Chromosome Instability



Two levels of genetic instability have recently been characterized in human cancers: subtle sequence changes observed at the nucleotide level and instability that is visible at the chromosomal level (Lengauer et al., Nature 396(6712):643–649, 1998). The high incidence of chromosome instability reported in neoplastic processes has made this an area of active investigation.

Chromosome instability describes a variety of chromosome alterations, including numerical and structural chromosomal rearrangements observed at an increased rate when compared with normal controls. Numerical changes can be the consequence of abnormal segregation at the metaphase/anaphase transition. Dysregulation of genes involved in chromosome condensation, sister chromatid cohesion, kinetochore structure and function, and centrosome/microtubule formation and dynamics have been implicated in the formation of aneuploidy, hypodiploidy, and polyploidy, as have cell cycle checkpoint genes. Chromosome breaks and telomere dysfunction can result in various structural rearrangements (deletions, duplications, inversions, insertions, and translocations). Impairment of DNA repair, DNA replication, or DNA recombination is responsible for causing sister chromatid exchanges, fragile sites, chromatid/chromosome breaks, and mutagen sensitivity.


Fanconi Anemia Fragile Site Ataxia Telangiectasia Xeroderma Pigmentosum Werner Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is grateful to Xiaorong Zhao, Ph.D., at the Cytogenetics and Molecular Oncology Laboratory at US Labs, A Labcorp Company, for manuscript preparation.


  1. 1.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396(6712):643–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Hittelman WN. Genetic instability in epithelial tissues at risk for cancer. Ann N Y Acad Sci. 2001;952:1–12.PubMedCrossRefGoogle Scholar
  3. 3.
    Shaffer LG, Slovak ML, Campbell LJ, editors. ISCN(2009): an international system for human cytogenetic nomenclature. Basel: S. Karger. Medical and Scientific Publishers; 2009.Google Scholar
  4. 4.
    Smith DI, Huang H, Wang L. Common fragile sites and cancer (review). Int J Oncol. 1998;12(1):187–96.PubMedGoogle Scholar
  5. 5.
    Sutherland GR, Mattei JF. Report of the committee on cytogenetic markers. Cytogenet Cell Genet. 1987;46(1–4):316–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Simonic I, Gericke GS. The enigma of common fragile sites. Hum Genet. 1996;97(4):524–31.PubMedCrossRefGoogle Scholar
  7. 7.
    Hecht F, Ramesh KH, Lockwood DH. A guide to fragile sites on human chromosomes. Cancer Genet Cytogenet. 1990;44(1):37–45.PubMedCrossRefGoogle Scholar
  8. 8.
  9. 9.
    Smeets DF, van de Klundert FA. Common fragile sites in man and three closely related primate species. Cytogenet Cell Genet. 1990;53(1):8–14.PubMedCrossRefGoogle Scholar
  10. 10.
    Sutherland GR, Richards RI. Fragile sites-cytogenetic similarity with molecular diversity. Am J Hum Genet. 1999;64(2):354–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Le Beau MM, Rassool FV, Neilly ME, et al. Replication of a common fragile site, FRA3B, occurs late in S phase and is delayed further upon induction: implications for the mechanism of fragile site induction. Hum Mol Genet. 1998;7(4):755–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Jones C, Mullenbach R, Grossfeld P, et al. Co-localisation of CCG repeats and chromosome deletion breakpoints in Jacobsen syndrome: evidence for a common mechanism of chromosome breakage. Hum Mol Genet. 2000;9(8):1201–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Mariani T, Musio A, Simi S. No statistical association between fragile sites and constitutional chromosome breakpoints. Cancer Genet Cytogenet. 1995;85(1):78–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Kahkonen M, Tengstrom C, Alitalo T, Matilainen R, Kaski M, Airaksinen E. Population cytogenetics of folate-sensitive fragile sites. II. Autosomal rare fragile sites. Hum Genet. 1989;82(1):3–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Yunis JJ, Soreng AL. Constitutive fragile sites and cancer. Science. 1984;226(4679):1199–204.PubMedCrossRefGoogle Scholar
  16. 16.
    Gumus G, Sunguroglu A, Tukun A, Sayin DB, Bokesoy I. Common fragile sites associated with the breakpoints of chromosomal aberrations in hematologic neoplasms. Cancer Genet Cytogenet. 2002;133(2):168–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Wilke CM, Hall BK, Hoge A, Paradee W, Smith DI, Glover TW. FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet. 1996;5(2):187–95.PubMedCrossRefGoogle Scholar
  18. 18.
    Hellman A, Zlotorynski E, Scherer SW, et al. A role for common fragile site induction in amplification of human oncogenes. Cancer Cell. 2002;1(1):89–97.PubMedCrossRefGoogle Scholar
  19. 19.
    Coquelle A, Pipiras E, Toledo F, Buttin G, Debatisse M. Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell. 1997;89(2):215–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Egeli U, Karadag M, Tunca B, Ozyardimci N. The expression of common fragile sites and genetic predisposition to squamous cell lung cancers. Cancer Genet Cytogenet. 1997;95(2):153–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Sutherland GR, Baker E. The clinical significance of fragile sites on human chromosomes. Clin Genet. 2000;58(3):157–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Auerbach AD. Fanconi anemia and leukemia: tracking the genes. Leukemia. 1992;6 Suppl 1:1–4.PubMedGoogle Scholar
  23. 23.
    Joenje H, Patel KJ. The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet. 2001;2(6):446–57.PubMedCrossRefGoogle Scholar
  24. 24.
    Kutler DI, Auerbach AD. Fanconi anemia in Ashkenazi Jews. Fam Cancer. 2004;3(3–4):241–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Moldovan GL, D’Andrea AD. How the fanconi anemia pathway guards the genome. Annu Rev Genet. 2009;43:223–49.PubMedCrossRefGoogle Scholar
  26. 26.
    Wijker M, Morgan NV, Herterich S, et al. Heterogeneous spectrum of mutations in the Fanconi anaemia group A gene. Eur J Hum Genet. 1999;7(1):52–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Faivre L, Guardiola P, Lewis C, et al. Association of complementation group and mutation type with clinical outcome in fanconi anemia. European Fanconi Anemia Research Group. Blood. 2000; 96(13):4064–70.PubMedGoogle Scholar
  28. 28.
  29. 29.
    Callen E, Samper E, Ramirez MJ, et al. Breaks at telomeres and TRF2-independent end fusions in Fanconi anemia. Hum Mol Genet. 2002;11(4):439–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Gatti RA, Boder E, Vinters HV, Sparkes RS, Norman A, Lange K. Ataxia-telangiectasia: an interdisciplinary approach to pathogenesis. Medicine (Baltimore). 1991;70(2):99–117.Google Scholar
  31. 31.
    Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT. The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet. 1986;39(5):573–83.PubMedGoogle Scholar
  32. 32.
    Swift M, Morrell D, Massey RB, Chase CL. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med. 1991;325(26):1831–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Broeks A, Urbanus JH, Floore AN, et al. ATM-heterozygous germline mutations contribute to breast cancer-susceptibility. Am J Hum Genet. 2000;66(2):494–500.PubMedCrossRefGoogle Scholar
  34. 34.
    Concannon P, Gatti RA. Diversity of ATM gene mutations detected in patients with ataxia-telangiectasia. Hum Mutat. 1997;10(2):100–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Gilad S, Bar-Shira A, Harnik R, et al. Ataxia-telangiectasia: founder effect among north African Jews. Hum Mol Genet. 1996;5(12): 2033–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Meyn MS. High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia. Science. 1993;260(5112):1327–30.PubMedCrossRefGoogle Scholar
  37. 37.
    Nahas SA, Butch AW, Du L, Gatti RA. Rapid flow cytometry-based structural maintenance of chromosomes 1 (SMC1) phosphorylation assay for identification of ataxia-telangiectasia homozygotes and heterozygotes. Clin Chem. 2009;55(3):463–72.PubMedCrossRefGoogle Scholar
  38. 38.
    Stumm M, Gatti RA, Reis A, et al. The ataxia-telangiectasia-variant genes 1 and 2 are distinct from the ataxia-telangiectasia gene on chromosome 11q23.1. Am J Hum Genet. 1995;57(4):960–2.PubMedGoogle Scholar
  39. 39.
    Varon R, Vissinga C, Platzer M, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell. 1998;93(3):467–76.PubMedCrossRefGoogle Scholar
  40. 40.
    Carney JP, Maser RS, Olivares H, et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell. 1998;93(3):477–86.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhao S, Weng YC, Yuan SS, et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature. 2000;405(6785):473–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Carlomagno F, Chang-Claude J, Dunning AM, Ponder BA. Determination of the frequency of the common 657Del5 Nijmegen breakage syndrome mutation in the German population: no association with risk of breast cancer. Genes Chromosomes Cancer. 1999;25(4):393–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Varon R, Seemanova E, Chrzanowska K, et al. Clinical ascertainment of Nijmegen breakage syndrome (NBS) and prevalence of the major mutation, 657del5, in three Slav populations. Eur J Hum Genet. 2000;8(11):900–2.PubMedCrossRefGoogle Scholar
  44. 44.
    Hagleitner MM, Lankester A, Maraschio P, et al. Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J Med Genet. 2008;45(2):93–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Sumner AT, Mitchell AR, Ellis PM. A FISH study of chromosome fusion in the ICF syndrome: involvement of paracentric heterochromatin but not of the centromeres themselves. J Med Genet. 1998;35(10):833–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Gennery AR, Slatter MA, Bredius RG, et al. Hematopoietic stem cell transplantation corrects the immunologic abnormalities associated with immunodeficiency-centromeric instability-facial dysmorphism syndrome. Pediatrics. 2007;120(5):e1341–4.PubMedCrossRefGoogle Scholar
  47. 47.
    McDaniel LD, Prueitt R, Probst LC, et al. Novel assay for Roberts syndrome assigns variable phenotypes to one complementation group. Am J Med Genet. 2000;93(3):223–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Vega H, Waisfisz Q, Gordillo M, et al. Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet. 2005;37(5):468–70.PubMedCrossRefGoogle Scholar
  49. 49.
    Barbosa AC, Otto PA, Vianna-Morgante AM. Replication timing of homologous alpha-satellite DNA in Roberts syndrome. Chromosome Res. 2000;8(7):645–50.PubMedCrossRefGoogle Scholar
  50. 50.
    Vega H, Trainer AH, Gordillo M, et al. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome. J Med Genet. 2010;47(1):30–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Miriam Gordillo, Hugo Vega, Jabs EW. GeneReviews. Seattle: University of Washington; 2010.Google Scholar
  52. 52.
    Epstein CJ, Martin GM, Schultz AL, Motulsky AG. Werner’s syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine (Baltimore). 1966;45(3):177–221.Google Scholar
  53. 53.
    Ogburn CE, Oshima J, Poot M, et al. An apoptosis-inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations from wild-type and homozygous mutants. Hum Genet. 1997;101(2):121–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Wyllie FS, Jones CJ, Skinner JW, et al. Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat Genet. 2000;24(1):16–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Yu CE, Oshima J, Fu YH, et al. Positional cloning of the Werner’s syndrome gene. Science. 1996;272(5259):258–62.PubMedCrossRefGoogle Scholar
  56. 56.
    Crabbe L, Jauch A, Naeger CM, Holtgreve-Grez H, Karlseder J. Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proc Natl Acad Sci U S A. 2007;104(7):2205–10.PubMedCrossRefGoogle Scholar
  57. 57.
    Yu CE, Oshima J, Wijsman EM, et al. Mutations in the consensus helicase domains of the Werner syndrome gene. Werner’s Syndrome Collaborative Group. Am J Hum Genet. 1997;60(2):330–41.PubMedGoogle Scholar
  58. 58.
    German J, Schonberg S, Louie E, Chaganti RS. Bloom’s syndrome. IV. Sister-chromatid exchanges in lymphocytes. Am J Hum Genet. 1977;29(3):248–55.PubMedGoogle Scholar
  59. 59.
    Gardner RJM, Sutherland GR. Chromosome abnormalities and genetic counseling. 2nd ed. New York: Oxford University Press; 1996.Google Scholar
  60. 60.
    Karow JK, Constantinou A, Li JL, West SC, Hickson ID. The Bloom’s syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci USA. 2000; 97(12):6504–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Gruber SB, Ellis NA, Scott KK, et al. BLM heterozygosity and the risk of colorectal cancer. Science. 2002;297(5589):2013.PubMedCrossRefGoogle Scholar
  62. 62.
    Straughen JE, Johnson J, McLaren D, et al. A rapid method for detecting the predominant Ashkenazi Jewish mutation in the Bloom’s syndrome gene. Hum Mutat. 1998;11(2):175–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Viguié C. Xeroderma pigmentosum. Atlas of genetics and cytogenetics in oncology and haematology.
  64. 64.
    Swift M, Chase C. Cancer in families with xeroderma pigmentosum. J Natl Cancer Inst. 1979;62(6):1415–21.PubMedGoogle Scholar
  65. 65.
    Bootsma D, Kraemer KH, Cleaver JE, Hoeijmakers JHJ, editors. Chapter 28: Nucleotide excision repair syndromes: Xeroderma pigmentosum, cockayne syndrome, and trichothiodystrophy. New York: The McGraw-Hill Companies, Inc. Edited by Charles R. Scriver wso, ed.Google Scholar
  66. 66.
    Berneburg M, Lehmann AR. Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. Adv Genet. 2001;43:71–102.PubMedCrossRefGoogle Scholar
  67. 67.
    Norgauer J, Idzko M, Panther E, Hellstern O, Herouy Y. Xeroderma pigmentosum. Eur J Dermatol. 2003;13(1):4–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.US Labs, a Labcorp CompanyBrentwoodUSA

Personalised recommendations