Fluorescence In Situ Hybridization (FISH)



Dr. Seuss’s eloquent One Fish, Two Fish, Red Fish, Blue Fish (Beginner Books/Random House, New York, 1960) may have been describing one of the most significant advancements in clinical cytogenetics, fluorescence i n s itu hybridization or “FISH.” While the basic in situ technology was developed more than 30 years ago (Levsky JM, Singer RH, J Cell Sci, 116(Pt 14): 2833–2838, 2010), the application involving fluorescent detection of probe DNA hybridized to chromosomal target sequences was introduced to the clinical cytogenetics laboratories in the late 1980s (Pinkel D, Gray JW, Trask B, van den Engh G, Fuscoe J, van Dekken H, Cold Spring Harb Symp Quant Biol, 51(Pt 1): 151–157, 1986). The overall hybridization process was essentially the same as that used for radioactive probes, but the major advantage was the incorporation of fluorescent detection of the probe sequences that allowed for high sensitivity in a simple and quick assay.


Preimplantation Genetic Diagnosis Acute Lymphoblastic Leukemia Retinoic Acid Receptor Alpha Alpha Satellite Sequence Alpha Satellite Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Seuss D. One fish, two fish, red fish, blue fish. New York: Beginner Books/Random House; 1960.Google Scholar
  2. 2.
    Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci. 2003;116:2833–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Pinkel D, Gray JW, Trask B, van den Engh G, Fuscoe J, van Dekken H. Cytogenetic analysis by in situ hybridization with fluorescently labeled nucleic acid probes. Cold Spring Harb Symp Quant Biol. 1986;51:151–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Shaffer LG, Slovak ML, Campbell LJ, editors. ISCN 2009: an international system for human cytogenetic nomenclature. Basel: S. Karger; 2009.Google Scholar
  5. 5.
    Available from: www.acmg.net. Cited 20 Oct 2010.
  6. 6.
    Russel K, Enns RK, Dewald G, Barker PE, Rasmussen DJ, Watson M, Wood G, Wyatt PR. Fluorescence in situ hybridization (FISH) methods for medical genetics: approved guideline. Wayne: NCCLS;2004. http://www.clsi.org/source/orders/free/mm7-a.pdf
  7. 7.
    Jauch A, Daumer C, Lichter P, Murken J, Schroeder-Kurth T, Cremer T. Chromosomal in situ suppression hybridization of human gonosomes and autosomes and its use in clinical cytogenetics. Hum Genet. 1990;85(2):145–50.CrossRefPubMedGoogle Scholar
  8. 8.
    Knoll JH, Rogan PK. Sequence-based, in situ detection of chromosomal abnormalities at high resolution. Am J Med Genet A. 2003;121A(3):245–57.CrossRefPubMedGoogle Scholar
  9. 9.
    Mora JR, Knoll JH, Rogan PK, Getts RC, Wilson GS. Dendrimer FISH detection of single-copy intervals in acute promyelocytic leukemia. Mol Cell Probes. 2006;20(2):114–20.CrossRefPubMedGoogle Scholar
  10. 10.
    Amos-Landgraf JM, Ji Y, Gottlieb W, Depinet T, Wandstrat AE, Cassidy SB, et al. Chromosome breakage in the Prader-Willi and Angelman syndromes involves recombination between large, transcribed repeats at proximal and distal breakpoints. Am J Hum Genet. 1999;65(2):370–86.CrossRefPubMedGoogle Scholar
  11. 11.
    Cassidy SB, Schwartz S. Prader-Willi and Angelman syndromes. Disorders of genomic imprinting. Medicine. 1998;77(2):140–51.CrossRefPubMedGoogle Scholar
  12. 12.
    Lupski JR. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 1998;14(10):417–22.CrossRefPubMedGoogle Scholar
  13. 13.
    Kato M, Dobyns WB. Lissencephaly and the molecular basis of neuronal migration. Hum Mol Genet. 2003;12(Spec No 1):R89–96.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen KS, Manian P, Koeuth T, Potocki L, Zhao Q, Chinault AC, et al. Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat Genet. 1997;17(2):154–63.CrossRefPubMedGoogle Scholar
  15. 15.
    Lindsey E. Chromosomal microdeletions: dissecting del 22q11 syndrome. Nat Rev Genet. 2001;2:858–68.CrossRefGoogle Scholar
  16. 16.
    Yagi H, Furutani Y, Hamada H, Sasaki T, Asakawa S, Minoshima S, et al. Role of TBX1 in human del22q11.2 syndrome. Lancet. 2003;362(9393):1366–73.CrossRefPubMedGoogle Scholar
  17. 17.
    Paylor R, Glaser B, Mupo A, Ataliotis P, Spencer C, Sobotka A, et al. Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc Natl Acad Sci USA. 2006;103(20):7729–34.CrossRefPubMedGoogle Scholar
  18. 18.
    Ensenauer RE, Adeyinka A, Flynn HC, Michels VV, Lindor NM, Dawson DB, et al. Microduplication 22q11.2, an emerging syndrome: clinical, cytogenetic, and molecular analysis of thirteen patients. Am J Hum Genet. 2003;73(5):1027–40.CrossRefPubMedGoogle Scholar
  19. 19.
    Morris CA, Mervis CB. Williams syndrome and related disorders. Annu Rev Genomics Hum Genet. 2000;1:461–84.CrossRefPubMedGoogle Scholar
  20. 20.
    Van der Aa N, Rooms L, Vandeweyer G, van den Ende J, Reyniers E, Fichera M, et al. Fourteen new cases contribute to the characterization of the 7q11.23 microduplication syndrome. Eur J Med Genet. 2009;52(2–3):94–100.PubMedGoogle Scholar
  21. 21.
    Joyce CA, Dennis NR, Cooper S, Browne CE. Subtelomeric rearrangements: results from a study of selected and unselected probands with idiopathic mental retardation and control individuals by using high-resolution G-banding and FISH. Hum Genet. 2001;109(4):440–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Popp S, Schulze B, Granzow M, Keller M, Holtgreve-Grez H, Schoell B, et al. Study of 30 patients with unexplained developmental delay and dysmorphic features or congenital abnormalities using conventional cytogenetics and multiplex FISH telomere (M-TEL) integrity assay. Hum Genet. 2002;111(1):31–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Jalal SM, Harwood AR, Sekhon GS, Pham Lorentz C, Ketterling RP, Babovic-Vuksanovic D, et al. Utility of subtelomeric fluorescent DNA probes for detection of chromosome anomalies in 425 patients. Genet Med. 2003;5(1):28–34.CrossRefPubMedGoogle Scholar
  24. 24.
    Knight SJ, Regan R, Nicod A, Horsley SW, Kearney L, Homfray T, et al. Subtle chromosomal rearrangements in children with unexplained mental retardation. Lancet. 1999;354(9191):1676–81.CrossRefPubMedGoogle Scholar
  25. 25.
    Riegel M, Castellan C, Balmer D, Brecevic L, Schinzel A. Terminal deletion, del(1)(p36.3), detected through screening for terminal deletions in patients with unclassified malformation syndromes. Am J Med Genet. 1999;82(3):249–53.CrossRefPubMedGoogle Scholar
  26. 26.
    Rossi E, Piccini F, Zollino M, Neri G, Caselli D, Tenconi R, et al. Cryptic telomeric rearrangements in subjects with mental retardation associated with dysmorphism and congenital malformations. J Med Genet. 2001;38(6):417–20.CrossRefPubMedGoogle Scholar
  27. 27.
    Leana-Cox J, Levin S, Surana R, Wulfsberg E, Keene CL, Raffel LJ, et al. Characterization of de novo duplications in eight patients by using fluorescence in situ hybridization with chromosome-specific DNA libraries. Am J Hum Genet. 1993;52(6):1067–73.PubMedGoogle Scholar
  28. 28.
    Wandstrat AE, Leana-Cox J, Jenkins L, Schwartz S. Molecular cytogenetic evidence for a common breakpoint in the largest inverted duplications of chromosome 15. Am J Hum Genet. 1998;62(4):925–36.CrossRefPubMedGoogle Scholar
  29. 29.
    Wolff DJ, Brown CJ, Schwartz S, Duncan AM, Surti U, Willard HF. Small marker X chromosomes lack the X inactivation center: implications for karyotype/phenotype correlations. Am J Hum Genet. 1994;55(1):87–95.PubMedGoogle Scholar
  30. 30.
    Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–64.CrossRefPubMedGoogle Scholar
  31. 31.
    Ward BE, Gersen SL, Carelli MP, McGuire NM, Dackowski WR, Weinstein M, et al. Rapid prenatal diagnosis of chromosomal aneuploidies by fluorescence in situ hybridization: clinical experience with 4,500 specimens. Am J Hum Genet. 1993;52(5):854–65.PubMedGoogle Scholar
  32. 32.
    Mercier S, Bresson JL. Prenatal diagnosis of chromosomal aneuploidies by fluorescence in situ hybridization on uncultured amniotic cells: experience with 630 samples. Ann Genet. 1995;38(3):151–7.PubMedGoogle Scholar
  33. 33.
    Bryndorf T, Christensen B, Vad M, Parner J, Brocks V, Philip J. Prenatal detection of chromosome aneuploidies by fluorescence in situ hybridization: experience with 2000 uncultured amniotic fluid samples in a prospective preclinical trial. Prenat Diagn. 1997;17(4):333–41.CrossRefPubMedGoogle Scholar
  34. 34.
    Jalal SM, Law ME, Carlson RO, Dewald GW. Prenatal detection of aneuploidy by directly labeled multicolored probes and interphase fluorescence in situ hybridization. Mayo Clin Proc. 1998;73(2):132–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Eiben B, Trawicki W, Hammans W, Goebel R, Pruggmayer M, Epplen JT. Rapid prenatal diagnosis of aneuploidies in uncultured amniocytes by fluorescence in situ hybridization. Evaluation of >3,000 cases. Fetal Diagn Ther. 1999;14(4):193–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Weremowicz S, Sandstrom DJ, Morton CC, Niedzwiecki CA, Sandstrom MM, Bieber FR. Fluorescence in situ hybridization (FISH) for rapid detection of aneuploidy: experience in 911 prenatal cases. Prenat Diagn. 2001;21(4):262–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Tepperberg J, Pettenati MJ, Rao PN, Lese CM, Rita D, Wyandt H, et al. Prenatal diagnosis using interphase fluorescence in situ hybridization (FISH): 2-year multi-center retrospective study and review of the literature. Prenat Diagn. 2001;21(4):293–301.CrossRefPubMedGoogle Scholar
  38. 38.
    Sawa R, Hayashi Z, Tanaka T, Onda T, Hoshi K, Fukada Y, et al. Rapid detection of chromosome aneuploidies by prenatal interphase FISH (fluorescence in situ hybridization) and its clinical utility in Japan. J Obstet Gynaecol Res. 2001;27(1):41–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Witters I, Devriendt K, Legius E, Matthijs G, Van Schoubroeck D, Van Assche FA, Fryns JP. Rapid prenatal diagnosis of trisomy 21 in 5049 consecutive uncultured amniotic fluid samples by fluorescence in situ hybridisation (FISH). Prenat Diagn. 2002;22(1):29–33.CrossRefPubMedGoogle Scholar
  40. 40.
    Feldman B, Ebrahim SA, Hazan SL, Gyi K, Johnson MP, Johnson A, Evans MI. Routine prenatal diagnosis of aneuploidy by FISH studies in high-risk pregnancies. Am J Med Genet. 2000;90(3):233–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Findley A. Pre-implantation genetic diagnosis. Br Med Bull. 2000;56:672–90.CrossRefGoogle Scholar
  42. 42.
    Simpson JL. Preimplantation genetic diagnosis at 20 years. Prenat Diagn. 2010;30(7):682–95.CrossRefPubMedGoogle Scholar
  43. 43.
    Munne S, Howles CM, Wells D. The role of preimplantation genetic diagnosis in diagnosing embryo aneuploidy. Curr Opin Obstet Gynecol. 2009;21(5):442–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Munné S, Márquez C, Magli C, Morton P, Morrison L. Scoring criteria for preimplantation genetic diagnosis of numerical abnormalities for chromosomes X, Y, 13, 16, 18 and 21. Mol Hum Reprod. 1998;4(9):863–70.CrossRefPubMedGoogle Scholar
  45. 45.
    Wolff DJ, Van Dyke DL, Powell CM, Working Group of the ACMG Laboratory Quality Assurance Committee. Laboratory guideline for Turner syndrome. Genet Med. 2010;12(1):52–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumors of haematopoietic and lymphoid tissues. Lyon: IARC; 2008.Google Scholar
  47. 47.
    de Campos MG Vaz, Montesano FT, Rodrigues MM, Chauffaille Mde L. Clinical implications of der(9q) deletions detected through dual-fusion fluorescence in situ hybridization in patients with chronic myeloid leukemia. Cancer Genet Cytogenet. 2007;17(1):49–56.Google Scholar
  48. 48.
    Dewald GW, Wyatt WA, Silver RT. Atypical BCR and ABL D-FISH patterns in chronic myeloid leukemia and their possible role in therapy. Leuk Lymphoma. 1999;34(5–6):481–91.PubMedGoogle Scholar
  49. 49.
    Sinclair PB, Nacheva EP, Leversha M, Telford N, Chang J, Reid A, et al. Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia. Blood. 2000;95(3):738–43.PubMedGoogle Scholar
  50. 50.
    Huntly BJ, Reid AG, Bench AJ, Campbell LJ, Telford N, Shepherd P, et al. Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood. 2001;98(6):1732–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Castagnetti F, Testoni N, Luatti S, Marzocchi G, Mancini M, Kerim S, et al. Deletions of the derivative chromosome 9 do not influence the response and the outcome of chronic myeloid leukemia in early chronic phase treated with imatinib mesylate: GIMEMA CML Working Party analysis. J Clin Oncol. 2010;28(16):2748–54.CrossRefPubMedGoogle Scholar
  52. 52.
    Smoley SA, Brockman SR, Paternoster SF, Meyer RG, Dewald GW. A novel tricolor, dual-fusion fluorescence in situ hybridization method to detect BCR/ABL fusion in cells with t(9;22)(q34;q11.2) associated with deletion of DNA on the derivative chromosome 9 in chronic myelocytic leukemia. Cancer Genet Cytogenet. 2004;148(1):1–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Andreasson P, Höglund M, Békássy AN, Garwicz S, Heldrup J, Mitelman F, Johansson B. Cytogenetic and FISH studies of a single center consecutive series of 152 childhood acute lymphoblastic leukemias. Eur J Haematol. 2000;65(1):40–51.CrossRefPubMedGoogle Scholar
  54. 54.
    Heerema NA, Byrd JC, Dal Cin PS, Dell’ Aquila ML, Koduru PR, Aviram A, et al. Stimulation of chronic lymphocytic leukemia cells with CpG oligodeoxynucleotide gives consistent karyotypic results among laboratories: a CLL Research Consortium (CRC) Study. Chronic Lymphocytic Leukemia Research Consortium. Cancer Genet Cytogenet. 2010;203:134–40.CrossRefPubMedGoogle Scholar
  55. 55.
    Nordgren A, Heyman M, Sahlén S, Schoumans J, Söderhäll S, Nordenskjöld M, Blennow E. Spectral karyotyping and interphase FISH reveal abnormalities not detected by conventional G-banding. Implications for treatment stratification of childhood acute lymphoblastic leukaemia: detailed analysis of 70 cases. Eur J Haematol. 2002;68(1):31–41.CrossRefPubMedGoogle Scholar
  56. 56.
    Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kröber A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17(1):28–40.CrossRefPubMedGoogle Scholar
  58. 58.
    Kalachikov S, Migliazza A, Cayanis E, Fracchiolla NS, Bonaldo MF, Lawton L, et al. Cloning and gene mapping of the chromosome 13q14 region deleted in chronic lymphocytic leukemia. Genomics. 1997;42(3):369–77.CrossRefPubMedGoogle Scholar
  59. 59.
    Döhner H, Stilgenbauer S, James MR, Benner A, Weilguni T, Bentz M, et al. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood. 1997;89(7):2516–22.PubMedGoogle Scholar
  60. 60.
    Döhner H, Fischer K, Bentz M, Hansen K, Benner A, Cabot G, et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood. 1995;85(6):1580–9.PubMedGoogle Scholar
  61. 61.
    Walker BA, Leone PE, Chiecchio L, Dickens NJ, Jenner MW, Boyd KD, et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood. 2010;116(15):e56–65.CrossRefGoogle Scholar
  62. 62.
    Zandecki M, Lai JL, Facon T. Multiple myeloma: almost all patients are cytogenetically abnormal. Br J Haematol. 1996;94(2):217–27.CrossRefPubMedGoogle Scholar
  63. 63.
    Vekemans MC, Lemmens H, Delforge M, Doyen C, Pierre P, Demuynck H, et al. The t(14;20)(q32;q12): a rare cytogenetic change in multiple myeloma associated with poor outcome. Br J Haematol. 2010;149(6):901–4.CrossRefPubMedGoogle Scholar
  64. 64.
    Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101(11):4569–75.CrossRefPubMedGoogle Scholar
  65. 65.
    Neben K, Jauch A, Bertsch U, Heiss C, Hielscher T, Seckinger A, et al. Combining information regarding chromosomal aberrations t(4;14) and del(17p13) with the International Staging System classification allows stratification of myeloma patients undergoing autologous stem cell transplantation. Haematologica. 2010;95(7):1150–7.CrossRefPubMedGoogle Scholar
  66. 66.
    Ahmann GJ, Jalal SM, Juneau AL, Christensen ER, Hanson CA, Dewald GW, et al. A novel three-color, clone-specific fluorescence in situ hybridization procedure for monoclonal gammopathies. Cancer Genet Cytogenet. 1998;101(1):7–11.CrossRefPubMedGoogle Scholar
  67. 67.
    Chen Z, Issa B, Huang S, Aston E, Xu J, Yu M, et al. A practical approach to the detection of prognostically significant genomic aberrations in multiple myeloma. J Mol Diagn. 2005;7(5):560–5.CrossRefPubMedGoogle Scholar
  68. 68.
    Pardanani A, Ketterling RP, Brockman SR, Flynn HC, Paternoster SF, Shearer BM, et al. CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy. Blood. 2003;102(9):3093–6.CrossRefPubMedGoogle Scholar
  69. 69.
    Roufosse F. Hypereosinophilic syndrome variants: diagnostic and therapeutic considerations. Haematologica. 2009;94(9):1188–93.CrossRefPubMedGoogle Scholar
  70. 70.
    Tanas MR, Goldblum JR. Fluorescence in situ hybridization in the diagnosis of soft tissue neoplasms: a review. Adv Anat Pathol. 2009;16(6):383–91.CrossRefPubMedGoogle Scholar
  71. 71.
    van Geurts van Kessel A, dos Santos NR, Simons A, de Bruijn D, Forus A, Fodstad O, et al. Molecular cytogenetics of bone and soft tissue tumors. Cancer Genet Cytogenet. 1997;95(1):67–73.CrossRefPubMedGoogle Scholar
  72. 72.
    Biegel JA, Nycum LM, Valentine V, Barr FG, Shapiro DN. Detection of the t(2;13)(q35;q14) and PAX3-FKHR fusion in alveolar rhabdomyosarcoma by fluorescence in situ hybridization. Genes Chromosomes Cancer. 1995;12(3):186–92.CrossRefPubMedGoogle Scholar
  73. 73.
    Grady-Leopardi EF, Schwab M, Ablin AR, Rosenau W. Detection of N-myc oncogene expression in human neuroblastoma by in situ hybridization and blot analysis: relationship to clinical outcome. Cancer Res. 1986;46(6):3196–9.PubMedGoogle Scholar
  74. 74.
    Taylor CP, Bown NP, McGuckin AG, Lunec J, Malcolm AJ, Pearson AD, et al. Fluorescence in situ hybridization techniques for the rapid detection of genetic prognostic factors in neuroblastoma. United Kingdom Children’s Cancer Study Group. Br J Cancer. 2000;83(1):40–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Press MF, Bernstein L, Thomas PA, Meisner LF, Zhou JY, Ma Y, et al. HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J Clin Oncol. 1997;15(8):2894–904.PubMedGoogle Scholar
  76. 76.
    Xing WR, Gilchrist KW, Harris CP, Samson W, Meisner LF. FISH detection of HER-2/neu oncogene amplification in early onset breast cancer. Breast Cancer Res Treat. 1996;39(2):203–12.CrossRefPubMedGoogle Scholar
  77. 77.
    Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25(1):118–45.CrossRefPubMedGoogle Scholar
  78. 78.
    Ross JS, Fletcher JA. HER-2/neu (c-erb-B2) gene and protein in breast cancer. Am J Clin Pathol. 1999;112(1 Suppl 1):S53–67.PubMedGoogle Scholar
  79. 79.
    Messing EM, Catalona W. Urothelial tumors of the urinary tract. In: Retik AB, Walsh PC, Stamey TA, Vaughan ED, editors. Campbell’s urology. Philadelphia: WB Sanders; 2382. p. 2327.Google Scholar
  80. 80.
    Halling KC, King W, Sokolova IA, Meyer RG, Burkhardt HM, Halling AC, et al. A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J Urol. 2000;164(5):1768–75.CrossRefPubMedGoogle Scholar
  81. 81.
    Skacel M, Fahmy M, Brainard JA, Pettay JD, Biscotti CV, Liou LS, et al. Multitarget fluorescence in situ hybridization assay detects transitional cell carcinoma in the majority of patients with bladder cancer and atypical or negative urine cytology. J Urol. 2003;169(6):2101–5.CrossRefPubMedGoogle Scholar
  82. 82.
    Jenkins RB, Blair H, Ballman KV, Giannini C, Arusell RM, Law M, et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res. 2006;66(20):9852–61.CrossRefPubMedGoogle Scholar
  83. 83.
    Reifenberger G, Louis DN. Oligodendroglioma: toward molecular definitions in diagnostic neuro-oncology. J Neuropathol Exp Neurol. 2003;62(2):111–26.PubMedGoogle Scholar
  84. 84.
    Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst. 1998;90(19):1473–9.CrossRefPubMedGoogle Scholar
  85. 85.
    Smith JS, Perry A, Borell TJ, Lee HK, O’Fallon J, Hosek SM, et al. Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol. 2000;18(3):636–45.PubMedGoogle Scholar
  86. 86.
    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6.CrossRefPubMedGoogle Scholar
  87. 87.
    Solomon B, Varella-Garcia M, Camidge DR. ALK gene rearrangements: a new therapeutic target in a molecularly defined subset of non-small cell lung cancer. J Thorac Oncol. 2009;4(12):1450–4.CrossRefPubMedGoogle Scholar
  88. 88.
    McDermott U, Iafrate AJ, Gray NS, Shioda T, Classon M, Maheswaran S, et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res. 2008;68(9):3389–95.CrossRefPubMedGoogle Scholar
  89. 89.
    Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363(18):1693–703.CrossRefPubMedGoogle Scholar
  90. 90.
    Vysis ALK Break Apart FISH Probe Kit [package insert]. Des Plains: Abbott Molecular Inc.; 2011. Available at: www.abbottmolecular.com. Accessed 13 Mar 2012.
  91. 91.
    NCCN clinical practice guidelines in oncology (NCCN guidelines™). Non-small cell lung cancer (Version 3.2011). © 2011 National Comprehensive Cancer Network, Inc. Available at: NCCN.org. Accessed 13 Mar 2012.Google Scholar
  92. 92.
    Forde PM, Rudin CM. Crizotinib in the treatment of non-small-cell lung cancer. Expert Opin Pharmacother 2012;13(8):1195–201.Google Scholar
  93. 93.
    Luke S, Shepelsky M. FISH: recent advances and diagnostic aspects. Cell Vis. 1998;5(1):49–53.PubMedGoogle Scholar
  94. 94.
    Tanner M, Gancberg D, Di Leo A, Larsimont D, Rouas G, Piccart MJ, et al. Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am J Pathol. 2000;157(5):1467–72.CrossRefPubMedGoogle Scholar
  95. 95.
    Dietel M, Ellis IO, Höfler H, Kreipe H, Moch H, et al. Comparison of automated silver enhanced in situ hybridisation (SISH) and fluorescence ISH (FISH) for the validation of HER2 gene status in breast carcinoma according to the guidelines of the American Society of Clinical Oncology and the College of American Pathologists. Virchows Arch. 2007;451(1):19–25.CrossRefPubMedGoogle Scholar
  96. 96.
    Levy B, Dunn TM, Kaffe S, Kardon N, Hirschhorn K. Clinical applications of comparative genomic hybridization. Genet Med. 1998;1(1):4–12.CrossRefPubMedGoogle Scholar
  97. 97.
    Schrock E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, et al. Multicolor spectral karyotyping of human chromosomes. Science. 1996;273(5274):494–7.CrossRefPubMedGoogle Scholar
  98. 98.
    Chudoba I, Plesch A, Lorch T, Lemke J, Claussen U, Senger G. High resolution multicolor-banding: a new technique for refined FISH analysis of human chromosomes. Cytogenet Cell Genet. 1999;84(3–4):156–60.CrossRefPubMedGoogle Scholar
  99. 99.
    Kraan J, von AR Bergh, Kleiverda K, Vaandrager JW, Jordanova ES, Raap AK, et al. Multicolor fiber FISH. Methods Mol Biol. 2002;204:143–53.PubMedGoogle Scholar
  100. 100.
    Carter NP. Cytogenetic analysis by chromosome painting. Cytometry. 1994;18(1):2–10.CrossRefPubMedGoogle Scholar
  101. 101.
    Warburton D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Hum Genet. 1991;49(5):995–1013.PubMedGoogle Scholar
  102. 102.
    Gardner R, Sutherland GR. Chromosome Abnormalities and Genetic Counseling (3rd ed.). New York: Oxford Press; 2004, p. 363–433.Google Scholar
  103. 103.
    Dewald GW, Brockman SR, Paternoster SF, Bone ND, O’Fallon JR, Allmer C, et al. Chromosome anomalies detected by interphase fluorescence in situ hybridization: correlation with significant biological features of B-cell chronic lymphocytic leukaemia. Br J Haematol. 2003;121(2):287–95.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineMedical University of South CarolinaCharlestonUSA
  2. 2.Cytogenetics and Molecular GeneticsMedical University of South CarolinaCharlestonUSA

Personalised recommendations