The Cytogenetics of Solid Tumors

  • Linda D. Cooley
  • Kathleen S. Wilson


All neoplasms have genetic abnormalities. Most neoplasms have visible nonrandom chromosome abnormalities. Interpretation of clonal chromosome anomalies and utilization of this knowledge can refine the histopathologic diagnosis of many tumors. The information gleaned from chromosome studies is in daily use by oncologists for patient care. The genetic data gathered by collaborative oncology groups advance chemotherapeutic regimens, which have, in turn, reduced mortality rates for many tumor types. The genetics of hematologic disorders has had a very significant clinical impact over the past several decades. The genetics of sarcomas, carcinomas, and central and peripheral nervous system tumors are used consistently today in pediatric diagnosis and management. There is an expanding influence of genetic information on the choice of therapeutic drugs for both adult and pediatric patients with solid tumors. Conventional cytogenetic analysis, fluorescence in situ hybridization (FISH) analysis, and now array CGH analysis of tumor tissues provide genetic data, which may improve the care and the therapeutics available for patients with benign and malignant neoplasms. This chapter discusses only those chromosomal abnormalities with a known impact on diagnosis, prognosis, or therapeutic response.


Pleomorphic Adenoma Endometrial Stromal Sarcoma Telomeric Repeat Amplification Protocol Clear Cell Sarcoma Alveolar Soft Part Sarcoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109. Epub 2007/07/10.PubMedCrossRefGoogle Scholar
  2. 2.
    Robbins SL, Kumar V, Cotran RS, Ellenson LH, Pirog EC. Robbins and Cotran pathologic basis of disease. 8th ed. Philadelphia: Saunders/Elsevier; 2010. xiv, 1450 p.Google Scholar
  3. 3.
    Dubuc AM, Northcott PA, Mack S, Witt H, Pfister S, Taylor MD. The genetics of pediatric brain tumors. Curr Neurol Neurosci Rep. 2010;10(3):215–23. Epub 2010/04/29.PubMedCrossRefGoogle Scholar
  4. 4.
    Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68(21):8673–7. Epub 2008/11/01.PubMedCrossRefGoogle Scholar
  5. 5.
    Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N, et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest. 2008;118(5):1739–49. Epub 2008/04/10.PubMedCrossRefGoogle Scholar
  6. 6.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73. Epub 2009/02/21.PubMedCrossRefGoogle Scholar
  7. 7.
    Martin DA, et al. Abeloff’s clinical oncology. Philadelphia: Churchill Livingstone/Elsevier; 2008. Available from:{001}Google Scholar
  8. 8.
    Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170(5):1445–53. Epub 2007/04/26.PubMedCrossRefGoogle Scholar
  9. 9.
    Bigner SH, Burger PC, Wong AJ, Werner MH, Hamilton SR, Muhlbaier LH, et al. Gene amplification in malignant human gliomas: clinical and histopathologic aspects. J Neuropathol Exp Neurol. 1988;47(3):191–205. Epub 1988/05/01.PubMedCrossRefGoogle Scholar
  10. 10.
    Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin. 2010;60(3):166–93. Epub 2010/05/07.PubMedCrossRefGoogle Scholar
  11. 11.
    Bigner SH, Matthews MR, Rasheed BK, Wiltshire RN, Friedman HS, Friedman AH, et al. Molecular genetic aspects of oligodendrogliomas including analysis by comparative genomic hybridization. Am J Pathol. 1999;155(2):375–86. Epub 1999/08/06.PubMedCrossRefGoogle Scholar
  12. 12.
    Bigner SH, Rasheed BK, Wiltshire R, McLendon RE. Morphologic and molecular genetic aspects of oligodendroglial neoplasms. Neuro Oncol. 1999;1(1):52–60. Epub 2001/09/12.PubMedGoogle Scholar
  13. 13.
    Parkinson JF, Afaghi V, Payne CA, Buckland ME, Brewer JM, Biggs MT, et al. The impact of molecular and clinical factors on patient outcome in oligodendroglioma from 20 years’ experience at a single centre. J Clin Neurosci. 2011;18(3):329–33. Epub 2011/01/21.PubMedCrossRefGoogle Scholar
  14. 14.
    Ueki K, Nishikawa R, Nakazato Y, Hirose T, Hirato J, Funada N, et al. Correlation of histology and molecular genetic analysis of 1p, 19q, 10q, TP53, EGFR, CDK4, and CDKN2A in 91 astrocytic and oligodendroglial tumors. Clin Cancer Res. 2002;8(1):196–201. Epub 2002/01/22.PubMedGoogle Scholar
  15. 15.
    van den Bent MJ, Dubbink HJ, Marie Y, Brandes AA, Taphoorn MJ, Wesseling P, et al. IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European organization for research and treatment of cancer brain tumor group. Clin Cancer Res. 2010;16(5):1597–604. Epub 2010/02/18.PubMedCrossRefGoogle Scholar
  16. 16.
    Eoli M, Bissola L, Bruzzone MG, Pollo B, Maccagnano C, De Simone T, et al. Reclassification of oligoastrocytomas by loss of heterozygosity studies. Int J Cancer. 2006;119(1):84–90. Epub 2006/01/25.PubMedCrossRefGoogle Scholar
  17. 17.
    Qu M, Olofsson T, Sigurdardottir S, You C, Kalimo H, Nister M, et al. Genetically distinct astrocytic and oligodendroglial components in oligoastrocytomas. Acta Neuropathol. 2007;113(2):129–36. Epub 2006/10/13.PubMedCrossRefGoogle Scholar
  18. 18.
    Dong ZQ, Pang JC, Tong CY, Zhou LF, Ng HK. Clonality of oligoastrocytomas. Hum Pathol. 2002;33(5):528–35. Epub 2002/07/03.PubMedCrossRefGoogle Scholar
  19. 19.
    Watanabe T, Nakamura M, Kros JM, Burkhard C, Yonekawa Y, Kleihues P, et al. Phenotype versus genotype correlation in oligodendrogliomas and low-grade diffuse astrocytomas. Acta Neuropathol. 2002;103(3):267–75. Epub 2002/03/22.PubMedCrossRefGoogle Scholar
  20. 20.
    Kros JM, Gorlia T, Kouwenhoven MC, Zheng PP, Collins VP, Figarella-Branger D, et al. Panel review of anaplastic oligodendroglioma from European Organization For Research and Treatment of Cancer Trial 26951: assessment of consensus in diagnosis, influence of 1p/19q loss, and correlations with outcome. J Neuropathol Exp Neurol. 2007;66(6):545–51. Epub 2007/06/06.PubMedCrossRefGoogle Scholar
  21. 21.
    Idbaih A, Dalmasso C, Kouwenhoven M, Jeuken J, Carpentier C, Gorlia T, et al. Genomic aberrations associated with outcome in anaplastic oligodendroglial tumors treated within the EORTC phase III trial 26951. J Neurooncol. 2011;103(2):221–30. Epub 2010/09/08.PubMedCrossRefGoogle Scholar
  22. 22.
    Mack SC, Taylor MD. The genetic and epigenetic basis of ependymoma. Childs Nerv Syst. 2009;25(10):1195–201. Epub 2009/06/19.PubMedCrossRefGoogle Scholar
  23. 23.
    Witt H, Mack SC, Ryzhova M, Bender S, Sill M, Isserlin R, et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell. 2011;20(2):143–57. Epub 2011/08/16.PubMedCrossRefGoogle Scholar
  24. 24.
    Korshunov A, Witt H, Hielscher T, Benner A, Remke M, Ryzhova M, et al. Molecular staging of intracranial ependymoma in children and adults. J Clin Oncol. 2010;28(19):3182–90. Epub 2010/06/03.PubMedCrossRefGoogle Scholar
  25. 25.
    Mendrzyk F, Korshunov A, Benner A, Toedt G, Pfister S, Radlwimmer B, et al. Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma. Clin Cancer Res. 2006;12(7 Pt 1):2070–9. Epub 2006/04/13.PubMedCrossRefGoogle Scholar
  26. 26.
    Bhattacharjee MB, Armstrong DD, Vogel H, Cooley LD. Cytogenetic analysis of 120 primary pediatric brain tumors and literature review. Cancer Genet Cytogenet (Internet). 1997;97(1):39–53. Available from:
  27. 27.
    Li YS, Fan YS, Armstrong RF. Endoreduplication and telomeric association in a choroid plexus carcinoma. Cancer Genet Cytogenet. 1996;87(1):7–10. Epub 1996/03/01.PubMedCrossRefGoogle Scholar
  28. 28.
    Rickert CH, Wiestler OD, Paulus W. Chromosomal imbalances in choroid plexus tumors. Am J Pathol. 2002;160(3):1105–13. Epub 2002/03/14.PubMedCrossRefGoogle Scholar
  29. 29.
    Pfister S, Remke M, Benner A, Mendrzyk F, Toedt G, Felsberg J, et al. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol. 2009;27(10):1627–36. Epub 2009/03/04.PubMedCrossRefGoogle Scholar
  30. 30.
    Korshunov A, Remke M, Werft W, Benner A, Ryzhova M, Witt H, et al. Adult and pediatric medulloblastomas are genetically distinct and require different algorithms for molecular risk stratification. J Clin Oncol. 2010;28(18):3054–60. Epub 2010/05/19.PubMedCrossRefGoogle Scholar
  31. 31.
    Inda MM, Perot C, Guillaud-Bataille M, Danglot G, Rey JA, Bello MJ, et al. Genetic heterogeneity in supratentorial and infratentorial primitive neuroectodermal tumours of the central nervous system. Histopathology. 2005;47(6):631–7. Epub 2005/12/06.PubMedCrossRefGoogle Scholar
  32. 32.
    Gajjar A, Hernan R, Kocak M, Fuller C, Lee Y, McKinnon PJ, et al. Clinical, histopathologic, and molecular markers of prognosis: toward a new disease risk stratification system for medulloblastoma. J Clin Oncol. 2004;22(6):984–93. Epub 2004/02/19.PubMedCrossRefGoogle Scholar
  33. 33.
    Lamont JM, McManamy CS, Pearson AD, Clifford SC, Ellison DW. Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients. Clin Cancer Res. 2004;10(16):5482–93. Epub 2004/08/26.PubMedCrossRefGoogle Scholar
  34. 34.
    Pan E, Pellarin M, Holmes E, Smirnov I, Misra A, Eberhart CG, et al. Isochromosome 17q is a negative prognostic factor in poor-risk childhood medulloblastoma patients. Clin Cancer Res. 2005;11(13):4733–40. Epub 2005/07/08.PubMedCrossRefGoogle Scholar
  35. 35.
    Russo C, Pellarin M, Tingby O, Bollen AW, Lamborn KR, Mohapatra G, et al. Comparative genomic hybridization in patients with supratentorial and infratentorial primitive neuroectodermal tumors. Cancer. 1999;86(2):331–9. Epub 1999/07/27.PubMedCrossRefGoogle Scholar
  36. 36.
    Sevenet N, Sheridan E, Amram D, Schneider P, Handgretinger R, Delattre O. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet. 1999;65:1342–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Ammerlaan AC, Ararou A, Houben MP, Baas F, Tijssen CC, Teepen JL, et al. Long-term survival and transmission of INI1-mutation via nonpenetrant males in a family with rhabdoid tumour predisposition syndrome. Br J Cancer. 2008;98(2):474–9. Epub 2007/12/19.PubMedCrossRefGoogle Scholar
  38. 38.
    Eaton KW, Tooke LS, Wainwright LM, Judkins AR, Biegel JA. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer. 2011;56(1):7–15. Epub 2010/11/26.PubMedCrossRefGoogle Scholar
  39. 39.
    Bruggers CS, Bleyl SB, Pysher T, Barnette P, Afify Z, Walker M, et al. Clinicopathologic comparison of familial versus sporadic atypical teratoid/rhabdoid tumors (AT/RT) of the central nervous system. Pediatr Blood Cancer. 2011;56(7):1026–31. Epub 2010/09/18.PubMedCrossRefGoogle Scholar
  40. 40.
    Ketter R, Rahnenfuhrer J, Henn W, Kim YJ, Feiden W, Steudel WI, et al. Correspondence of tumor localization with tumor recurrence and cytogenetic progression in meningiomas. Neurosurgery. 2008;62(1):61–9. Epub 2008/02/28.PubMedCrossRefGoogle Scholar
  41. 41.
    Lusis E, Gutmann DH. Meningioma: an update. Curr Opin Neurol. 2004;17(6):687–92. Epub 2004/11/16.PubMedCrossRefGoogle Scholar
  42. 42.
    Zwerdling RDJ. Meningiomas in children and adolescents. J Pediatr Hematol Oncol. 2002;24(3):199–204.PubMedCrossRefGoogle Scholar
  43. 43.
    Espinosa AB, Tabernero MD, Maillo A, Sayagues JM, Ciudad J, Merino M, et al. The cytogenetic relationship between primary and recurrent meningiomas points to the need for new treatment strategies in cases at high risk of relapse. Clin Cancer Res. 2006;12(3 Pt 1):772–80. Epub 2006/02/10.PubMedCrossRefGoogle Scholar
  44. 44.
    Prowald A, Wemmert S, Biehl C, Storck S, Martin T, Henn W, et al. Interstitial loss and gain of sequences on chromosome 22 in meningiomas with normal karyotype. Int J Oncol. 2005;26(2):385–93. Epub 2005/01/13.PubMedGoogle Scholar
  45. 45.
    Hagenkord JM, Gatalica Z, Jonasch E, Monzon FA. Clinical genomics of renal epithelial tumors. Cancer Genet. 2011;204(6):285–97. Epub 2011/07/19.PubMedCrossRefGoogle Scholar
  46. 46.
    Algaba F, Akaza H, Lopez-Beltran A, Martignoni G, Moch H, Montironi R, et al. Current pathology keys of renal cell carcinoma. Eur Urol. 2011;60(4):634–43. Epub 2011/07/12.PubMedCrossRefGoogle Scholar
  47. 47.
    Dondeti VR, Wubbenhorst B, Lal P, Gordan JD, D’Andrea K, Attiyeh EF, et al. Integrative genomic analyses of sporadic clear cell renal cell carcinoma define disease subtypes and potential new therapeutic targets. Cancer Res. 2012;72(1):112–21. Epub 2011/11/19.PubMedCrossRefGoogle Scholar
  48. 48.
    Kardas I, Mrozek K, Babinska M, Krajka K, Hadaczek P, Lubinski J, et al. Cytogenetic and molecular findings in 75 clear cell renal cell carcinomas. Oncol Rep. 2005;13(5):949–56. Epub 2005/04/06.PubMedGoogle Scholar
  49. 49.
    Balint I, Szponar A, Jauch A, Kovacs G. Trisomy 7 and 17 mark papillary renal cell tumours irrespectively of variation of the phenotype. J Clin Pathol. 2009;62(10):892–5. Epub 2009/06/23.PubMedCrossRefGoogle Scholar
  50. 50.
    Ramphal R, Pappo A, Zielenska M, Grant R, Ngan BY. Pediatric renal cell carcinoma: clinical, pathologic, and molecular abnormalities associated with the members of the mit transcription factor family. Am J Clin Pathol. 2006;126(3):349–64. Epub 2006/08/02.PubMedCrossRefGoogle Scholar
  51. 51.
    Armah HB, Parwani AV. Xp11.2 translocation renal cell carcinoma. Arch Pathol Lab Med. 2010;134:124–9.PubMedGoogle Scholar
  52. 52.
    Meyer PN, Clark JI, Flanigan RC, Picken MM. Xp11.2 translocation renal cell carcinoma with very aggressive course in five adults. Am J Clin Pathol. 2007;128(1):70–9. Epub 2007/06/21.PubMedCrossRefGoogle Scholar
  53. 53.
    Ross H, Argani P. Xp11 translocation renal cell carcinoma. Pathology (Phila). 2010;42(4):369–73. Epub 2010/05/05.CrossRefGoogle Scholar
  54. 54.
    Argani P, Ladanyi M. Translocation carcinomas of the kidney. Clin Lab Med. 2005;25(2):363–78. Epub 2005/04/26.PubMedCrossRefGoogle Scholar
  55. 55.
    Argani P, Lae M, Hutchinson B, Reuter VE, Collins MH, Perentesis J, et al. Renal carcinomas with the t(6;11)(p21;q12) clinicopathologic features and demonstration of the specific alpha-TFEB gene fusion by immunohistochemistry, RT-PCR, and DNA PCR. Am J Surg Pathol. 2005;29:230–40.PubMedCrossRefGoogle Scholar
  56. 56.
    Hes O, Vanecek T, Perez-Montiel DM, Alvarado Cabrero I, Hora M, Suster S, et al. Chromophobe renal cell carcinoma with microcystic and adenomatous arrangement and pigmentation – a diagnostic pitfall. Morphological, immunohistochemical, ultrastructural and molecular genetic report of 20 cases. Virchows Arch. 2005;446(4):383–93. Epub 2005/03/10.PubMedCrossRefGoogle Scholar
  57. 57.
    Brunelli M, Eble JN, Zhang S, Martignoni G, Delahunt B, Cheng L. Eosinophilic and classic chromophobe renal cell carcinomas have similar frequent losses of multiple chromosomes from among chromosomes 1, 2, 6, 10, and 17, and this pattern of genetic abnormality is not present in renal oncocytoma. Mod Pathol. 2005;18(2):161–9. Epub 2004/10/07.PubMedCrossRefGoogle Scholar
  58. 58.
    Grundy PE, Breslow NE, Li S, Perlman E, Beckwith JB, Ritchey ML, et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the national Wilms tumor study group. J Clin Oncol. 2005;23(29):7312–21. Epub 2005/09/01.PubMedCrossRefGoogle Scholar
  59. 59.
    Messahel B, Williams R, Ridolfi A, A’Hern R, Warren W, Tinworth L, et al. Allele loss at 16q defines poorer prognosis Wilms tumour irrespective of treatment approach in the UKW1-3 clinical trials: a children’s cancer and leukaemia group (CCLG) study. Eur J Cancer. 2009;45(5):819–26. Epub 2009/02/24.PubMedCrossRefGoogle Scholar
  60. 60.
    Bown N, Cotterill SJ, Roberts P, Griffiths M, Larkins S, Hibbert S, et al. Cytogenetic abnormalities and clinical outcome in Wilms tumor: a study by the U.K. cancer cytogenetics group and the U.K. children’s cancer study group. Med Pediatr Oncol. 2002;38(1):11–21. Epub 2002/02/09.PubMedCrossRefGoogle Scholar
  61. 61.
    Natrajan R, Williams RD, Hing SN, Mackay A, Reis-Filho JS, Fenwick K, et al. Array CGH profiling of favourable histology Wilms tumours reveals novel gains and losses associated with relapse. J Pathol. 2006;210(1):49–58. Epub 2006/07/11.PubMedCrossRefGoogle Scholar
  62. 62.
    Hawthorn L, Cowell JK. Analysis of Wilms tumors using SNP mapping array-based comparative genomic hybridization. PLoS One. 2011;6(4):e18941. Epub 2011/05/06.PubMedCrossRefGoogle Scholar
  63. 63.
    Williams RD, Al-Saadi R, Natrajan R, Mackay A, Chagtai T, Little S, et al. Molecular profiling reveals frequent gain of MYCN and anaplasia-specific loss of 4q and 14q in Wilms tumor. Genes Chromosomes Cancer. 2011;50(12):982–95. Epub 2011/09/02.PubMedCrossRefGoogle Scholar
  64. 64.
    Dome JS, Cotton CA, Perlman EJ, Breslow NE, Kalapurakal JA, Ritchey ML, et al. Treatment of anaplastic histology Wilms’ tumor: results from the fifth national Wilms’ tumor study. J Clin Oncol. 2006;24(15):2352–8. Epub 2006/05/20.PubMedCrossRefGoogle Scholar
  65. 65.
    Rakheja D, Weinberg AG, Tomlinson GE, Partridge K, Schneider NR. Translocation (10;17)(q22;p13): a recurring translocation in clear cell sarcoma of kidney. Cancer Genet Cytogenet. 2004;154(2):175–9. Epub 2004/10/12.PubMedCrossRefGoogle Scholar
  66. 66.
    Brownlee NA, Perkins AL, Stewart W, Jackle B, Pettenati MJ, Koty PP, et al. Recurring translocation (10;17) and deletion (14q) in clear cell sarcoma of the kidney. Arch Pathol Lab Med. 2007;131:446–51.PubMedGoogle Scholar
  67. 67.
    O’Meara E, Stack D, Lee CH, Garvin AJ, Morris T, Argani P, et al. Characterization of the chromosomal translocation t(10;17)(q22;p13) in clear cell sarcoma of kidney. J Pathol. 2012;227:72–80. Epub 2012/02/02.PubMedCrossRefGoogle Scholar
  68. 68.
    Lee CH, Ou WB, Marino-Enriquez A, Zhu M, Mayeda M, Wang Y, et al. 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proc Natl Acad Sci U S A. 2012;109(3):929–34. Epub 2012/01/10.PubMedCrossRefGoogle Scholar
  69. 69.
    Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: congenital (infantile) fibrosarcoma and mesoblastic nephroma. Cancer Genet Cytogenet. 2002;132:1–13.PubMedCrossRefGoogle Scholar
  70. 70.
    Watanabe N, Haruta M, Soejima H, Fukushi D, Yokomori K, Nakadate H, et al. Duplication of the paternal IGF2 allele in trisomy 11 and elevated expression levels of IGF2 mRNA in congenital mesoblastic nephroma of the cellular or mixed type. Genes Chromosomes Cancer. 2007;46(10):929–35. Epub 2007/07/20.PubMedCrossRefGoogle Scholar
  71. 71.
    Isaacs Jr H. Fetal and neonatal rhabdoid tumor. J Pediatr Surg. 2010;45(3):619–26. Epub 2010/03/13.PubMedCrossRefGoogle Scholar
  72. 72.
    Zhuge Y, Cheung MC, Yang R, Perez EA, Koniaris LG, Sola JE. Pediatric non-Wilms renal tumors: subtypes, survival, and prognostic indicators. J Surg Res. 2010;163(2):257–63. Epub 2010/06/12.PubMedCrossRefGoogle Scholar
  73. 73.
    Biegel JA, Tan L, Zhang F, Wainwright L, Russo P, Rorke LB. Alterations of the hSNF5/INI1 gene in central nervous system atypical teratoid/rhabdoid tumors and renal and extrarenal rhabdoid tumors. Clin Cancer Res. 2002;8(11):3461–7. Epub 2002/11/14.PubMedGoogle Scholar
  74. 74.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA A Cancer J Clin. 2012;62(1):10–29. Epub 2012/01/13.CrossRefGoogle Scholar
  75. 75.
    Schulz WA, Burchardt M, Cronauer MV. Molecular biology of prostate cancer. Mol Hum Reprod. 2003;9(8):437–48. Epub 2003/07/03.PubMedCrossRefGoogle Scholar
  76. 76.
    Sircar K, Yoshimoto M, Monzon FA, Koumakpayi IH, Katz RL, Khanna A, et al. PTEN genomic deletion is associated with p-Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. J Pathol. 2009;218(4):505–13. Epub 2009/04/30.PubMedCrossRefGoogle Scholar
  77. 77.
    Yoshimoto M, Cunha IW, Coudry RA, Fonseca FP, Torres CH, Soares FA, et al. FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome. Br J Cancer. 2007;97(5):678–85. Epub 2007/08/19.PubMedCrossRefGoogle Scholar
  78. 78.
    Yoshimoto M, Joshua AM, Chilton-Macneill S, Bayani J, Selvarajah S, Evans AJ, et al. Three-color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement. Neoplasia. 2006;8(6):465–9. Epub 2006/07/06.PubMedCrossRefGoogle Scholar
  79. 79.
    Tomlins SA, Bjartell A, Chinnaiyan AM, Jenster G, Nam RK, Rubin MA, et al. ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol. 2009;56(2):275–86. Epub 2009/05/05.PubMedCrossRefGoogle Scholar
  80. 80.
    Markert EK, Mizuno H, Vazquez A, Levine AJ. Molecular classification of prostate cancer using curated expression signatures. PNAS. 2011;108(52):21276–81.PubMedCrossRefGoogle Scholar
  81. 81.
    Sokolova IA, Halling KC, Jenkins RB, Burkhardt HM, Meyer RG, Seelig SA, et al. The development of a multitarget, multicolor fluorescence in situ hybridization assay for the detection of urothelial carcinoma in urine. J Mol Diagn JMD. 2000;2(3):116–23. Epub 2001/03/07.CrossRefGoogle Scholar
  82. 82.
    Caraway NP, Khanna A, Fernandez RL, Payne L, Bassett Jr RL, Zhang HZ, et al. Fluorescence in situ hybridization for detecting urothelial carcinoma: a clinicopathologic study. Cancer Cytopathol. 2010;118(5):259–68. Epub 2010/07/29.PubMedCrossRefGoogle Scholar
  83. 83.
    Galvan AB, Salido M, Espinet B, Placer J, Pijuan L, Juanpere N, et al. A multicolor fluorescence in situ hybridization assay: a monitoring tool in the surveillance of patients with a history of non-muscle-invasive urothelial cell carcinoma: a prospective study. Cancer Cytopathol. 2011;119(6):395–403. Epub 2011/07/01.PubMedCrossRefGoogle Scholar
  84. 84.
    Fritsche HM, Burger M, Dietmaier W, Denzinger S, Bach E, Otto W, et al. Multicolor FISH (UroVysion) facilitates follow-up of patients with high-grade urothelial carcinoma of the bladder. Am J Clin Pathol. 2010;134(4):597–603. Epub 2010/09/22.PubMedCrossRefGoogle Scholar
  85. 85.
    Maffezzini M, Campodonico F, Capponi G, Canepa G, Casazza S, Bandelloni R, et al. Prognostic significance of fluorescent in situ hybridisation in the follow-up of non-muscle-invasive bladder cancer. Anticancer Res. 2010;30(11):4761–5. Epub 2010/12/01.PubMedGoogle Scholar
  86. 86.
    Ding T, Wang YK, Cao YH, Yang LY. Clinical utility of fluorescence in situ hybridization for prediction of residual tumor after transurethral resection of bladder urothelial carcinoma. Urology. 2011;77(4):855–9. Epub 2011/02/08.PubMedCrossRefGoogle Scholar
  87. 87.
    Bravaccini S, Casadio V, Gunelli R, Bucchi L, Zoli W, Amadori D, et al. Combining cytology, TRAP assay, and FISH analysis for the detection of bladder cancer in symptomatic patients. Ann Oncol. 2011;22(10):2294–8. Epub 2011/02/23.PubMedCrossRefGoogle Scholar
  88. 88.
    Chiang SAR, Melnyk N, McAlpine JN, Huntsman DG, Gilks B, Lee C-H, Olivia E. Frequency of known gene rearrangements in endometrial stromal tumors. Am J Surg Pathol. 2011;35: 1364–72.PubMedCrossRefGoogle Scholar
  89. 89.
    Micci F, Panagopoulos I, Bjerkehagen B, Heim S. Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcoma. Cancer Res. 2006;66(1):107–12. Epub 2006/01/07.PubMedCrossRefGoogle Scholar
  90. 90.
    Nucci MR, Harburger D, Koontz J, Dal Cin P, Sklar J. Molecular analysis of the JAZF1-JJAZ1 gene fusion by RT-PCR and fluorescence in situ hybridization in endometrial stromal neoplasms. Am J Surg Pathol. 2007;31(1):65–70. Epub 2007/01/02.PubMedCrossRefGoogle Scholar
  91. 91.
    Chiang S, Oliva E. Cytogenetic and molecular aberrations in endometrial stromal tumors. Hum Pathol. 2011;42(5):609–17. Epub 2011/03/23.PubMedCrossRefGoogle Scholar
  92. 92.
    De Backer A, Madern GC, Pieters R, Haentjens P, Hakvoort-Cammel FG, Oosterhuis JW, et al. Influence of tumor site and histology on long-term survival in 193 children with extracranial germ cell tumors. Eur J Pediatr Surg. 2008;18(1):1–6. Epub 2008/02/28.PubMedCrossRefGoogle Scholar
  93. 93.
    Schneider DT, Calaminus G, Koch S, Teske C, Schmidt P, Haas RJ, et al. Epidemiologic analysis of 1,442 children and adolescents registered in the German germ cell tumor protocols. Pediatr Blood Cancer. 2004;42(2):169–75. Epub 2004/01/31.PubMedCrossRefGoogle Scholar
  94. 94.
    McKenney JK, Heerema-McKenney A, Rouse RV. Extragonadal germ cell tumors: a review with emphasis on pathologic features, clinical prognostic variables, and differential diagnostic considerations. Adv Anat Pathol. 2007;14(2):69–92. Epub 2007/05/02.PubMedCrossRefGoogle Scholar
  95. 95.
    Chaganti RSK, Houldsworth J. Genetics and biology of adult human male germ cell tumors. Cancer Res. 2000;60:1475–82.PubMedGoogle Scholar
  96. 96.
    van Echten J, Timmer A, van der Veen AY, Molenaar WM, de Jong B. Infantile and adult testicular germ cell tumors. a different pathogenesis? Cancer Genet Cytogenet. 2002;135(1):57–62. Epub 2002/06/20.PubMedCrossRefGoogle Scholar
  97. 97.
    Moran CA, Suster S, Koss MN. Primary germ cell tumors of the mediastinum: III. Yolk sac tumor, embryonal carcinoma, choriocarcinoma, and combined nonteratomatous germ cell tumors of the mediastinum – a clinicopathologic and immunohistochemical study of 64 cases. Cancer. 1997;80(4):699–707. Epub 1997/08/15.PubMedCrossRefGoogle Scholar
  98. 98.
    Schneider DT, Schuster AE, Fritsch MK, Calaminus G, Gobel U, Harms D, et al. Genetic analysis of mediastinal nonseminomatous germ cell tumors in children and adolescents. Genes Chromosomes Cancer. 2002;34(1):115–25. Epub 2002/03/29.PubMedCrossRefGoogle Scholar
  99. 99.
    Horton Z, Schlatter M, Schultz S. Pediatric germ cell tumors. Surg Oncol. 2007;16(3):205–13. Epub 2007/08/28.PubMedCrossRefGoogle Scholar
  100. 100.
    Cossu-Rocca P, Zhang S, Roth LM, Eble JN, Zheng W, Karim FW, et al. Chromosome 12p abnormalities in dysgerminoma of the ovary: a FISH analysis. Mod Pathol. 2006;19(4):611–5. Epub 2006/03/24.PubMedCrossRefGoogle Scholar
  101. 101.
    Reuter VE. Origins and molecular biology of testicular germ cell tumors. Mod Pathol. 2005;18 Suppl 2:S51–60. Epub 2005/03/12.PubMedCrossRefGoogle Scholar
  102. 102.
    Palmer RD, Foster NA, Vowler SL, Roberts I, Thornton CM, Hale JP, et al. Malignant germ cell tumours of childhood: new associations of genomic imbalance. Br J Cancer. 2007;96(4):667–76. Epub 2007/02/08.PubMedCrossRefGoogle Scholar
  103. 103.
    Roelofs H, Mostert MC, Pompe K, Zafarana G, van Oorschot M, van Gurp RJ, et al. Restricted 12p amplification and RAS mutation in human germ cell tumors of the adult testis. Am J Pathol. 2000;157(4):1155–66. Epub 2000/10/06.PubMedCrossRefGoogle Scholar
  104. 104.
    Zafarana G, Grygalewicz B, Gillis AJ, Vissers LE, van de Vliet W, van Gurp RJ, et al. 12p-amplicon structure analysis in testicular germ cell tumors of adolescents and adults by array CGH. Oncogene. 2003;22(48):7695–701. Epub 2003/10/25.PubMedCrossRefGoogle Scholar
  105. 105.
    Liegl B, Kepten I, Le C, Zhu M, Demetri GD, Heinrich MC, et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol. 2008;216(1):64–74. Epub 2008/07/16.PubMedCrossRefGoogle Scholar
  106. 106.
    Yang J, Du X, Lazar AJ, Pollock R, Hunt K, Chen K, et al. Genetic aberrations of gastrointestinal stromal tumors. Cancer. 2008;113(7):1532–43. Epub 2008/08/02.PubMedCrossRefGoogle Scholar
  107. 107.
    Yamashita K, Igarashi H, Kitayama Y, Ozawa T, Kiyose S, Konno H, et al. Chromosomal numerical abnormality profiles of gastrointestinal stromal tumors. Jpn J Clin Oncol. 2006;36(2):85–92. Epub 2006/02/03.PubMedCrossRefGoogle Scholar
  108. 108.
    Debiec-Rychter M, Wasag B, Stul M, De Wever I, Van Oosterom A, Hagemeijer A, et al. Gastrointestinal stromal tumours (GISTs) negative for KIT (CD117 antigen) immunoreactivity. J Pathol. 2004;202(4):430–8. Epub 2004/04/20.PubMedCrossRefGoogle Scholar
  109. 109.
    Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Gastrointestinal stromal tumors. Cancer Genet Cytogenet. 2002;135(1):1–22. Epub 2002/06/20.PubMedCrossRefGoogle Scholar
  110. 110.
    Silva M, Veiga I, Ribeiro FR, Vieira J, Pinto C, Pinheiro M, et al. Chromosome copy number changes carry prognostic information independent of KIT/PDGFRA point mutations in gastrointestinal stromal tumors. BMC Med. 2010;8:26. Epub 2010/05/18.PubMedCrossRefGoogle Scholar
  111. 111.
    Lasota J, Wozniak A, Kopczynski J, Dansonka-Mieszkowska A, Wasag B, Mitsuhashi T, et al. Loss of heterozygosity on chromosome 22q in gastrointestinal stromal tumors (GISTs): a study on 50 cases. Lab Invest. 2005;85(2):237–47. Epub 2004/12/08.PubMedCrossRefGoogle Scholar
  112. 112.
    Tomlinson GE, Douglass EC, Pollock BH, Finegold MJ, Schneider NR. Cytogenetic evaluation of a large series of hepatoblastomas: numerical abnormalities with recurring aberrations involving 1q12-q21. Genes Chromosomes Cancer. 2005;44(2):177–84. Epub 2005/06/28.PubMedCrossRefGoogle Scholar
  113. 113.
    Arai Y, Honda S, Haruta M, Kasai F, Fujiwara Y, Ohshima J, et al. Genome-wide analysis of allelic imbalances reveals 4q deletions as a poor prognostic factor and MDM4 amplification at 1q32.1 in hepatoblastoma. Genes Chromosomes Cancer. 2010;49(7):596–609. Epub 2010/05/13.PubMedGoogle Scholar
  114. 114.
    Lopez-Terrada D, Gunaratne PH, Adesina AM, Pulliam J, Hoang DM, Nguyen Y, et al. Histologic subtypes of hepatoblastoma are characterized by differential canonical Wnt and Notch pathway activation in DLK+ precursors. Hum Pathol. 2009;40(6):783–94. Epub 2009/02/10.PubMedCrossRefGoogle Scholar
  115. 115.
    Litten JB, Tomlinson GE. Liver tumors in children. Oncologist. 2008;13(7):812–20. Epub 2008/07/23.PubMedCrossRefGoogle Scholar
  116. 116.
    Hirschman BA, Pollock BH, Tomlinson GE. The spectrum of APC mutations in children with hepatoblastoma from familial adenomatous polyposis kindreds. J Pediatr. 2005;147(2):263–6. Epub 2005/08/30.PubMedCrossRefGoogle Scholar
  117. 117.
    Aretz S, Koch A, Uhlhaas S, Friedl W, Propping P, von Schweinitz D, et al. Should children at risk for familial adenomatous polyposis be screened for hepatoblastoma and children with apparently sporadic hepatoblastoma be screened for APC germline mutations? Pediatr Blood Cancer. 2006;47(6):811–8. Epub 2005/12/01.PubMedCrossRefGoogle Scholar
  118. 118.
    Harvery JJ, Clark SK, Hyer W, Hadzic N, Tomlinson IPM, Hinds R. Germline APC mutations are not commonly seen in children with sporadic hepatoblastoma. J Pediatr Gastroenterol Nutr. 2008;47:675–7.CrossRefGoogle Scholar
  119. 119.
    Hadzic N, Finegold MJ. Liver neoplasia in children. Clin Liver Dis. 2011;15(2):443–62. vii–x. Epub 2011/06/22.PubMedCrossRefGoogle Scholar
  120. 120.
    Rakheja D, Margraf LR, Tomlinson GE, Schneider NR. Hepatic mesenchymal hamartoma with translocation involving chromosome band 19q13.4: a recurrent abnormality. Cancer Genet Cytogenet. 2004;153(1):60–3. Epub 2004/08/25.PubMedCrossRefGoogle Scholar
  121. 121.
    Francis B, Hallam L, Kecskes Z, Ellwood D, Croaker D, Kent A. Placental mesenchymal dysplasia associated with hepatic mesenchymal hamartoma in the newborn. Pediatr Dev Pathol. 2007;10(1):50–4. Epub 2007/03/24.PubMedCrossRefGoogle Scholar
  122. 122.
    Kaiser-Rogers KA, McFadden DE, Livasy CA, Dansereau J, Jiang R, Knops JF, et al. Androgenetic/biparental mosaicism causes placental mesenchymal dysplasia. J Med Genet. 2006;43(2):187–92. Epub 2005/05/24.PubMedCrossRefGoogle Scholar
  123. 123.
    Reed RC, Kapur RP. Hepatic mesenchymal hamartoma: a disorder of imprinting. Pediatr Dev Pathol. 2008;11(4):264–5. Epub 2007/11/10.PubMedCrossRefGoogle Scholar
  124. 124.
    Lin J, Cole BL, Qin X, Zhang M, Kapur RP. Occult androgenetic-biparental mosaicism and sporadic hepatic mesenchymal hamartoma. Pediatr Dev Pathol. 2011;14(5):360–9. Epub 2011/05/19.PubMedCrossRefGoogle Scholar
  125. 125.
    Cajaiba MM, Sarita-Reyes C, Zambrano E, Reyes-Mugica M. Mesenchymal hamartoma of the liver associated with features of Beckwith-Wiedemann syndrome and high serum alpha-fetoprotein levels. Pediatr Dev Pathol. 2007;10(3):233–8. Epub 2007/05/31.PubMedCrossRefGoogle Scholar
  126. 126.
    O’Sullivan MJ, Swanson PE, Knoll J, Taboada EM, Dehner LP. Undifferentiated embryonal sarcoma with unusual features arising within mesenchymal hamartoma of the liver: report of a case and review of the literature. Pediatr Dev Pathol. 2001;4(5):482–9. Epub 2002/01/10.PubMedCrossRefGoogle Scholar
  127. 127.
    Kandasamy J, Smith A, Diaz S, Rose B, O’Brien C. Heterogeneity of PLAG1 gene rearrangements in pleomorphic adenoma. Cancer Genet Cytogenet. 2007;177(1):1–5. Epub 2007/08/19.PubMedCrossRefGoogle Scholar
  128. 128.
    Martins C, Fonseca I, Roque L, Pereira T, Ribeiro C, Bullerdiek J, et al. PLAG1 gene alterations in salivary gland pleomorphic adenoma and carcinoma ex-pleomorphic adenoma: a combined study using chromosome banding, in situ hybridization and immunocytochemistry. Mod Pathol. 2005;18(8):1048–55. Epub 2005/05/28.PubMedCrossRefGoogle Scholar
  129. 129.
    Persson F, Andren Y, Winnes M, Wedell B, Nordkvist A, Gudnadottir G, et al. High-resolution genomic profiling of adenomas and carcinomas of the salivary glands reveals amplification, rearrangement, and fusion of HMGA2. Genes Chromosomes Cancer. 2009;48(1):69–82. Epub 2008/10/02.PubMedCrossRefGoogle Scholar
  130. 130.
    O’Neill ID. t(11;19) translocation and CRTC1-MAML2 fusion oncogene in mucoepidermoid carcinoma. Oral Oncol. 2009;45(1):2–9. Epub 2008/05/20.PubMedCrossRefGoogle Scholar
  131. 131.
    Behboudi A, Enlund F, Winnes M, Andren Y, Nordkvist A, Leivo I, et al. Molecular classification of mucoepidermoid carcinomas-prognostic significance of the MECT1-MAML2 fusion oncogene. Genes Chromosomes Cancer. 2006;45(5):470–81. Epub 2006/01/31.PubMedCrossRefGoogle Scholar
  132. 132.
    O’Neill ID. New insights into the nature of Warthin’s tumour. J Oral Pathol Med. 2009;38(1):145–9. Epub 2008/07/24.PubMedCrossRefGoogle Scholar
  133. 133.
    Winnes M, Molne L, Suurkula M, Andren Y, Persson F, Enlund F, et al. Frequent fusion of the CRTC1 and MAML2 genes in clear cell variants of cutaneous hidradenomas. Genes Chromosomes Cancer. 2007;46(6):559–63. Epub 2007/03/06.PubMedCrossRefGoogle Scholar
  134. 134.
    Behboudi A, Winnes M, Gorunova L, van den Oord JJ, Mertens F, Enlund F, et al. Clear cell hidradenoma of the skin-a third tumor type with a t(11;19)–associated TORC1-MAML2 gene fusion. Genes Chromosomes Cancer. 2005;43(2):202–5. Epub 2005/02/25.PubMedCrossRefGoogle Scholar
  135. 135.
    Ahmed AA, Ostlie D, Fraser JD, Newell B, Cooley L. Dermatofibrosarcoma protuberans in the breast of a 2-year-old girl. Ann Diagn Pathol. 2010;14(4):279–83. Epub 2010/07/20.PubMedCrossRefGoogle Scholar
  136. 136.
    Kaur S, Vauhkonen H, Bohling T, Mertens F, Mandahl N, Knuutila S. Gene copy number changes in dermatofibrosarcoma protuberans – a fine-resolution study using array comparative genomic hybridization. Cytogenet Genome Res. 2006;115(3–4):283–8. Epub 2006/11/25.PubMedCrossRefGoogle Scholar
  137. 137.
    Giacchero D, Maire G, Nuin PA, Berthier F, Ebran N, Carlotti A, et al. No correlation between the molecular subtype of COL1A1-PDGFB fusion gene and the clinico-histopathological features of dermatofibrosarcoma protuberans. J Invest Dermatol. 2010;130(3):904–7. Epub 2009/11/06.PubMedCrossRefGoogle Scholar
  138. 138.
    Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: dermatofibrosarcoma protuberans and giant cell fibroblastoma. Cancer Genet Cytogenet. 2003;140:1–12.PubMedCrossRefGoogle Scholar
  139. 139.
    Segura S, Salgado R, Toll A, Martin-Ezquerra G, Yebenes M, Saez A, et al. Identification of t(17;22)(q22;q13) (COL1A1/PDGFB) in dermatofibrosarcoma protuberans by fluorescence in situ hybridization in paraffin-embedded tissue microarrays. Hum Pathol. 2011;42(2):176–84. Epub 2010/11/30.PubMedCrossRefGoogle Scholar
  140. 140.
    Sirvent N, Maire G, Pedeutour F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer. 2003;37(1):1–19. Epub 2003/03/28.PubMedCrossRefGoogle Scholar
  141. 141.
    Rutkowski P, Wozniak A, Switaj T. Advances in molecular characterization and targeted therapy in dermatofibrosarcoma protuberans. Sarcoma. 2011;2011:959132. Epub 2011/05/12.PubMedCrossRefGoogle Scholar
  142. 142.
    Johnson-Jahangir H, Ratner D. Advances in management of dermatofibrosarcoma protuberans. Dermatol Clin. 2011;29(2):191–200. viii. Epub 2011/03/23.PubMedCrossRefGoogle Scholar
  143. 143.
    Gerami P, Zembowicz A. Update on fluorescence in situ hybridization in melanoma state of the art. Arch Pathol Lab Med. 2011;135:830–7.PubMedGoogle Scholar
  144. 144.
    Gaudi S, Messina JL. Molecular bases of cutaneous and uveal melanomas. Pathol Res Int. 2011;2011:159421. Epub 2011/08/31.Google Scholar
  145. 145.
    Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, Wiesner T, et al. Mutations in GNA11 in uveal melanoma. N Engl J Med. 2010;363:2191–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Tschentscher F, Prescher G, Horsman DE. Partial deletion of the long and short arm of chromosome 3 point to two tumor suppressor genes in uveal melanoma. Cancer Res. 2001;61:3439–42.PubMedGoogle Scholar
  147. 147.
    Collins A, Politopoulos I. The genetics of breast cancer: risk factors for disease. Appl Clin Genet. 2011;4:11–9.Google Scholar
  148. 148.
    Bastian BC, LeBoit PE, Hamm H, Brocker E-B, Pinkel D. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res. 1998;58:2170–5.PubMedGoogle Scholar
  149. 149.
    Wolff AC, Hammond EH, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American society of clinical oncology/college of American pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med. 2007;131:18–43.PubMedGoogle Scholar
  150. 150.
    CAP/ASCO. Summary of ASCO/CAP HER2 guideline recommendations; 2011. Available from:
  151. 151.
    CAP/ASCO. Breast HER2 guidelines reconciliation table 2011; 2011. Available from:
  152. 152.
    Vasudev P, Onuma K. Secretory breast carcinoma: unique, triple-negative carcinoma with a favorable prognosis and characteristic molecular expression. Arch Pathol Lab Med. 2011;135(12):1606–10. Epub 2011/12/02.PubMedCrossRefGoogle Scholar
  153. 153.
    Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97(9):643–55. Epub 2005/05/05.PubMedCrossRefGoogle Scholar
  154. 154.
    Butnor KJ, Beasley MB, Cagle PT, Grunberg SM, Kong F-M, Marchevsky A, et al. Protocol for the examination of specimens from patients with primary non-small cell carcinoma, small cell carcinoma, or carcinoid tumor of the lung. Arch Pathol Lab Med. 2011;133:1552–9.Google Scholar
  155. 155.
    Fukuoka M, Wu YL, Thongprasert S, Sunpaweravong P, Leong SS, Sriuranpong V, et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol. 2011;29(21):2866–74. Epub 2011/06/15.PubMedCrossRefGoogle Scholar
  156. 156.
    Pillai RN, Ramalingam SS. The biology and clinical features of non-small cell lung cancers with EML4-ALK translocation. Curr Oncol Rep. 2012;14:105–10. Epub 2012/02/09.PubMedCrossRefGoogle Scholar
  157. 157.
    Camidge DR, Theodoro M, Maxson DA, Skokan M, O’Brien T, Lu X, et al. Correlations between the percentage of tumor cells showing an ALK (anaplastic lymphoma kinase) gene rearrangement, ALK signal copy number, and response to crizotinib therapy in ALK fluorescence in situ hybridization-positive nonsmall cell lung cancer. Cancer. 2012. doi: 10.1002/cncr.27411. Epub 2012/01/28.
  158. 158.
    Alaggio R, Barisani D, Ninfo V, Rosolen A, Coffin CM. Morphologic overlap between infantile myofibromatosis and infantile fibrosarcoma: a pitfall in diagnosis. Pediatr Dev Pathol. 2008;11(5):355–62. Epub 2008/11/14.PubMedCrossRefGoogle Scholar
  159. 159.
    Rubin BP, Chen C-J, Morgan TW, Xiao S, Grier HE, Kozakewich HP, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol. 1998;153(5):1451–8.PubMedCrossRefGoogle Scholar
  160. 160.
    Whittle S, Gosain A, Brown PY, Debelenko L, Raimondi S, Wilimas JA, et al. Regression of a congenital mesoblastic nephroma. Pediatr Blood Cancer. 2010;55(2):364–8. Epub 2010/06/29.PubMedCrossRefGoogle Scholar
  161. 161.
    Al-Salem AH. Congenital-infantile fibrosarcoma masquerading as sacrococcygeal teratoma. J Pediatr Surg. 2011;46(11):2177–80. Epub 2011/11/15.PubMedCrossRefGoogle Scholar
  162. 162.
    Terry J, Barry TS, Horsman DE, Hsu FD, Gown AM, Huntsman DG, et al. Fluorescence in situ hybridization for the detection of t(X;18)(p11.2;q11.2) in a synovial sarcoma tissue microarray using a breakapart-style probe. Diagn Mol Pathol. 2005;14(2):77–82.PubMedCrossRefGoogle Scholar
  163. 163.
    Sun B, Sun Y, Wang J, Zhao X, Zhang S, Liu Y, et al. The diagnostic value of SYT-SSX detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and fluorescence in situ hybridization (FISH) for synovial sarcoma: a review and prospective study of 255 cases. Cancer Sci. 2008;99(7):1355–61. Epub 2008/05/08.PubMedCrossRefGoogle Scholar
  164. 164.
    Surace C, Panagopoulos I, Palsson E, Rocchi M, Mandahl N, Mertens F. A novel FISH assay for SS18-SSX fusion type in synovial sarcoma. Lab Invest. 2004;84(9):1185–92. Epub 2004/06/23.PubMedCrossRefGoogle Scholar
  165. 165.
    Ladanyi M, Antonescu CR, Leung DH. Synovial sarcoma: a multi-institutional retrospective study of impact of SYT-SSX fusion type on the clinical behavior of 243 patients. Cancer Res. 2002;62:135–40.PubMedGoogle Scholar
  166. 166.
    Nakagawa Y, Numoto K, Yoshida A, Kunisada T, Ohata H, Takeda K, et al. Chromosomal and genetic imbalances in synovial sarcoma detected by conventional and microarray comparative genomic hybridization. J Cancer Res Clin Oncol. 2006;132(7):444–50. Epub 2006/03/25.PubMedCrossRefGoogle Scholar
  167. 167.
    Bartuma H, Hallor KH, Panagopoulos I, Collin A, Rydholm A, Gustafson P, et al. Assessment of the clinical and molecular impact of different cytogenetic subgroups in a series of 272 lipomas with abnormal karyotype. Genes Chromosomes Cancer. 2007;46(6):594–606. Epub 2007/03/21.PubMedCrossRefGoogle Scholar
  168. 168.
    Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: lipoma. Cancer Genet Cytogenet. 2004;150(2):93–115. Epub 2004/04/07.PubMedCrossRefGoogle Scholar
  169. 169.
    de Saint ASN, Coindre JM, Debiec-Rychter M, Delplace J, Sciot R. Lipoblastoma in adolescents and young adults: report of six cases with FISH analysis. Histopathology. 2008;52(3):294–8. Epub 2008/02/14.CrossRefGoogle Scholar
  170. 170.
    Dei Tos AP. Liposarcoma: new entities and evolving concepts. Ann Diagn Pathol. 2000;4(4):252–66. Epub 2000/09/12.CrossRefGoogle Scholar
  171. 171.
    Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: liposarcoma. Cancer Genet Cytogenet. 2004;155(1):1–24. Epub 2004/11/06.PubMedCrossRefGoogle Scholar
  172. 172.
    Tanas MR, Rubin BP, Tubbs RR, Billings SD, Downs-Kelly E, Goldblum JR. Utilization of fluorescence in situ hybridization in the diagnosis of 230 mesenchymal neoplasms an institutional experience. Arch Pathol Lab Med. 2010;134:1797–803.PubMedGoogle Scholar
  173. 173.
    Conyers R, Young S, Thomas DM. Liposarcoma: molecular genetics and therapeutics. Sarcoma. 2011;2011:483154. Epub 2011/01/22.PubMedCrossRefGoogle Scholar
  174. 174.
    Tap WD, Eilber FC, Ginther C, Dry SM, Reese N, Barzan-Smith K, et al. Evaluation of well-differentiated/de-differentiated liposarcomas by high-resolution oligonucleotide array-based comparative genomic hybridization. Genes Chromosomes Cancer. 2011;50(2):95–112. Epub 2010/12/01.PubMedCrossRefGoogle Scholar
  175. 175.
    Crago A, Socci ND, Decarolis PL, O’Connor R, Taylor BS, Qin LX, et al. Copy number losses define subgroups of dedifferentiated liposarcoma with poor prognosis and genomic instability. Clin Cancer Res. 2012;18:1334–40. Epub 2012/01/14.PubMedCrossRefGoogle Scholar
  176. 176.
    Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyoma. Cancer Genet Cytogenet. 2005;158(1):1–26. Epub 2005/03/18.PubMedCrossRefGoogle Scholar
  177. 177.
    Hodge JC, Park PJ, Dreyfuss JM, Assil-Kishawi I, Somasundaram P, Semere LG, et al. Identifying the molecular signature of the interstitial deletion 7q subgroup of uterine leiomyomata using a paired analysis. Genes Chromosomes Cancer. 2009;48(10):865–85. Epub 2009/07/16.PubMedCrossRefGoogle Scholar
  178. 178.
    Rein MS, Powell WL, Walters FC, Weremowicz S, Cantor RM, Barbieri RL, et al. Cytogenetic abnormalities in uterine myomas are associated with myoma size. Mol Hum Reprod. 1998;4(1):83–6.PubMedCrossRefGoogle Scholar
  179. 179.
    Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyosarcoma. Cancer Genet Cytogenet. 2005;161(1):1–19. Epub 2005/08/24.PubMedCrossRefGoogle Scholar
  180. 180.
    Edris B, Espinosa I, Muhlenberg T, Mikels A, Lee CH, Steigen SE, et al. ROR2 is a novel prognostic biomarker and a potential therapeutic target in leiomyosarcoma and gastrointestinal stromal tumour. J Pathol. 2012;227:223–33. Epub 2012/02/02.PubMedCrossRefGoogle Scholar
  181. 181.
    Weiss SW, Goldblum JR. Enzinger and Weiss’ soft tissue tumors. Philadelphia: Mosby Elsevier; 2008.Google Scholar
  182. 182.
    Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: alveolar soft part sarcoma. Cancer Genet Cytogenet. 2002;136:1–9.PubMedCrossRefGoogle Scholar
  183. 183.
    Huang HY, Lui MY, Ladanyi M. Nonrandom cell-cycle timing of a somatic chromosomal translocation: the t(X;17) of alveolar soft-part sarcoma occurs in G2. Genes Chromosomes Cancer. 2005;44(2):170–6. Epub 2005/06/14.PubMedCrossRefGoogle Scholar
  184. 184.
    Tsuji K, Ishikawa Y, Imamura T. Technique for differentiating alveolar soft part sarcoma from other tumors in paraffin-embedded tissue: comparison of immunohistochemistry for TFE3 and CD147 and of reverse transcription polymerase chain reaction for ASPSCR1-TFE3 fusion transcript. Hum Pathol. 2012;43(3):356–63. Epub 2011/08/13.PubMedCrossRefGoogle Scholar
  185. 185.
    Overholtzer M, Rao PH, Favis R, Lu XY, Elowitz MB, Barany F, et al. The presence of p53 mutations in human osteosarcomas correlates with high levels of genomic instability. Proc Natl Acad Sci U S A. 2003;100(20):11547–52. Epub 2003/09/16.PubMedCrossRefGoogle Scholar
  186. 186.
    Squire JA, Pei J, Marrano P, Beheshti B, Bayani J, Lim G, et al. High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays. Genes Chromosomes Cancer. 2003;38(3):215–25. Epub 2003/09/25.PubMedCrossRefGoogle Scholar
  187. 187.
    Ottaviani G, Jaffe N. The etiology of osteosarcoma. Cancer Treat Res. 2009;152:15–32. Epub 2010/03/10.PubMedCrossRefGoogle Scholar
  188. 188.
    Panoutsakopoulos G, Pandis N, Kyriazoglou I, Gustafson P, Mertens F, Mandahl N. Recurrent t(16;17)(q22;p13) in aneurysmal bone cysts. Genes Chromosomes Cancer. 1999;26(3):265–6. Epub 1999/09/29.PubMedCrossRefGoogle Scholar
  189. 189.
    Althof PA, Ohmori K, Zhou M, Bailey JM, Bridge RS, Nelson M, et al. Cytogenetic and molecular cytogenetic findings in 43 aneurysmal bone cysts: aberrations of 17p mapped to 17p13.2 by fluorescence in situ hybridization. Mod Pathol. 2004;17(5):518–25. Epub 2004/03/27.PubMedCrossRefGoogle Scholar
  190. 190.
    Oliveira AM, Perez-Atayde AR, Dal Cin P, Gebhardt MC, Chen CJ, Neff JR, et al. Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene. 2005;24(21):3419–26. Epub 2005/03/01.PubMedCrossRefGoogle Scholar
  191. 191.
    Nielsen GP, Fletcher CD, Smith MA, Rybak L, Rosenberg AE. Soft tissue aneurysmal bone cyst: a clinicopathologic study of five cases. Am J Surg Pathol. 2002;26(1):64–9. Epub 2002/01/05.PubMedCrossRefGoogle Scholar
  192. 192.
    Panagopoulos I, Mertens F, Lofvenberg R, Mandahl N. Fusion of the COL1A1 and USP6 genes in a benign bone tumor. Cancer Genet Cytogenet. 2008;180(1):70–3. Epub 2007/12/11.PubMedCrossRefGoogle Scholar
  193. 193.
    Drilon AD, Popat S, Bhuchar G, D’Adamo DR, Keohan ML, Fisher C, et al. Extraskeletal myxoid chondrosarcoma: a retrospective review from 2 referral centers emphasizing long-term outcomes with surgery and chemotherapy. Cancer. 2008;113(12):3364–71. Epub 2008/10/28.PubMedCrossRefGoogle Scholar
  194. 194.
    Oliveria AM, Sebo TJ, McGrory JE, Gaffey TA, Rock MG, Nacimento AG. Extraskeletal myxoid chondrosarcoma: a clinicopathologic, immunohistochemical, and ploidy analysis of 23 cases. Mod Pathol. 2000;13(8):900–8.CrossRefGoogle Scholar
  195. 195.
    Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: chondrosarcoma and other cartilaginous neoplasms. Cancer Genet Cytogenet. 2003; 143:1–31.PubMedCrossRefGoogle Scholar
  196. 196.
    Sandberg AA. Genetics of chondrosarcoma and related tumors. Curr Opin Oncol. 2004;16:342–54.PubMedCrossRefGoogle Scholar
  197. 197.
    Antonescu CR, Dal Cin P, Nafa K, Teot LA, Surti U, Fletcher CD, et al. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer. 2007;46(12):1051–60. Epub 2007/08/29.PubMedCrossRefGoogle Scholar
  198. 198.
    Shao L, Singh V, Cooley L. Angiomatoid fibrous histiocytoma with t(2;22)(q33;q12.2) and EWSR1 gene rearrangement. Pediatr Dev Pathol. 2009;12(2):143–6. Epub 2008/08/01.PubMedCrossRefGoogle Scholar
  199. 199.
    Chen G, Folpe AL, Colby TV, Sittampalam K, Patey M, Chen MG, et al. Angiomatoid fibrous histiocytoma: unusual sites and unusual morphology. Mod Pathol. 2011;24(12):1560–70. Epub 2011 Aug 5.PubMedCrossRefGoogle Scholar
  200. 200.
    Jain S, Xu R, Prieto VG, Lee O. Molecular classification of soft tissue sarcomas and its clinical applications. Int J Clin Exp Pathol. 2010;3(4):416–29.PubMedGoogle Scholar
  201. 201.
    Coffin CM, Hornick JL, Fletcher CD. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am J Surg Pathol. 2007;31(4):509–20. Epub 2007/04/07.PubMedCrossRefGoogle Scholar
  202. 202.
    Marino-Enriquez A, Wang WL, Roy A, Lopez-Terrada D, Lazar AJ, Fletcher CD, et al. Epithelioid inflammatory myofibroblastic sarcoma: an aggressive intra-abdominal variant of inflammatory myofibroblastic tumor with nuclear membrane or perinuclear ALK. Am J Surg Pathol. 2011;35(1):135–44. Epub 2010/12/18.PubMedCrossRefGoogle Scholar
  203. 203.
    Garces-Inigo EF, Leung R, Sebire N, McHugh K. Extrarenal rhabdoid tumours outside the central nervous system in infancy. Pediatr Radiol. 2009;39(8):817–22.PubMedCrossRefGoogle Scholar
  204. 204.
    Misawa A, Hosoi H, Imoto I, Iehara T, Sugimoto T, Inazawa J. Translocation (1;22)(p36;q11.2) with concurrent del(22)(q11.2) resulted in homozygous deletion of SNF5/INI1 in a newly established cell line derived from extrarenal rhabdoid tumor. J Hum Genet. 2004;49(10):586–9. Epub 2004/09/21.PubMedCrossRefGoogle Scholar
  205. 205.
    Morotti RA, Nicol KK, Parham DM, Teot LA, Moore J, Hayes J, et al. An immunohistochemical algorithm to facilitate diagnosis and subtyping of rhabdomyosarcoma: the children’s oncology group experience. Am J Surg Pathol. 2006;30:962–8.PubMedCrossRefGoogle Scholar
  206. 206.
    Davicioni E, Anderson MJ, Finckenstein FG, Lynch JC, Qualman SJ, Shimada H, et al. Molecular classification of rhabdomyosarcoma–genotypic and phenotypic determinants of diagnosis: a report from the children’s oncology group. Am J Pathol. 2009;174(2):550–64. Epub 2009/01/17.PubMedCrossRefGoogle Scholar
  207. 207.
    Parham DM, Qualman SJ, Teot L, Barr FG, Morotti RA, Sorensen PHB, et al. Correlation between histology and PAX/FKHR fusion status in alveolar rhabdomyosarcoma a report from the children’s oncology group. Am J Surg Pathol. 2007;31:895–901.PubMedCrossRefGoogle Scholar
  208. 208.
    Nishio J, Althof PA, Bailey JM, Zhou M, Neff JR, Barr FG, et al. Use of a novel FISH assay on paraffin-embedded tissues as an adjunct to diagnosis of alveolar rhabdomyosarcoma. Lab Invest. 2006;86(6):547–56. Epub 2006/04/12.PubMedGoogle Scholar
  209. 209.
    Sorensen PHB, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM, et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol. 2002;20(11):2672–9.PubMedCrossRefGoogle Scholar
  210. 210.
    Williamson D, Missiaglia E, de Reynies A, Pierron G, Thuille B, Palenzuela G, et al. Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol. 2010;28(13):2151–8. Epub 2010/03/31.PubMedCrossRefGoogle Scholar
  211. 211.
    Barr FG, Nauta LE, Davis RJ, Schafer BW, Nycum LM, Biegel JA. In vivo amplification of the PAX3-FKHR and PAX7-FKHR fusion genes in alveolar rhabdomyosarcoma. Hum Mol Genet. 1996;5(1):15–21.PubMedCrossRefGoogle Scholar
  212. 212.
    Bridge JA, Liu J, Qualman SJ, Suijkerbuijk R, Wenger G, Zhang J, et al. Genomic gains and losses are similar in genetic and histologic subsets of rhabdomyosarcoma, whereas amplification predominates in embryonal with anaplasia and alveolar subtypes. Genes Chromosomes Cancer. 2002;33(3):310–21. Epub 2002/01/25.PubMedCrossRefGoogle Scholar
  213. 213.
    Loh WE, Scrable HJ, Livanos E, Arboleda MJ, Cavenee WK, Oshimura M, et al. Human chromosome 11 contains two different growth suppressor genes for rhabdomyosarcoma. Proc Natl Acad Sci U S A. 1992;89:1755–9.PubMedCrossRefGoogle Scholar
  214. 214.
    Spitz R, Hero B, Skowron M, Ernestus K, Berthold F. MYCN-status in neuroblastoma: characteristics of tumours showing amplification, gain, and non-amplification. Eur J Cancer. 2004;40(18):2753–9. Epub 2004/12/02.PubMedCrossRefGoogle Scholar
  215. 215.
    Schleiermacher G, Michon J, Ribeiro A, Pierron G, Mosseri V, Rubie H, et al. Segmental chromosomal alterations lead to a higher risk of relapse in infants with MYCN-non-amplified localised unresectable/disseminated neuroblastoma (a SIOPEN collaborative study). Br J Cancer. 2011;105(12):1940–8. Epub 2011/12/08.PubMedCrossRefGoogle Scholar
  216. 216.
    Attiyeh EF, London WB, Mosse YP, Wang Q, Winter C, Khazi D, et al. Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med. 2005;353(21):2243–53. Epub 2005/11/25.PubMedCrossRefGoogle Scholar
  217. 217.
    Ambros PF, Ambros IM, Brodeur GM, Haber M, Khan J, Nakagawara A, et al. International consensus for neuroblastoma molecular diagnostics: report from the international neuroblastoma risk group (INRG) biology committee. Br J Cancer. 2009;100(9):1471–82. Epub 2009/04/30.PubMedCrossRefGoogle Scholar
  218. 218.
    Janoueix-Lerosey I, Penther D, Thioux M, de Cremoux P, Derre J, et al. Molecular analysis of chromosome arm 17q gain in neuroblastoma. Genes Chromosomes Cancer. 2000;28:276–84.PubMedCrossRefGoogle Scholar
  219. 219.
    Janoueix-Lerosey I, Schleiermacher G, Michels E, Mosseri V, Ribeiro A, Lequin D, et al. Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol. 2009;27(7):1026–33. Epub 2009/01/28.PubMedCrossRefGoogle Scholar
  220. 220.
    Bernstein M, Kovar H, Paulussen M, Randall RL, Schuck A, Teot L, et al. Ewing’s sarcoma family of tumors: current management. Oncologist. 2006;11:503–19.PubMedCrossRefGoogle Scholar
  221. 221.
    Le Deley MC, Delattre O, Schaefer KL, Burchill SA, Koehler G, Hogendoorn PC, et al. Impact of EWS-ETS fusion type on disease progression in Ewing’s sarcoma/peripheral primitive neuroectodermal tumor: prospective results from the cooperative Euro-E.W.I.N.G. 99 trial. J Clin Oncol. 2010;28(12):1982–8. Epub 2010/03/24.PubMedCrossRefGoogle Scholar
  222. 222.
    Hayes-Jordan A, Anderson PM. The diagnosis and management of desmoplastic small round cell tumor: a review. Curr Opin Oncol. 2011;23(4):385–9. Epub 2011/05/18.PubMedCrossRefGoogle Scholar
  223. 223.
    Gerald WL, Ladanyi M, De Alava E, Cuatrecasas M, Kushner BH, La Quaglia MP, et al. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small round-cell tumor and its variants. J Clin Oncol. 1998;16:3028–36.PubMedGoogle Scholar
  224. 224.
    Lal DR, Su WT, Wolden SL, Loh KC, Modak S, La Quaglia MP. Results of multimodal treatment for desmoplastic small round cell tumors. J Pediatr Surg. 2005;40(1):251–5. Epub 2005/05/04.PubMedCrossRefGoogle Scholar
  225. 225.
    Koniari K, Mahera H, Nikolaou M, Chatzis O, Glezakou O, Magiasis V, et al. Intraabdominal desmoplastic small round cell tumor: report of a case and literature review. Int J Surg Case Rep. 2011;2(8):293–6. Epub 2011/11/19.PubMedCrossRefGoogle Scholar
  226. 226.
    Chang F. Desmoplastic small round cell tumors, cytologic, histologic, and immunohistochemical features. Arch Pathol Lab Med. 2006;130:728–32.PubMedGoogle Scholar
  227. 227.
    Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: clear cell sarcoma (malignant melanoma of soft parts). Cancer Genet Cytogenet. 2001;130:1–7.PubMedCrossRefGoogle Scholar
  228. 228.
    Patel RM, Downs-Kelly E, Weiss SW, Folpe AL, Tubbs RR, Tuthill RJ, et al. Dual-color, break-apart fluorescence in situ hybridization for EWS gene rearrangement distinguishes clear cell sarcoma of soft tissue from malignant melanoma. Mod Pathol. 2005;18(12):1585–90. Epub 2005/11/01.PubMedGoogle Scholar
  229. 229.
    Song JS, Choi J, Kim JH, Jang SJ, Cho KJ. Diagnostic utility of EWS break-apart fluorescence in situ hybridization in distinguishing between non-cutaneous melanoma and clear cell sarcoma. Pathol Int. 2010;60(9):608–13. Epub 2010/08/18.PubMedCrossRefGoogle Scholar
  230. 230.
    Wilson WG. Retinoblastoma. Pediatr Rev. 2007;28:37–8.PubMedCrossRefGoogle Scholar
  231. 231.
    Seregard S, Lundell G, Svedberg H, Kivela T. Incidence of retinoblastoma from 1958 to 1998 in Northern Europe: advantages of birth cohort analysis. Ophthalmology. 2004;111(6):1228–32. Epub 2004/06/05.PubMedCrossRefGoogle Scholar
  232. 232.
    MacCarthy A, Draper GJ, Steliarova-Foucher E, Kingston JE. Retinoblastoma incidence and survival in European children (1978–1997). Report from the automated childhood cancer information system project. Eur J Cancer. 2006;42(13):2092–102. Epub 2006/08/22.PubMedCrossRefGoogle Scholar
  233. 233.
    Berger AH, Knudson AG, Pandolfi PP. A continuum model for tumour suppression. Nature. 2011;476(7359):163–9. Epub 2011/08/13.PubMedCrossRefGoogle Scholar
  234. 234.
    Zielinski B, Gratias S, Toedt G, Mendrzyk F, Stange DE, Radlwimmer B, et al. Detection of chromosomal imbalances in retinoblastoma by matrix-based comparative genomic hybridization. Genes Chromosomes Cancer. 2005;43(3):294–301. Epub 2005/04/19.PubMedCrossRefGoogle Scholar
  235. 235.
    Orlic M, Spencer CE, Wang L, Gallie BL. Expression analysis of 6p22 genomic gain in retinoblastoma. Genes Chromosomes Cancer. 2006;45(1):72–82. Epub 2005/09/24.PubMedCrossRefGoogle Scholar
  236. 236.
    Grasemann C, Gratias S, Stephan H, Schuler A, Schramm A, Klein-Hitpass L, et al. Gains and overexpression identify DEK and E2F3 as targets of chromosome 6p gains in retinoblastoma. Oncogene. 2005;24(42):6441–9. Epub 2005/07/12.PubMedGoogle Scholar
  237. 237.
    Gustmann S, Klein-Hitpass L, Stephan H, Weber S, Bornfeld N, Kaulisch M, et al. Loss at chromosome arm 16q in retinoblastoma: confirmation of the association with diffuse vitreous seeding and refinement of the recurrently deleted region. Genes Chromosomes Cancer. 2011;50(5):327–37. Epub 2011/02/10.PubMedCrossRefGoogle Scholar
  238. 238.
    Abramson DH, Beaverson K, Sangani P, Vora RA, Lee TC, Hochberg HM, et al. Screening for retinoblastoma: presenting signs as prognosticators of patient and ocular survival. Pediatrics. 2003;112(6 Pt 1):1248–55. Epub 2003/12/05.PubMedCrossRefGoogle Scholar
  239. 239.
    Ye J, Qi Y, Wang W, Sun F, Wei Q, Su T, et al. Lower expression of ATM and gene deletion is more frequent in adrenocortical carcinomas than adrenocortical adenomas. Endocrine. 2012;41:479–86. Epub 2012/02/09.PubMedCrossRefGoogle Scholar
  240. 240.
    Else T. Association of adrenocortical carcinoma with familial cancer susceptibility syndromes. Mol Cell Endocrinol. 2012;351(1):66–70. Epub 2012/01/03.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Cytogenetics LaboratoryChildren’s Mercy HospitalKansas CityUSA
  2. 2.University of Missouri Kansas City School of MedicineKansas CityUSA
  3. 3.Department of Pathology and Laboratory MedicineChildren’s Mercy HospitalKansas CityUSA
  4. 4.McDermott Center for Human Growth and Development and the Department of PathologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations