, Anderson IJ, Whiteman DA, Fisher N, Squire J. Molecular characterization of cytogenetic alterations associated with the Beckwith-Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for BWS is imprinted. Hum Mol Genet. 1993;2:549–56.PubMedCrossRefGoogle Scholar
  124. 124.
    Tommerup N, Brandt CA, Pedersen S, Bolund L, Kamper J. Sex dependent transmission of Beckwith-Wiedemann syndrome associated with a reciprocal translocation t(9;11)(p11.2;p15.5). J Med Genet. 1993;30:958–61.PubMedCrossRefGoogle Scholar
  125. 125.
    Weksberg R, Nishikawa J, Caluseriu O, Fei Y-L, Shuman C, Wei C, Steele L, Cameron J, Smith A, Ambus I, Li M, Ray PN, Sadowski P, Squire J. Tumor development in the Beckwith-Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1. Hum Mol Genet. 2001;10:2989–3000.PubMedCrossRefGoogle Scholar
  126. 126.
    Moutou C, Junien C, Henry I, Bonaiti-Pellie C. Beckwith- Wiedemann syndrome: a demonstration of the mechanisms responsible for the excess of transmitting females. J Med Genet. 1992;29:217–20.PubMedCrossRefGoogle Scholar
  127. 127.
    Viljoen D, Ramesar R. Evidence for paternal imprinting in familial Beckwith-Wiedemann syndrome. J Med Genet. 1992;29:221–5.PubMedCrossRefGoogle Scholar
  128. 128.
    Hatada I, Hirofumi O, Fukushima Y, Kaneko Y, Inoue M, Komoto Y, Okada A, Ohishi S, Nabetani A, Morisaki H, Nakayama M, Niikawa N, Mukai T. An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nat Genet. 1996;14:171–3.PubMedCrossRefGoogle Scholar
  129. 129.
    Lam WWK, Hatada I, Ohishi S, Mukai T, Joyce JA, Cole TRP, Donnai D, Reik W, Schofield PN, Maher ER. Analysis of germline (p57KIP2) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel genotype-phenotype correlation. J Med Genet. 1999;36:518–23.PubMedGoogle Scholar
  130. 130.
    Ping AJ, Reeve AE, Law DJ, Young MR, Boehnke M, Feinberg AP. Genetic linkage of Beckwith-Wiedemann syndrome to 11p15. Am J Hum Genet. 1989;44:720–3.PubMedGoogle Scholar
  131. 131.
    Koufos A, Grundy P, Morgan K, Aleck KA, Hadro T, Lampkin BC, Kalbakji A, Cavenee WK. Familial Wiedemann-Beckwith syndrome and a second Wilms Tumor locus both map to 11p15.5. Am J Hum Genet. 1989;44:711–9.PubMedGoogle Scholar
  132. 132.
    Lee MP, DeBaun MR, Mitsuya K, Galonek HL, Brandenburg S, Oshimura M, Feinberg AP. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc Natl Acad Sci USA. 1999;96:5203–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Lee M, Brandenburg S, Landes G, Adams M, Miller G, Feinberg A. Two novel genes in the center of the 11p15 imprinted domain escape genomic imprinting. Hum Mol Genet. 1999;8:683–90.PubMedCrossRefGoogle Scholar
  134. 134.
    Matsuoka S, Thompson JS, Edwards MC, Bartletta JM, Grundy P, Kalikin LM, Harper JW, Elledge SJ, Feinberg AP. Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15. Proc Natl Acad Sci USA. 1996;93:3026–30.PubMedCrossRefGoogle Scholar
  135. 135.
    Hatada I, Inazawa J, Abe T, Nakayama M, Kaneko Y, Jinno Y, Niikawa N, Ohashi H, Fukushima Y, Iida K, Yutani C, Takahashi S, Chiba Y, Ohishi S, Mukai T. Genomic imprinting of human p57KIP2 and its reduced expression in Wilms’ tumors. Hum Mol Genet. 1996;5:783–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Mitsuya K, Meguro M, Le MP, Katoh M, Schulz TC, Kugoh H, Yoshida MA, Niikawa N, Feinberg AP, Oshimura M. LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum Mol Genet. 1999;8:1209–17.PubMedCrossRefGoogle Scholar
  137. 137.
    Reik W, Brown KW, Schneid H, Le Bouc Y, Bickmore W, Maher ER. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum Mol Genet. 1995;4:2379–85.PubMedCrossRefGoogle Scholar
  138. 138.
    Gaston V, Le Bouc Y, Soupre V, Burglen L, Donadieu J, Oro H, Audry G, Vazquez M-P, Gicquel C. Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome. Eur J Hum Genet. 2001;9:409–18.PubMedCrossRefGoogle Scholar
  139. 139.
    Cox GF, Bürger J, Lip V, Mau UA, Sperling K, Wu BL, Horsthemke B. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet. 2002;71:162–4.PubMedCrossRefGoogle Scholar
  140. 140.
    Ørstavik KH, Eiklid K, van der Hagen CB, Spetalen S, Kierulf K, Skjeldal O, Buiting K. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am J Hum Genet. 2003;72:218–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Ludwig M, Katalinic A, Gross S, Sutcliffe A, Varon R, Horsthemke B. Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J Med Genet. 2005;42:289–91.PubMedCrossRefGoogle Scholar
  142. 142.
    Owen CM, Segars Jr JH. Imprinting disorders and assisted reproductive technology. Semin Reprod Med. 2009;27:417–28.PubMedCrossRefGoogle Scholar
  143. 143.
    Maher ER. Imprinting and assisted reproductive technology. Hum Mol Genet. 2005;14(Review Issue 1):R133–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Mackay DJ, Boonen SE, Clayton-Smith J, Goodship J, Hahnemann JM, Kant SG, Njølstad PR, Robin NH, Robinson DO, Siebert R, Shield JP, White HE, Temple IK. A maternal hypomethylation syndrome presenting as transient neonatal diabetes mellitus. Hum Genet. 2006;120:262–9.PubMedCrossRefGoogle Scholar
  145. 145.
    Rossignol S, Steunou V, Chalas C, Kerjean A, Rigolet M, Viegas- Pequignot E, Jouannet P, Le Bouc Y, Gicquel C. The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J Med Genet. 2006;43:902–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Bliek J, Verde G, Callaway J, Maas SM, De Crescenzo A, Sparago A, Cerrato F, Russo S, Ferraiuolo S, Rinaldi MM, Fischetto R, Lalatta F, Giordano L, Ferrari P, Cubellis MV, Larizza L, Temple IK, Mannens MM, Mackay DJ, Riccio A. Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur J Hum Genet. 2009;17:611–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Iacobuzio-Donahue CA. Epigenetic changes in cancer. Annu Rev Pathol. 2009;4:229–49.PubMedCrossRefGoogle Scholar
  148. 148.
    Kumar D, Verma M. Methods in cancer epigenetics and epidemiology. Methods Mol Biol. 2009;471:273–88.PubMedCrossRefGoogle Scholar
  149. 149.
    Heutink P, van der Mey AGL, Sandkuijl LA, van Gils APG, Bardoel A, Breedveld GJ, van Vliet M, van Ommen G-JB, Cornelisse CJ, Oostra BA, Weber JL, Deville P. A gene subject to genomic imprinting and responsible for hereditary paragangliomas maps to chromosome 11q23-qter. Hum Mol Genet. 1992;1:7–10.PubMedCrossRefGoogle Scholar
  150. 150.
    Mariman ECM, van Beersum SEC, Cremers CWRJ, vanBaars FM, Ropers HH. Analysis of a second family with hereditary non- chromaffin paragangliomas locates the underlying gene at the proximal region of chromosome 11q. Hum Genet. 1993;91:357–61.PubMedCrossRefGoogle Scholar
  151. 151.
    Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, Van Der Mey A, Taschner PEM, Rubinstein WS, Myers EN, Richard 3rd CW, Cornelisse CJ, Devilee P, Devlin B. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000;287:848–51.PubMedCrossRefGoogle Scholar
  152. 152.
    Milunsky JM, Maher TA, Michels VV, Milunsky A. Novel mutations and the emergence of a common mutation in the SDHD gene causing familial paraganglioma. Am J Med Genet. 2001;100:311–4.PubMedCrossRefGoogle Scholar
  153. 153.
    Gimenez-Roqueplo A-P, Favier J, Rustin P, Mourad J-J, Plouin P-F, Corvol P, Rötig A, Jeunemaitre X. The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am J Hum Genet. 2001;69:1186–97.PubMedCrossRefGoogle Scholar
  154. 154.
    van der Mey AG, Maaswinkel-Mooy PD, Cornelisse CJ, Schmidt PH, van de Kamp JJ. Genomic imprinting in hereditary glomus tumours: evidence for new genetic theory. Lancet. 1989;2:1291–4.PubMedGoogle Scholar
  155. 155.
    van Gils AP, van der Mey AG, Hoogma RP, Sankuijl LA, Maaswinkel-Mooy PD, Falke TH, Pauwels EK. MRI screening of kindred at risk of developing paragangliomas: support for genomic imprinting in hereditary glomus tumours. Br J Cancer. 1992;65:903–7.PubMedCrossRefGoogle Scholar
  156. 156.
    Janecke AR, Willett-Brozick JE, Karas C, Hasipek M, Loeffler-Ragg J, Baysal BE. Identification of a 4.9-kilo base-pair Alu-mediated founder SDHD deletion in two extended paraganglioma families from Austria. J Hum Genet. 2010;55:182–5.PubMedCrossRefGoogle Scholar
  157. 157.
    Pigny P, Vincent A, Cardot Bauters C, Bertrand M, de Montpreville VT, Crepin M, Porchet N, Caron P. Paraganglioma after maternal transmission of a succinate dehydrogenase gene mutation. J Clin Endocrinol Metab. 2009;93:1609–15.CrossRefGoogle Scholar
  158. 158.
    Schroeder WT, Chao L-Y, Dao DD, Strong LC, Pathak S, Riccardi V, Lewis WH, Saunders GF. Nonrandom loss of maternal chromosome 11 alleles in Wilms tumors. Am J Hum Genet. 1987;40:413–20.PubMedGoogle Scholar
  159. 159.
    Mannens M, Slater RM, Heyting C, Bliek J, de Kraker J, Coad N, de Pagter-Holthuizen P, Pearson PL. Molecular nature of genetic changes resulting in loss of heterozygosity of chromosome 11 in Wilms’ tumors. Hum Genet. 1988;81:41–8.PubMedCrossRefGoogle Scholar
  160. 160.
    Scrable H, Cavenee W, Ghavimi F, Lovell M, Morgan K, Sapienza C. A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc Natl Acad Sci USA. 1989;86:7480–4.PubMedCrossRefGoogle Scholar
  161. 161.
    Koi M, Johnson LA, Kalikin LM, Little PF, Nakamura Y, Feinberg AP. Tumor cell growth arrest caused by subchromosomal transferable DNA fragments from chromosome 11. Science. 1993;260:361–4.PubMedCrossRefGoogle Scholar
  162. 162.
    Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun K, Maw MA, Smith PJ, Reeve AE. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature. 1993;362:749–51.PubMedCrossRefGoogle Scholar
  163. 163.
    Wu HK, Squire JA, Catzavelos CG, Weksberg R. Relaxation of imprinting of human insulin-like growth factor II gene, IGF2, in sporadic breast carcinomas. Biochem Biophys Res Commun. 1997;235:123–9.PubMedCrossRefGoogle Scholar
  164. 164.
    Wang WH, Duan JX, Vu TH, Hoffman AR. Increased expression of the insulin-like growth factor-II gene in Wilms’ tumor is not dependent on loss of genomic imprinting or loss of heterozygosity. J Biol Chem. 1996;271:27863–70.PubMedCrossRefGoogle Scholar
  165. 165.
    Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature. 1986;323:643–6.PubMedCrossRefGoogle Scholar
  166. 166.
    Ejima Y, Sasaki MS, Kaneko A, Tanooka H. Types, rates, origin and expressivity of chromosome mutations involving 13q14 in retinoblastoma patients. Hum Genet. 1988;79:118–23.PubMedCrossRefGoogle Scholar
  167. 167.
    Dryja TP, Mukai S, Petersen R, Rapaport JM, Walton D, Yandell DW. Parental origin of mutations of the retinoblastoma gene. Nature. 1989;339:556–8.PubMedCrossRefGoogle Scholar
  168. 168.
    Toguchida J, Ishizaki K, Sasaki MS, Nakamura Y, Ikenaga M, Kato M, Sugimot M, Kotoura Y, Yamamuro T. Preferential mutation of paternally derived RB gene as the initial event in sporadic osteosarcoma. Nature. 1989;338:156–8.PubMedCrossRefGoogle Scholar
  169. 169.
    Ohtani-Fujita N, Dryja TP, Rapaport JM, Fujita T, Matsumura S, Ozasa K, Watanabe Y, Hayashi K, Maeda K, Kinoshita S, Matsumura T, Ohnishi Y, Hotta Y, Takahashi R, Kato MV, Ishizaki K, Sasaki MS, Horsthemke B, Minoda K, Sakai T. Hypermethylation in the retinoblastoma gene is associated with unilateral, sporadic retinoblastoma. Cancer Genet Cytogenet. 1997;98:43–9.PubMedCrossRefGoogle Scholar
  170. 170.
    Kanber D, Berulava T, Ammerpohl O, Mitter D, Richter J, Siebert R, Horsthemke B, Lohmann D, Buiting K. The human retinoblastoma gene is imprinted. PLoS Genet. 2009;5:e1000790.PubMedCrossRefGoogle Scholar
  171. 171.
    Mitelman F. Catalog of chromosome aberrations in cancer. 5th ed. New York: Wiley-Liss; 1994.Google Scholar
  172. 172.
    Cheng JM, Hiemstra JL, Schneider SS, Naumova A, Cheung N-KV, Cohn SL, Diller L, Sapienza C, Brodeur GM. Preferential amplification of the paternal allele of the N-myc gene in human neuroblastomas. Nat Genet. 1993;4:191–4.PubMedCrossRefGoogle Scholar
  173. 173.
    Caron H, Peter M, van Sluis P, Speleman F, de Kraker J, Laureys G, Michon J, Brugieres L, Voute PA, Westerveld A, Slater R, DeLattre O, Versteeg R. Evidence for two tumour suppressor loci on chromosomal bands 1p35-36 involved in neuroblastoma: one probably imprinted, another associated with N-myc amplification. Hum Mol Genet. 1995;4:535–9.PubMedCrossRefGoogle Scholar
  174. 174.
    Hogarty MD, Winter CL, Liu X, Guo C, White PS, Look AT, Bodeur GM, Maris JM. No evidence for the presence of an imprinted neuroblastoma suppressor gene within chromosome sub-band 1p36.3. Cancer Res. 2002;15:6481–4.Google Scholar
  175. 175.
    Wylie AA, Murphy SK, Orton TC, Jirtle RL. Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res. 2000;10:1711–8.PubMedCrossRefGoogle Scholar
  176. 176.
    Astuti D, Latif F, Wagner K, Gentle D, Cooper WN, Catchpoole D, Grundy R, Ferguson-Smith AC, Maher ER. Epigenetic alteration at the DLK1-GTL2 imprinted domain in human neoplasia: analysis of neuroblastoma, phaeochromocytoma and Wilms’ tumour. Br J Cancer. 2005;92:1574–80.PubMedCrossRefGoogle Scholar
  177. 177.
    Engel E. A new genetic concept: uniparental disomy and its potential effect, isodisomy. Am J Med Genet. 1980;6:137–43.PubMedCrossRefGoogle Scholar
  178. 178.
    Robinson WP, Wagstaff J, Bernasconi F, Baccichette C, Artifoni L, Franzoni E, Suslak L, Shih L-Y, Aviv H, Schinzel AA. Uniparental disomy explains the occurrence of the Angelman or Prader-Willi syndrome in patients with an additional small inv dup(15) chromosome. J Med Genet. 1993;30:756–60.PubMedCrossRefGoogle Scholar
  179. 179.
    Spence JE, Perciaccante RG, Greig GM, Willard HF, Ledbetter DH, Hejtmancik JF, Pollack MS, O’Brien WE, Beaudet AL. Uniparental disomy as a mechanism for human genetic disease. Am J Hum Genet. 1988;42:217–26.PubMedGoogle Scholar
  180. 180.
    Pulkkinen L, Bullrich F, Czarnecki P, Weiss L, Uitto J. Maternal uniparental disomy of chromosome 1 with reduction to homozygosity of the LAMB3 locus in a patient with Herlitz junctional epidermolysis bullosa. Am J Hum Genet. 1997;61:611–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Dufourcq-Lagelouse R, Lambert N, Duval M, Viot G, Vilmer E, Fischer A, Prieur M, de Saint Basile G. Chediak-Higashi syndrome associated with maternal uniparental isodisomy of chromosome 1. Eur J Hum Genet. 1999;7:633–7.PubMedCrossRefGoogle Scholar
  182. 182.
    Spiekerkoetter U, Eeds A, Yue Z, Haines J, Strauss AW, Summar M. Uniparental disomy of chromosome 2 resulting in lethal trifunctional protein deficiency due to homozygous alpha-subunit mutations. Hum Mutat. 2002;20:447–51.PubMedCrossRefGoogle Scholar
  183. 183.
    Turner CL, Bunyan DJ, Thomas NS, Mackay DJ, Jones HP, Waterham HR, Wanders RJ, Temple IK. Zellweger syndrome resulting from maternal isodisomy of chromosome 1. Am J Med Genet A. 2007;143A:2172–7.PubMedCrossRefGoogle Scholar
  184. 184.
    Wassink TH, Losh M, Frantz RS, Vieland VJ, Goedken R, Piven J, Sheffield VC. A case of autism and uniparental disomy of chromosome 1. Hum Genet. 2005;117:200–6.PubMedCrossRefGoogle Scholar
  185. 185.
    Field LL, Tobias R, Robinson WP, Paisey R, Bain S. Maternal uniparental disomy of chromosome 1 with no apparent phenotypic effects. Am J Hum Genet. 1998;63:1216–20.PubMedCrossRefGoogle Scholar
  186. 186.
    Gelb BD, Willner JP, Dunn TM, Kardon NB, Verloes A, Poncin J, Desnick RJ. Paternal uniparental disomy for chromosome 1 revealed by molecular analysis of a patient with pycnodysostosis. Am J Hum Genet. 1998;62:848–54.PubMedCrossRefGoogle Scholar
  187. 187.
    Miura Y, Hiura M, Torigoe K, Numata O, Kuwahara A, Matsunaga M, Hasegawa S, Boku N, Ino H, Mardy S, Endo F, Matsuda I, Indo Y. Complete paternal uniparental isodisomy for chromosome 1 revealed by mutation analyses of the TRKA (NTRK1) gene encoding a receptor tyrosine kinase for nerve growth factor in a patient with congenital insensitivity to pain with anhidrosis. Hum Genet. 2000;107:205–9.PubMedCrossRefGoogle Scholar
  188. 188.
    Takizawa Y, Pulkkinen L, Chao SC, Nakajima H, Nakano Y, Shimizu H, Uitto J. Mutation report: complete paternal uniparental isodisomy of chromosome 1: a novel mechanism for Herlitz junctional epidermolysis bullosa. J Invest Dermatol. 2000;115:307–11.PubMedCrossRefGoogle Scholar
  189. 189.
    Fassihi H, Wessagowit V, Ashton GH, Moss C, Ward R, Denyer J, Mellerio JE, McGrath JA. Complete paternal uniparental isodisomy of chromosome 1 resulting in Herlitz junctional epidermolysis bullosa. Clin Exp Dermatol. 2005;30:71–4.PubMedCrossRefGoogle Scholar
  190. 190.
    Thompson DA, McHenry CL, Li Y, Richards JE, Othman MI, Schwinger E, Vollrath D, Jacobson SG, Gal A. Retinal dystrophy due to paternal isodisomy for chromosome 1 or chromosome 2, with homoallelism for mutations in RPE65 or MERTK, respectively. Am J Hum Genet. 2002;70:224–9.PubMedCrossRefGoogle Scholar
  191. 191.
    Fremeaux-Bacchi V, Sanlaville D, Menouer S, Blouin J, Dragon-Durey MA, Fischbach M, Vekemans M, Fridman WH. Unusual clinical severity of complement membrane cofactor protein-associated hemolytic-uremic syndrome and uniparental isodisomy. Am J Kidney Dis. 2007;49:323–9.PubMedCrossRefGoogle Scholar
  192. 192.
    Chen H, Young R, Mu X, Nandi K, Miao S, Prouty L, Ursin S, Gonzalez J, Yanamandra K. Uniparental isodisomy resulting from 46, XX, i(1p), i(1q) in a woman with short stature, ptosis, micro/retrognathia, myopathy, deafness, and sterility. Am J Med Genet. 1999;82:215–8.PubMedCrossRefGoogle Scholar
  193. 193.
    Harrison K, Eisenger K, Anyane-Yeboa K, Brown S. Maternal uniparental disomy of chromosome 2 in a baby with trisomy 2 mosaicism in amniotic fluid culture. Am J Med Genet. 1995;58:147–51.PubMedCrossRefGoogle Scholar
  194. 194.
    Webb AL, Sturgiss S, Warwicker P, Robson SC, Goodship JA, Wolstenholme J. Maternal uniparental disomy for chromosome 2 in association with confined placental mosaicism for trisomy 2 and severe intrauterine growth retardation. Prenat Diagn. 1996;16:958–62.PubMedCrossRefGoogle Scholar
  195. 195.
    Hansen WF, Bernard LE, Langlois S, Rao KW, Chescheir NC, Aylsworth AS, Smith DI, Robinson WP, Barrett IJ, Kalousek DK. Maternal uniparental disomy of chromosome 2 and confined placental mosaicism for trisomy 2 in a fetus with intrauterine growth restriction, hypospadias, and oligohydramnios. Prenat Diagn. 1997;17:443–50.PubMedCrossRefGoogle Scholar
  196. 196.
    Wolstenholme J, White I, Sturgiss S, Carter J, Plant N, Goodship JA. Maternal uniparental heterodisomy for chromosome 2: detection through ‘atypical’ maternal AFP/hCG levels, with an update on a previous case. Prenat Diagn. 2001;21:813–7.PubMedCrossRefGoogle Scholar
  197. 197.
    Bernasconi F, Karagüzel A, Celep F, Keser I, Lüleci G, Dutly F, Schinzel AA. Normal phenotype with maternal isodisomy in a female with two isochromosomes: i(2p) and i(2q). Am J Hum Genet. 1996;59:1114–8.PubMedGoogle Scholar
  198. 198.
    Shaffer LG, McCaskill C, Egli CA, Baker JC, Johnston KM. Is there an abnormal phenotype associated with maternal isodisomy for chromosome 2 in the presence of two isochromosomes? Am J Hum Genet. 1997;61:461–2.PubMedCrossRefGoogle Scholar
  199. 199.
    Heide E, Heide K-G, Rodewald A. Maternal uniparental disomy (UPD) for chromosome 2 discovered by exclusion of paternity. Am J Med Genet. 2000;92:260–3.PubMedCrossRefGoogle Scholar
  200. 200.
    Herzfeld T, Wolf N, Winter P, Hackstein H, Vater D, Müller U. Maternal uniparental heterodisomy with partial isodisomy of a chromosome 2 carrying a splice acceptor site mutation (IVS9-2A>T) in ALS2 causes infantile- onset ascending spastic paralysis (IAHSP). Neurogenetics. 2009;10:59–64.PubMedCrossRefGoogle Scholar
  201. 201.
    Albrecht B, Mergenthaler S, Eggermann K, Zerres K, Passarge E, Eggermann T. Uniparental isodisomy for paternal 2 p and maternal 2q in a phenotypically normal female with two isochromosomes, i(2p) and i(2q). J Med Genet. 2001;38:214–5.PubMedCrossRefGoogle Scholar
  202. 202.
    Petit FM, Gajdos V, Parisot F, Capel L, Aboura A, Lachaux A, Tachdjian G, Poüs C, Labrune P. Paternal isodisomy for chromosome 2 as the cause of Crigler-Najjar type I syndrome. Eur J Hum Genet. 2005;13:278–82.PubMedCrossRefGoogle Scholar
  203. 203.
    Kantarci S, Ragge NK, Thomas NS, Robinson DO, Noonan KM, Russell MK, Donnai D, Raymond FL, Walsh CA, Donahoe PK, Pober BR. Donnai-Barrow syndrome (DBS/FOAR) in a child with a homozygous LRP2 mutation due to complete chromosome 2 paternal isodisomy. Am J Med Genet A. 2008;146A:1842–7.PubMedCrossRefGoogle Scholar
  204. 204.
    Fassihi H, Lu L, Wessagowit V, Ozoemena LC, Jones CA, Dopping-Hepenstal PJ, Foster L, Atherton DJ, Mellerio JE, McGrath JA. Complete maternal isodisomy of chromosome 3 in a child with recessive dystrophic epidermolysis bullosa but no other phenotypic abnormalities. J Invest Dermatol. 2006;126:2039–43.PubMedCrossRefGoogle Scholar
  205. 205.
    Hoffman TL, Blanco E, Lane A, Galvin-Parton P, Gadi I, Santer R, DeLeón D, Stanley C, Wilson TA. Glucose metabolism and insulin secretion in a patient with ABCC8 mutation and Fanconi-Bickel syndrome caused by maternal isodisomy of chromosome 3. Clin Genet. 2007;71:551–7.PubMedCrossRefGoogle Scholar
  206. 206.
    Srebniak M, Noomen P, dos Santos P, Halley D, van de Graaf R, Govaerts L, Wouters C, Galjaard RJ, Van Opstal D. An incomplete trisomy 3 rescue resulting in a marker chromosome and UPD(3)–difficulties in interpretation. Prenat Diagn. 2008;28:967–70.PubMedCrossRefGoogle Scholar
  207. 207.
    Xiao P, Liu P, Weber JL, Papasian CJ, Recker RR, Deng HW. Paternal uniparental isodisomy of the entire chromosome 3 revealed in a person with no apparent phenotypic disorders. Hum Mutat. 2006;27:133–7.PubMedCrossRefGoogle Scholar
  208. 208.
    Lindenbaum RH, Woods CG, Norbury CG, Povey S, Rysiecki G. An individual with maternal disomy of chromosome 4 and iso (4p), iso 4(q). Am J Hum Genet. 1991;49(Suppl):A285.Google Scholar
  209. 209.
    Spena S, Duga S, Asselta R, Peyvandi F, Mahasandana C, Malcovati M, Tenchini ML. Congenital afibrinogenaemia caused by uniparental isodisomy of chromosome 4 containing a novel 15-kb deletion involving fibrinogen Aalpha-chain gene. Eur J Hum Genet. 2004;12:891–8.PubMedCrossRefGoogle Scholar
  210. 210.
    Middleton FA, Trauzzi MG, Shrimpton AE, Gentile KL, Morley CP, Medeiros H, Pato MT, Pato CN. Complete maternal uniparental isodisomy of chromosome 4 in a subject with major depressive disorder detected by high density SNP genotyping arrays. Am J Med Genet B Neuropsychiatr Genet. 2006;141B:28–32.PubMedCrossRefGoogle Scholar
  211. 211.
    Kuchinka BD, Barrett IJ, Moya G, Sanchez JM, Langlois S, Yong SL, Kalousek DK, Robinson WP. Two cases of confined placental mosaicism for chromosome 4, including one with maternal uniparental disomy. Prenat Diagn. 2001;21:36–9.PubMedCrossRefGoogle Scholar
  212. 212.
    Brzustowicz LM, Allitto BA, Matseoane D, Theve R, Michaud L, Chatkupt S, Sugarman E, Penchaszadeh GK, Suslak L, Koenigsberger MR, Gilliam TC, Handelin BL. Paternal isodisomy for chromosome 5 in a child with spinal muscular atrophy. Am J Hum Genet. 1994;54:482–8.PubMedGoogle Scholar
  213. 213.
    van den Berg-Loonen EM, Savelkoul P, van Hooff H, van Eede P, Riesewijk A, Geraedts J. Uniparental maternal disomy 6 in a renal transplant patient. Hum Immunol. 1996;45:46–51.PubMedCrossRefGoogle Scholar
  214. 214.
    Sprio RP, Christian SL, Ledbetter DH, New MI, Wilson RC, Roizen N, Rosenfield RL. Intrauterine growth retardation associated with maternal uniparental disomy for chromosome 6 unmasked by congenital adrenal hyperplasia. Pediatr Res. 1999;46:510–3.CrossRefGoogle Scholar
  215. 215.
    Eggermann T, Marg W, Mergenthaler S, Eggermann K, Schemmel V, Stoffers U, Zerres K, Spranger S. Origin of uniparental disomy 6: presentation of a new case and review on the literature. Ann Genet. 2001;44:41–5.PubMedCrossRefGoogle Scholar
  216. 216.
    López-Gutiérrez AU, Riba L, Ordoñez-Sánchez ML, Ramírez-Jiménez S, Cerrillo-Hinojosa M, Tusié-Luna MT. Uniparental disomy for chromosome 6 results in steroid 21-hydroxylase deficiency: evidence of different genetic mechanisms involved in the production of the disease. J Med Genet. 1998;35:1014–9.PubMedCrossRefGoogle Scholar
  217. 217.
    Das S, Lese CM, Song M, Jensen JL, Wells LA, Barnoski BL, Roseberry JA, Camacho JM, Ledbetter DH, Schnur RE. Partial paternal uniparental disomy of chromosome 6 in an infant with neonatal diabetes, macroglossia, and craniofacial abnormalities. Am J Hum Genet. 2000;67:1586–91.PubMedCrossRefGoogle Scholar
  218. 218.
    Prando C, Boisson-Dupuis S, Grant AV, Kong XF, Bustamante J, Feinberg J, Chapgier A, Rose Y, Jannière L, Rizzardi E, Zhang Q, Shanahan CM, Viollet L, Lyonnet S, Abel L, Ruga EM, Casanova JL. Paternal uniparental isodisomy of chromosome 6 causing a complex syndrome including complete IFN-gamma receptor 1 deficiency. Am J Med Genet A. 2010;152A:622–9.PubMedCrossRefGoogle Scholar
  219. 219.
    Milenkovic T, Martic J, Robinson DO, Mackay DJ, Petrovic K, Zdravkovic D. Transient neonatal diabetes mellitus in an infant with paternal uniparental disomy of chromosome 6 including heterodisomy for 6q24. J Pediatr Endocrinol Metab. 2006;19:1353–7.PubMedCrossRefGoogle Scholar
  220. 220.
    Kamiya M, Judson H, Okazaki Y, Kusakabe M, Muramatsu M, Takada S, Takagi N, Arima T, Wake N, Kamimura K, Satomura K, Hermann R, Bonthron DT, Hayashizaki Y. The cell cycle control gene ZAC/PLAGL1 is imprinted – a strong candidate gene for transient neonatal diabetes. Hum Mol Genet. 2000;9:453–60.PubMedCrossRefGoogle Scholar
  221. 221.
    Gardner RJ, Mackay DJG, Mungall AJ, Polychronakos C, Siebert R, Shield JPH, Temple IK, Robinson DO. An imprinted locus associated with transient neonatal diabetes mellitus. Hum Mol Genet. 2000;9:589–96.PubMedCrossRefGoogle Scholar
  222. 222.
    Temple IK, Shield JP. Transient neonatal diabetes, a disorder of imprinting. J Med Genet. 2002;39:872–5.PubMedCrossRefGoogle Scholar
  223. 223.
    Diatloff-Zito C, Nicole A, Marcelin G, Labit H, Marquis E, Bellanné-Chantelot C, Robert JJ. Genetic and epigenetic defects at the 6q24 imprinted locus in a cohort of 13 patients with transient neonatal diabetes: new hypothesis raised by the finding of a unique case with hemizygotic deletion in the critical region. J Med Genet. 2007;44:31–7.PubMedCrossRefGoogle Scholar
  224. 224.
    Langlois S, Yong SL, Wilson RD, Kwong LC, Kalousek DK. Prenatal and postnatal growth failure associated with maternal heterodisomy for chromosome 7. J Med Genet. 1995;32:871–5.PubMedCrossRefGoogle Scholar
  225. 225.
    Preece MA, Price SM, Davies V, Clough L, Stanier P, Trembath RC, Moore GE. Maternal uniparental disomy 7 in Silver-Russell syndrome. J Med Genet. 1997;34:6–9.PubMedCrossRefGoogle Scholar
  226. 226.
    Hannula K, Lipsanen-Nyman M, Kontiokari T, Kere J. A narrow segment of maternal uniparental disomy of chromosome 7q31-qter in Silver-Russell syndrome delimits a candidate gene region. Am J Hum Genet. 2001;68:247–53.PubMedCrossRefGoogle Scholar
  227. 227.
    Kotzot D. Maternal uniparental disomy 7 and Silver-Russell syndrome – clinical update and comparison with other subgroups. Eur J Med Genet. 2008;51:444–51.PubMedCrossRefGoogle Scholar
  228. 228.
    Voss R, Ben-Simon E, Avital A, Godfrey S, Zlotogora J, Dagan J, Tikochinski Y, Hillel J. Isodisomy of chromosome 7 in a patient with cystic fibrosis: could uniparental disomy be common in humans? Am J Hum Genet. 1989;45:373–80.PubMedGoogle Scholar
  229. 229.
    Preece MA, Abu-Amero SN, Ali Z, Abu-Amero KK, Wakeling EL, Stainer P, Moore GE. An analysis of the distribution of hetero- and isodisomic regions of chromosome 7 in five mUPD7 Silver-Russell syndrome probands. J Med Genet. 1999;36:457–60.PubMedGoogle Scholar
  230. 230.
    Kotzot D, Schmitt S, Bernasconi F, Robinson WP, Lurie JW, Hyina H, Mehes M, Hamel BCJ, Otten BJ, Hergersberg M, Werder E, Schoenle E, Schinzel A. Uniparental disomy 7 in Silver-Russell syndrome and primordial growth retardation. Hum Mol Genet. 1995;4:583–7.PubMedCrossRefGoogle Scholar
  231. 231.
    Hitchins MP, Stanier P, Preece MA, Moore GE. Silver-Russell syndrome: a dissection of the genetic aetiology and candidate chromosomal regions. J Med Genet. 2001;38:810–9.PubMedCrossRefGoogle Scholar
  232. 232.
    Guettard E, Portnoi MF, Lohmann-Hedrich K, Keren B, Rossignol S, Winkler S, El Kamel I, Leu S, Apartis E, Vidailhet M, Klein C, Roze E. Myoclonus-dystonia due to maternal uniparental disomy. Arch Neurol. 2008;65:1380–5.PubMedCrossRefGoogle Scholar
  233. 233.
    Monk D, Wakeling EL, Proud V, Hitchins M, Abu-Amero SN, Stanier P, Preece MA, Moore GE. Duplication of 7p11.2-p13, including GRB10, in Silver-Russell syndrome. Am J Hum Genet. 2000;66:36–46.PubMedCrossRefGoogle Scholar
  234. 234.
    Yoshihashi H, Maeyama K, Kosaki R, Ogata T, Tsukahara M, Goto Y, Hata J, Matsuo N, Smith RJ, Kosaki K. Imprinting of human GRB10 and its mutations in two patients with Russell-Silver syndrome. Am J Hum Genet. 2000;67:476–82.PubMedCrossRefGoogle Scholar
  235. 235.
    Blagitko N, Mergenthaler S, Schulz U, Wollmann HA, Craigen W, Eggermann T, Ropers H-H, Kalscheuer VM. Human GRB10 is imprinted and expressed from the paternal and maternal allele in a highly tissue- and isoform-specific fashion. Hum Mol Genet. 2000;9:1587–95.PubMedCrossRefGoogle Scholar
  236. 236.
    Bentley L, Nakabayashi K, Monk D, et al. The imprinted region on human chromosome 7q32 extends to the carboxypeptidase. A gene cluster: an imprinted candidate for Silver-Russell syndrome. J Med Genet. 2003;40:249–56.PubMedCrossRefGoogle Scholar
  237. 237.
    Kobayashi S, Uemura H, Kohda T, et al. No evidence of PEG1/MEST gene mutations in Silver-Russell syndrome patients. Am J Med Genet. 2001;104:225–31.PubMedCrossRefGoogle Scholar
  238. 238.
    Schöherr N, Jäger S, Ranke MB, Wollmann HA, Binder G, Eggermann T. No evidence for isolated imprinting mutations in the PEG1/MEST locus in Silver-Russell patients. Eur J Med Genet. 2008;51:322–4.PubMedCrossRefGoogle Scholar
  239. 239.
    Kagami M, Nagai T, Fukami M, Yamazawa K, Ogata T. Silver-Russell syndrome in a girl born after in vitro fertilization: partial hypermethylation at the differentially methylated region of PEG1/MEST. J Assist Reprod Genet. 2007;24:131–6.PubMedCrossRefGoogle Scholar
  240. 240.
    Eggermann T, Eggermann K, Schönherr N. Growth retardation versus overgrowth: Silver-Russell syndrome is genetically opposite to Beckwith-Wiedemann syndrome. Trends Genet. 2008;24:195–204.PubMedCrossRefGoogle Scholar
  241. 241.
    Das R, Hampton DD, Jirtle RL. Imprinting evolution and human health. Mamm Genome. 2009;20:563–72.PubMedCrossRefGoogle Scholar
  242. 242.
    Höglund P, Holmberg C, de la Chapelle A, Kere J. Paternal isodisomy for chromosome 7 is compatible with normal growth and development in a patient with congenital chloride diarrhea. Am J Hum Genet. 1994;55:747–52.PubMedGoogle Scholar
  243. 243.
    Pan Y, McCaskill CD, Thompson KH, Hicks J, Casey B, Shaffer LG, Craigen WJ. Paternal isodisomy of chromosome 7 associated with complete situs inversus and immotile cilia. Am J Hum Genet. 1998;62:1551–5.PubMedCrossRefGoogle Scholar
  244. 244.
    Le Caignec C, Isidor B, de Pontbriand U, David V, Audrezet MP, Fere C, David A. Third case of paternal isodisomy for chromosome 7 with cystic fibrosis: a new patient presenting with normal growth. Am J Med Genet A. 2007;143A:2696–9.PubMedCrossRefGoogle Scholar
  245. 245.
    Fares F, David M, Lerner A, Diukman R, Lerer I, Abeliovich D, Rivlin J. Paternal isodisomy of chromosome 7 with cystic fibrosis and overgrowth. Am J Med Genet A. 2006;140:1785–8.PubMedGoogle Scholar
  246. 246.
    Eggerding FA, Schonberg SA, Chehab FF, Norton ME, Cox VA, Epstein CJ. Uniparental isodisomy for paternal 7p and maternal 7q in a child with growth retardation. Am J Hum Genet. 1994;55:253–65.PubMedGoogle Scholar
  247. 247.
    Kotzot D, Holland H, Keller E, Froster UG. Maternal isochromosome 7q and paternal isochromosome 7p in a boy with growth retardation. Am J Med Genet. 2001;102:169–72.PubMedCrossRefGoogle Scholar
  248. 248.
    Karanjawala ZE, Kääriäinen H, Ghosh S, Tannenbaum J, Martin C, Ally D, Tuomilehto J, Valle T, Collins FS. Complete maternal isodisomy of chromosome 8 in an individual with an early-onset ileal carcinoid tumor. Am J Med Genet. 2000;93:207–10.PubMedCrossRefGoogle Scholar
  249. 249.
    Benlian P, Foubert L, Gagné E, Bernard L, De Gennes JL, Langlois S, Robinson W, Hayden M. Complete paternal isodisomy for chromosome 8 unmasked by lipoprotein lipase deficiency. Am J Hum Genet. 1996;59:431–6.PubMedGoogle Scholar
  250. 250.
    Sulisalo T, Makitie O, Sistonen P, Ridanpaa M, el-Rifai W, Ruuskanen O, de la Chapelle A, Kaitila I. Uniparental disomy in cartilage-hair hypoplasia. Eur J Hum Genet. 1997;5:35–42.PubMedGoogle Scholar
  251. 251.
    Tiranti V, Lamantea E, Uziel G, Zeviani M, Gasparini P, Marzella R, Rocchi M, Fried M. Leigh syndrome transmitted by uniparental disomy of chromosome 9. J Med Genet. 1999;36:927–8.PubMedGoogle Scholar
  252. 252.
    Wilkinson TA, James RS, Crolla JA, Cockwell AE, Campbell PL, Temple IK. A case of maternal uniparental disomy of chromosome 9 in association with confined placental mosaicism for trisomy 9. Prenat Diagn. 1996;16:371–4.PubMedCrossRefGoogle Scholar
  253. 253.
    Castanet M, Mallya U, Agostini M, Schoenmakers E, Mitchell C, Demuth S, Raymond FL, Schwabe J, Gurnell M, Chatterjee VK. Maternal isodisomy for chromosome 9 causing homozygosity for a novel FOXE1 mutation in syndromic congenital hypothyroidism. J Clin Endocrinol Metab. 2010;95(8):4031–6.PubMedCrossRefGoogle Scholar
  254. 254.
    Björck EJ, Anderlid B-M, Blennow E. Maternal isodisomy of chromosome 9 with no impact on the phenotype in a woman with two isochromosomes: i(9p) and i(9q). Am J Med Genet. 1999;87:49–52.PubMedCrossRefGoogle Scholar
  255. 255.
    Jones C, Booth C, Rita D, Jazmines L, Spiro R, McCulloch B, McCaskill C, Shaffer LG. Identification of a case of maternal uniparental disomy of chromosome 10 associated with confined placental mosaicism. Prenat Diagn. 1995;15:843–8.PubMedCrossRefGoogle Scholar
  256. 256.
    Al-Jasmi F, Abdelhaleem M, Stockley T, Lee KS, Clarke JT. Novel mutation of the perforin gene and maternal uniparental disomy 10 in a patient with familial hemophagocytic lymphohistiocytosis. J Pediatr Hematol Oncol. 2008;308:621–4.CrossRefGoogle Scholar
  257. 257.
    Grundy P, Telzerow P, Paterson MC, Habier D, Berman B, Li F, Garber J. Chromosome 11 uniparental isodisomy predisposing to embryonal neoplasms (Letter). Lancet. 1991;338:1079–80.PubMedCrossRefGoogle Scholar
  258. 258.
    Webb A, Beard J, Wright C, Robson S, Wolstenholme J, Goodship J. A case of paternal uniparental disomy for chromosome 11. Prenat Diagn. 1995;15:773–7.PubMedCrossRefGoogle Scholar
  259. 259.
    Dutly F, Baumer A, Kayserili H, Yüksel-Apak M, Zerova T, Hebisch G, Schinzel A. Seven cases of Wiedemann-Beckwith syndrome, including the first reported case of mosaic paternal isodisomy along the whole chromosome 11. Am J Med Genet. 1998;79:347–53.PubMedCrossRefGoogle Scholar
  260. 260.
    von Eggeling F, Hoppe C, Bartz U, Starke H, Houge G, Claussen U, Ernst G, Kotzot D, Liehr T. Maternal uniparental disomy 12 in a healthy girl with a 47,XX,+der(12)(:p11  ®  q11:)/46,XX karyotype. J Med Genet. 2002;39:519–21.CrossRefGoogle Scholar
  261. 261.
    Slater H, Shaw JH, Dawson G, Bankier A, Forrest SM. Maternal uniparental disomy of chromosome 13 in a phenotypically normal child. J Med Genet. 1994;31:644–6.PubMedCrossRefGoogle Scholar
  262. 262.
    Stallard R, Krueger S, James RS, Schwartz S. Uniparental isodisomy 13 in a normal female due to transmission of a maternal t(13q13q). Am J Med Genet. 1995;57:14–8.PubMedCrossRefGoogle Scholar
  263. 263.
    Slater H, Shaw JH, Bankier A, Forrest SM, Dawson G. UPD 13: no indication of maternal or paternal imprinting of genes on chromosome 13. J Med Genet. 1995;32:493.PubMedCrossRefGoogle Scholar
  264. 264.
    Jävela I, Savukoski M, Ämmälä P, Von Koskull H. Prenatally detected paternal uniparental chromosome 13 isodisomy. Prenat Diagn. 1998;18:1169–73.CrossRefGoogle Scholar
  265. 265.
    Berend SA, Feldman GL, McCaskill C, Czarnecki P, Van Dyke DL, Shaffer LG. Investigation of two cases of paternal disomy 13 suggests timing of isochromosome formation and mechanisms leading to uniparental disomy. Am J Med Genet. 1999;82:275–81.PubMedCrossRefGoogle Scholar
  266. 266.
    Soler A, Margarit E, Queralt R, Carrió A, Costa D, Gómez D, Ballesta F. Paternal isodisomy 13 in a normal newborn infant after trisomy rescue evidenced by prenatal diagnosis. Am J Med Genet. 2000;90:291–3.PubMedCrossRefGoogle Scholar
  267. 267.
    Hordijk R, Wierenga H, Scheffer H, Leegte B, Hofstra RMW, Stolte-Dijkstra I. Maternal uniparental disomy for chromosome 14 in a boy with a normal karyotype. J Med Genet. 1999;36:782–5.PubMedCrossRefGoogle Scholar
  268. 268.
    Sanlaville D, Aubry MC, Dumez Y, Nolen MC, Amiel J, Pinson MP, Lyonnet S, Munnich A, Vekemans M, Morichon-Delvallez N. Maternal uniparental heterodisomy of chromosome 14: chromosomal mechanism and clinical follow up. J Med Genet. 2000;37:525–8.PubMedCrossRefGoogle Scholar
  269. 269.
    Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P. Maternal uniparental disomy for chromosome 14. J Med Genet. 1991;28:511–4.PubMedCrossRefGoogle Scholar
  270. 270.
    Berends MJW, Hordijk R, Scheffer H, Oosterwijk JC, Halley DJJ, Sorgedrager N. Two cases of maternal uniparental disomy 14 with a phenotype overlapping with the Prader-Willi phenotype. Am J Med Genet. 1999;84:76–9.PubMedCrossRefGoogle Scholar
  271. 271.
    Towner DR, Shaffer LG, Yang SP, Walgenbach DD. Confined placental mosaicism for trisomy 14 and maternal uniparental disomy in association with elevated second trimester maternal serum human chorionic gonadotrophin and third trimester fetal growth restriction. Prenat Diagn. 2001;21:395–8.PubMedCrossRefGoogle Scholar
  272. 272.
    Falk MJ, Curtis CA, Bass NE, Zinn AB, Schwartz S. Maternal uniparental disomy chromosome 14: case report and literature review. Pediatr Neurol. 2005;32:116–20.PubMedCrossRefGoogle Scholar
  273. 273.
    Mitter D, Buiting K, von Eggeling F, Kuechler A, Liehr T, Mau-Holzmann UA, Prott EC, Wieczorek D, Gillessen-Kaesbach G. Is there a higher incidence of maternal uniparental disomy 14 [upd(14)mat]? Detection of 10 new patients by methylation-specific PCR. Am J Med Genet A. 2006;140:2039–49.PubMedGoogle Scholar
  274. 274.
    Hosoki K, Kagami M, Tanaka T, Kubota M, Kurosawa K, Kato M, Uetake K, Tohyama J, Ogata T, Saitoh S. Maternal uniparental disomy 14 syndrome demonstrates prader-willi syndrome-like phenotype. J Pediatr. 2009;155:900–3.PubMedCrossRefGoogle Scholar
  275. 275.
    Cox H, Bullman H, Temple IK. Maternal UPD(14) in the patient with a normal karyotype: clinical report and a systematic search for cases in samples sent for testing for Prader-Willi syndrome. Am J Med Genet A. 2004;127A:21–5.PubMedCrossRefGoogle Scholar
  276. 276.
    Buiting K, Kanber D, Martín-Subero JI, Lieb W, Terhal P, Albrecht B, Purmann S, Gross S, Lich C, Siebert R, Horsthemke B, Gillessen-Kaesbach G. Clinical features of maternal uniparental disomy 14 in patients with an epimutation and a deletion of the imprinted DLK1/GTL2 gene cluster. Hum Mutat. 2008;29:1141–6.PubMedCrossRefGoogle Scholar
  277. 277.
    Kagami M, Sekita Y, Nishimura G, et al. Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes. Nat Genet. 2008;40:237–42.PubMedCrossRefGoogle Scholar
  278. 278.
    Zechner U, Kohlschmidt N, Rittner G, Damatova N, Beyer V, Haaf T, Bartsch O. Epimutation at human chromosome 14q32.2 in a boy with a upd(14)mat-like clinical phenotype. Clin Genet. 2009;75:251–8.PubMedCrossRefGoogle Scholar
  279. 279.
    Wang J-CC, Passage MB, Yen PH, Shapiro LJ, Mohandas TK. Uniparental heterodisomy for chromosome 14 in a phenotypically abnormal familial balanced 13/14 Robertsonian translocation carrier. Am J Hum Genet. 1991;48:1069–74.PubMedGoogle Scholar
  280. 280.
    Papenhausen PR, Mueller OT, Johnson VP, Sutcliffe M, Diamond TM, Kousseff BG. Uniparental isodisomy of chromosome 14 in two cases: an abnormal child and a normal adult. Am J Med Genet. 1995;59:271–5.PubMedCrossRefGoogle Scholar
  281. 281.
    Walter CA, Shaffer LG, Kaye CI, Huff RW, Ghidoni PD, McCaskill C, McFarland MB, Moore CM. Short-Limb dwarfism and hypertrophic cardiomyopathy in a patient with paternal isodisomy 14: 45, XY, idic(14)(p11). Am J Med Genet. 1996;65:259–65.PubMedCrossRefGoogle Scholar
  282. 282.
    Cotter PD, Kaffe S, McCurdy LD, Jhaveri M, Willner JP, Hirschhorn K. Paternal uniparental disomy for chromosome 14: a case report and review. Am J Med Genet. 1997;70:74–9.PubMedCrossRefGoogle Scholar
  283. 283.
    McGowan KD, Weiser JJ, Horwitz J, Berend SA, McCaskill C, Sutton VR, Shaffer LG. The importance of investigating for uniparental disomy in prenatally identified balanced acrocentric rearrangements. Prenat Diagn. 2002;22:41–143.CrossRefGoogle Scholar
  284. 284.
    Kurosawa K, Sasaki H, Sato Y, Yamanaka M, Shimizu M, Ito Y, Okuyama T, Matsuo M, Imaizumi K, Kuroki Y, Nishimura G. Paternal UPD14 is responsible for a distinctive malformation complex. Am J Med Genet. 2002;110:268–72.PubMedCrossRefGoogle Scholar
  285. 285.
    Chu C, Schwartz S, McPherson E. Paternal uniparental isodisomy for chromosome 14 in a patient with a normal 46,XY karyotype. Am J Med Genet A. 2004;127A:167–71.PubMedCrossRefGoogle Scholar
  286. 286.
    Georgiades P, Chierakul C, Ferguson-Smith AC. Parental origin effects in human trisomy for chromosome 14q: implications for genomic imprinting. J Med Genet. 1998;35:821–4.PubMedCrossRefGoogle Scholar
  287. 287.
    Sutton VR, Shaffer LG. Search for imprinted regions on chromosome 14: comparison of maternal and paternal UPD cases with cases of chromosome 14 deletion. Am J Med Genet. 2000;93:381–7.PubMedCrossRefGoogle Scholar
  288. 288.
    Kagami M, Nishimura G, Okuyama T, Hayashidani M, Takeuchi T, Tanaka S, Ishino F, Kurosawa K, Ogata T. Segmental and full paternal isodisomy for chromosome 14 in three patients: narrowing the critical region and implication for the clinical features. Am J Med Genet A. 2005;138A:127–32.PubMedCrossRefGoogle Scholar
  289. 289.
    Cox DW, Gedde-Dahyl T, Menon AG, Nygaard TG, Tomlinson IM, Peters J, St. George-Hyslop PH, Walter MA, Edwards JH. Report of the second international workshop on human chromosome 14 mapping 1994. Cytogenet Cell Genet. 1995;69:159–74.PubMedCrossRefGoogle Scholar
  290. 290.
    Cattanach BM, Barr J, Jones J. Use of chromosome rearrangements for investigations into imprinting in the mouse. In: Ohlsson R, Hall K, Ritzen M, editors. Genomic imprinting, causes and consequences. Cambridge: Cambridge University Press; 1995. p. 327–41.Google Scholar
  291. 291.
    Mitchell J, Schinzel A, Langlois S, Gillessen-Kaesbach G, Schuffenhauer S, Michaelis R, Abeliovich D, Lerer I, Christian S, Guitart M, McFadden DE, Robinson WP. Comparison of phenotype in uniparental disomy and deletion Prader-Willi syndrome: sex specific differences. Am J Med Genet. 1996;65:133–6.PubMedCrossRefGoogle Scholar
  292. 292.
    Cassidy SB, Forsythe M, Heeger S, Nicholls RD, Schork N, Benn P, Schwartz S. Comparison of phenotype between patients with Prader-Willi syndrome due to deletion 15q and uniparental disomy 15. Am J Med Genet. 1997;68:433–40.PubMedCrossRefGoogle Scholar
  293. 293.
    Gillessen-Kaesbach G, Robinson W, Lohmann D, Kaya-Westerloh S, Passarge E, Horsthemke B. Genotype-phenotype correlation in a series of 167 deletion and non-deletion patients with Prader-Willi syndrome. Hum Genet. 1995;96:638–43.PubMedCrossRefGoogle Scholar
  294. 294.
    Gardner JM, Nakatsu Y, Gondo Y, Lee S, Lyon MF, King RA, Brilliant MH. The mouse pink-eyed dilution gene: association with human Prader-Willi and Angelman syndromes. Science. 1992;257:1121–4.PubMedCrossRefGoogle Scholar
  295. 295.
    Rinchik EM, Bultman SJ, Horsthemke B, Lee ST, Strunk KM, Spritz RA, Avidano KM, Jong MT, Nicholls RD. A gene for the mouse pink-eyed dilution locus and for human type II oculocutaneous albinism. Nature. 1993;361:72–6.PubMedCrossRefGoogle Scholar
  296. 296.
    Lee S-T, Nicholls RD, Phil D, Bundey S, Laxova R, Musarella M, Spritz RA. Mutations of the P gene in oculocutaneous albinism, ocular albinism, and Prader-Willi syndrome plus albinism. N Engl J Med. 1994;330:529–34.PubMedCrossRefGoogle Scholar
  297. 297.
    Hartley SL, Maclean Jr WE, Butler MG, Zarcone J, Thompson T. Maladaptive behaviors and risk factors among the genetic subtypes of Prader-Willi syndrome. Am J Med Genet A. 2005;136:140–5.PubMedGoogle Scholar
  298. 298.
    Descheemaeker MJ, Govers V, Vermeulen P, Fryns JP. Pervasive developmental disorders in Prader-Willi syndrome: the Leuven experience in 59 subjects and controls. Am J Med Genet A. 2006;140:1136–42.PubMedGoogle Scholar
  299. 299.
    Torrado M, Araoz V, Baialardo E, Abraldes K, Mazza C, Krochik G, Ozuna B, Leske V, Caino S, Fano V, Chertkoff L. Clinical-etiologic correlation in children with Prader-Willi syndrome (PWS): an interdisciplinary study. Am J Med Genet A. 2007;143:460–8.PubMedGoogle Scholar
  300. 300.
    Smith A, Marks R, Haan E, Dixon J, Trent RJ. Clinical features in four patients with Angelman syndrome resulting from paternal uniparental disomy. J Med Genet. 1997;34:426–9.PubMedCrossRefGoogle Scholar
  301. 301.
    Prasad C, Wagstaff J. Genotype and phenotype in Angelman syndrome caused by paternal UPD 15. Am J Med Genet. 1997;70:328–9.PubMedCrossRefGoogle Scholar
  302. 302.
    Fridman C, Varela MC, Kok F, Diament A, Koiffmann CP. Paternal UPD 15: further genetic and clinical studies in four Angelman syndrome patients. Am J Med Genet. 2000;92:322–7.PubMedCrossRefGoogle Scholar
  303. 303.
    Saitoh S, Wada T, Okajima M, Takano K, Sudo A, Niikawa N. Uniparental disomy and imprinting defects in Japanese patients with Angelman syndrome. Brain Dev. 2005;27:389–91.PubMedCrossRefGoogle Scholar
  304. 304.
    Kalousek DK, Langlois S, Barrett I, Yam I, Wilson DR, Howard-Peebles PN, Johnson MP, Giorgiutti E. Uniparental disomy for chromosome 16 in humans. Am J Hum Genet. 1993;52:8–16.PubMedGoogle Scholar
  305. 305.
    Vaughan J, Zehra A, Bower S, Bennett P, Chard T, Moore G. Human maternal uniparental disomy for chromosome 16 and fetal development. Prenat Diagn. 1994;14:751–6.PubMedCrossRefGoogle Scholar
  306. 306.
    Whiteford ML, Coutts J, Al-Roomi L, Mather A, Lowther G, Cooke A, Vaughan JI, Moore GE, Tolmie JL. Uniparental isodisomy for chromosome 16 in a growth-retarded infant with congenital heart disease. Prenat Diagn. 1995;15:579–84.PubMedCrossRefGoogle Scholar
  307. 307.
    Schneider AS, Bischoff FZ, McCaskill C, Coady ML, Stopfer JE, Shaffer LG. Comprehensive 4-year follow-up on a case of maternal heterodisomy for chromosome 16. Am J Med Genet. 1996;66:204–8.PubMedCrossRefGoogle Scholar
  308. 308.
    O’Riordan S, Greenough A, Moore GE, Bennett P, Nicolaides KH. Case report: uniparental disomy 16 in association with congenital heart disease. Prenat Diagn. 1996;16:963–5.PubMedCrossRefGoogle Scholar
  309. 309.
    Woo V, Bridge PJ, Bamforth JS. Maternal uniparental heterodisomy for chromosome 16: case report. Am J Med Genet. 1997;70:387–90.PubMedCrossRefGoogle Scholar
  310. 310.
    Hsu W-T, Shchepin DA, Mao R, Berry-Kravis E, Garber AP, Fischel-Ghodsian N, Falk RE, Carlson DE, Roeder ER, Leeth EA, Hajianpour MJ, Wang J-CC, Rosenblum-Vos LS, Bhatt SD, Karson EM, Hux CH, Trunca C, Bialer MG, Linn SK, Schreck RR. Mosaic trisomy 16 ascertained through amniocentesis: evaluation of 11 new cases. Am J Med Genet. 1998;80:473–80.PubMedCrossRefGoogle Scholar
  311. 311.
    Wang J-CC, Mamunes P, Kou S-Y, Schmidt J, Mao R, Hsu W-T. Centromeric DNA break in a 10;16 reciprocal translocation associated with trisomy 16 confined placental mosaicism and maternal uniparental disomy for chromosome 16. Am J Med Genet. 1998;80:418–22.PubMedCrossRefGoogle Scholar
  312. 312.
    Abu-Amero SN, Ali Z, Abu-Amero KK, Stanier P, Moore GE. An analysis of common isodisomic regions in five mUPD 16 probands. J Med Genet. 1999;36:204–7.PubMedGoogle Scholar
  313. 313.
    Young PJ, Marion SA, Barrett IJ, Kalousek DK, Robinson WP. Evidence for imprinting on chromosome 16: the effect of uniparental disomy on the outcome of mosaic trisomy 16 pregnancies. Am J Med Genet. 2002;112:123–32.CrossRefGoogle Scholar
  314. 314.
    Kohlhase J, Janssen B, Weidenauer K, Harms K, Bartels I. First confirmed case with paternal uniparental disomy of chromosome 16. Am J Med Genet. 2000;91:190–1.PubMedCrossRefGoogle Scholar
  315. 315.
    Genuardi M, Tozzi C, Pomponi MG, Stagni ML, Matteo DM, Scarano G, Calvieri F, Torrisi L, Neri G. Mosaic trisomy 17 in amniocytes: phenotypic outcome, tissue distribution, and uniparental disomy studies. Eur J Hum Genet. 1999;7:421–6.PubMedCrossRefGoogle Scholar
  316. 316.
    Lebre AS, Morinière V, Dunand O, Bensman A, Morichon-Delvallez N, Antignac C. Maternal uniparental heterodisomy of chromosome 17 in a patient with nephropathic cystinosis. Eur J Hum Genet. 2009;17:1019–23.PubMedCrossRefGoogle Scholar
  317. 317.
    Chudoba I, Franke Y, Senger G, Sauerbrei G, Demuth S, Beensen V, Neumann A, Hansmann I, Claussen U. Maternal UPD 20 in a hyperactive child with severe growth retardation. Eur J Hum Genet. 1999;7:533–40.PubMedCrossRefGoogle Scholar
  318. 318.
    Salafsky IS, MacGregor SN, Claussen U, von Eggeling F. Maternal UPD 20 in an infant from a pregnancy with mosaic trisomy 20. Prenat Diagn. 2001;21:860–3.PubMedCrossRefGoogle Scholar
  319. 319.
    Eggermann T, Mergenthaler S, Eggermann K, Albers A, Linnemann K, Fusch C, Ranke MB, Wollmann HA. Identification of interstitial maternal uniparental disomy (UPD) (14) and complete maternal UPD (20) in a cohort of growth retarded patients. J Med Genet. 2001;38:86–9.PubMedCrossRefGoogle Scholar
  320. 320.
    Velissariou V, Antoniadi T, Gyftodimou J, Bakou K, Grigoriadou M, Christopoulou S, Hatzipouliou A, Donoghue J, Karatzis P, Katsarou E, Petersen MB. Maternal uniparental isodisomy 20 in a foetus with trisomy 20 mosaicism: clinical, cytogenetic and molecular analysis. Eur J Hum Genet. 2002;10:694–8.PubMedCrossRefGoogle Scholar
  321. 321.
    Venditti CP, Hunt P, Donnenfeld A, Zackai E, Spinner NB. Mosaic paternal uniparental (iso) disomy for chromosome 20 associated with multiple anomalies. Am J Med Genet A. 2004;124A:274–9.PubMedCrossRefGoogle Scholar
  322. 322.
    Creau-Goldberg N, Gegonne A, Delabar J, Cochet C, Cabanis MO, Stehelin D, Turleau C, de Grouchy J. Maternal origin of a de novo balanced t(21q21q) identified by ets-2 polymorphism. Hum Genet. 1987;76:396–8.PubMedCrossRefGoogle Scholar
  323. 323.
    Rogan PK, Sabol DW, Punnett HH. Maternal uniparental disomy of chromosome 21 in a normal child. Am J Med Genet. 1999;83:69–71.PubMedCrossRefGoogle Scholar
  324. 324.
    Henderson DJ, Sherman LS, Loughna SC, Bennett PR, Moore GE. Early embryonic failure associated with uniparental disomy for human chromosome 21. Hum Mol Genet. 1994;3:1373–6.PubMedCrossRefGoogle Scholar
  325. 325.
    Blouin J-L, Avramopoulos D, Pangalos C, Antonarakis SE. Normal phenotype with paternal uniparental isodisomy for chromosome 21. Am J Hum Genet. 1993;53:1074–8.PubMedGoogle Scholar
  326. 326.
    Robinson WP, Bernasconi F, Basaran S, Yüksel-Apak M, Neri G, Serville F, Balicek P, Haluza R, Farah LMS, Lüleci G, Schinzel AA. A somatic origin of homologous Robertsonian translocations and isochromosomes. Am J Hum Genet. 1994;54:290–302.PubMedGoogle Scholar
  327. 327.
    Palmer CG, Schwartz S, Hodes MD. Transmission of a balanced homologous t (22q;22q) translocation from mother to normal daughter. Clin Genet. 1980;17:418–22.PubMedCrossRefGoogle Scholar
  328. 328.
    Kirkels VG, Hustinx TW, Scheres JM. Habitual abortion and translocation (22q;22q): unexpected transmission from a mother to her phenotypically normal daughter. Clin Genet. 1980;18:456–61.PubMedCrossRefGoogle Scholar
  329. 329.
    Schinzel AA, Basaran S, Bernasconi F, Karaman B, Yüksel-Apak M, Robinson WP. Maternal uniparental disomy 22 has no impact on the phenotype. Am J Hum Genet. 1994;54:21–4.PubMedGoogle Scholar
  330. 330.
    Bartsch O, Loitzsch A, Kozlowski P, Mazauric ML, Hickmann G. Forty-two supernumerary marker chromosomes (SMCs) in 43,273 prenatal samples: chromosomal distribution, clinical findings, and UPD studies. Eur J Hum Genet. 2005;13:1192–204.PubMedCrossRefGoogle Scholar
  331. 331.
    Bartels I, Schlueter G, Liehr T, von Eggeling F, Starke H, Glaubitz R, Burfeind P. Supernumerary small marker chromosome (SMC) and uniparental disomy 22 in a child with confined placental mosaicism of trisomy 22: trisomy rescue due to marker chromosome formation. Cytogenet Genome Res. 2003;101:103–5.PubMedCrossRefGoogle Scholar
  332. 332.
    Balmer D, Baumer A, Röthlisberger G, Schinzel A. Severe intrauterine growth retardation in a patient with maternal uniparental disomy 22 and a 22-trisomic placenta. Prenat Diagn. 1999;19:1061–4.PubMedCrossRefGoogle Scholar
  333. 333.
    Miny P, Koopers B, Rogadanova N, Schulte-Vallenun M, Horst J, Dwornizak B. European society of human genetics 17th annual meeting. H-76 (Abstract); 1995.Google Scholar
  334. 334.
    Avivi L, Korenstein A, Braier-Goldstein O, Goldman B, Ravia Y. Uniparental disomy of sex chromosome in man. Am J Hum Genet. 1992;51(Suppl):A11.Google Scholar
  335. 335.
    Quan F, Janas J, Toth-Fejel S, Johnson DB, Wolford JK, Popovich BW. Uniparental disomy of the entire X chromosome in a female with Duchenne muscular dystrophy. Am J Hum Genet. 1997;60:160–5.PubMedGoogle Scholar
  336. 336.
    Schinzel AA, Robinson WP, Binkert F, Torresani T, Werder EA. Exclusively paternal X chromosomes in a girl with short stature. Hum Genet. 1993;92:175–8.PubMedCrossRefGoogle Scholar
  337. 337.
    Vidaud D, Vidaud M, Plassa F, Gazengel C, Noel B, Goossens M. Father-to-son transmission of hemophilia A due to uniparental disomy. Am J Hum Genet. 1989;45(Suppl).Google Scholar
  338. 338.
    Yan D, Ouyang XM, Angeli SI, Du LL, Liu XZ. Paternal uniparental disomy of chromosome 13 causing homozygous 35delG mutation of the GJB2 gene and hearing loss. Am J Med Genet A. 2007;143:385–6.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Cytogenetics, Integrated GeneticsMonroviaUSA

Personalised recommendations