The Cytogenetics of Spontaneous Abortion



Pregnancy loss is quite common, with 15–20 % of recognized pregnancies resulting in failure. The majority of these occur early in gestation, though losses in the second and third trimester are not rare. Approximately 2–5 % of women will experience two or more losses. The majority of pregnancy failures are associated with cytogenetic abnormalities, with over 50 % of early miscarriages and as many as 5 % of stillbirths exhibiting abnormal karyotypes.

Loss of a wanted pregnancy is always stressful for both the patient and her partner. A number of questions and concerns may be raised regarding the loss, including: What happened and why? How likely is it to happen again? What can be done to improve the chances of a successful future pregnancy? Is this even possible? Answering such concerns is important in helping the patient through the grieving process and in facilitating resolution. The answers that are provided may ultimately impact family planning and management of any future pregnancies the couple may undertake.


Spontaneous Abortion Pregnancy Loss Turner Syndrome Cytogenetic Abnormality Recurrent Pregnancy Loss 


  1. 1.
    Kay J. Pregnancy loss and the grief process. In: Woods JR, Esposito JL, editors. Pregnancy loss: medical therapeutics and practical considerations. Baltimore: Williams and Wilkins; 1987. p. 5–20.Google Scholar
  2. 2.
    Hager A. Early pregnancy loss: miscarriage and ectopic pregnancy. In: Woods JR, Esposito JL, editors. Pregnancy loss: medical therapeutics and practical considerations. Baltimore: Williams and Wilkins; 1987. p. 23–50.Google Scholar
  3. 3.
    Friedman R, Gradstein B. Surviving pregnancy loss. Boston: Little, Brown, and Company; 1992.Google Scholar
  4. 4.
    Seibel M, Graves WL. The psychological implications of spontaneous abortions. J Reprod Med. 1980;25:161–5.PubMedGoogle Scholar
  5. 5.
    Stack JM. Psychological aspects of early pregnancy loss. In: Huisjes HJ, Lind T, editors. Early pregnancy failure. New York: Churchill Livingstone; 1990. p. 212–39.Google Scholar
  6. 6.
    Roberts CJ, Lowe CR. Where have all the conceptions gone? Lancet. 1975;1:498–9.CrossRefGoogle Scholar
  7. 7.
    Edmonds DK, Lindsay KS, Miller JF, Williamson E, Wood PJ. Early embryonic mortality in women. Fertil Steril. 1982;38:447–53.PubMedGoogle Scholar
  8. 8.
    Miller JF, Williamson E, Glue J, Gordon YB, Grudzinskas JG, Sykes A. Fetal loss after implantation: a prospective study. Lancet. 1980;2:554–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Wilcox AJ, Weinberg CR, O’Connor JF, Baird DD, Schlatterer JP, Canfield RE, Armstrong EG, Nisula BC. Incidence of early loss of pregnancy. N Engl J Med. 1988;319:189–94.CrossRefPubMedGoogle Scholar
  10. 10.
    French FE, Bierman JM. Probabilities of fetal mortality. Pubic Health Rep. 1962;77:835–47.CrossRefGoogle Scholar
  11. 11.
    Short RV. When a conception fails to become a pregnancy. In: Maternal recognition of pregnancy. Amsterdam: Excerpta Medica; 1979. p. 377–87.Google Scholar
  12. 12.
    Leridon H. Human fertility. Chicago: University of Chicago Press; 1977.Google Scholar
  13. 13.
    Boué A, Boué J, Gropp A. Cytogenetics of pregnancy wastage. Adv Hum Genet. 1985;14:1–57.PubMedGoogle Scholar
  14. 14.
    Yamamoto M, Watanabe G. Epidemiology of gross chromosome anomalies at the early stage of pregnancy. Contrib Epidemiol Biostatist. 1979;1:101–6.Google Scholar
  15. 15.
    Gaillard DA, Paradis P, Lallemand AV, Vernet VM, Carquin JS, Chippaux CG, Visseaux-Coletto BJ. Spontaneous abortions during the second trimester of gestation. Arch Pathol Lab Med. 1993;117:1022–6.PubMedGoogle Scholar
  16. 16.
    Jacobs PA, Browne C, Gregson N, Joyce C, White H. Estimates of the frequency of chromosome abnormalities detectable in unselected newborns using moderate levels of banding. J Med Genet. 1992;29:103–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Davison EV, Burn J. Genetic causes of early pregnancy loss. In: Huisjes HJ, Lind T, editors. Early pregnancy failure. New York: Churchill Livingstone; 1990. p. 55–78.Google Scholar
  18. 18.
    Kline J, Stein Z. The epidemiology of spontaneous abortion. In: Huisjes HJ, Lind T, editors. Early pregnancy failure. New York: Churchill Livingstone; 1986. p. 240–56.Google Scholar
  19. 19.
    Boué J, Philippe E, Giroud A, Boué A. Phenotypic expression of lethal chromosomal anomalies in human abortuses. Teratology. 1976;14:3–20.CrossRefPubMedGoogle Scholar
  20. 20.
    Boué J, Boué A, Lazar P. Retrospective and prospective epidemiological studies of 1500 karyotyped spontaneous human abortions. Teratology. 1975;12:11–26.CrossRefPubMedGoogle Scholar
  21. 21.
    Warburton D, Byrne J, Canki N. Chromosome anomalies and prenatal development: an atlas, Oxford monographs on medical genetics, vol. 20. New York: Oxford University Press; 1991.Google Scholar
  22. 22.
    Simpson JL. Genetics. CREOG basic science monograph in obstetrics and gynecology. Washington, DC: Council on Resident Education in Obstetrics and Gynecology; 1986.Google Scholar
  23. 23.
    Robinson A, Linden MG. Clinical genetics handbook. 2nd ed. Oxford: Blackwell Scientific Publications; 1993.Google Scholar
  24. 24.
    Gardner RJM, Sutherland GR. Chromosome abnormalities and genetic counseling. New York: Oxford University Press; 1996.Google Scholar
  25. 25.
    Verp MS, Simpson JL. Amniocentesis for cytogenetic studies. In: Filkins K, Russo JF, editors. Human prenatal diagnosis. New York: Marcel Dekker; 1985. p. 13–48.Google Scholar
  26. 26.
    Connor JM, Ferguson-Smith MA. Essential medical genetics. 2nd ed. Oxford: Blackwell; 1987.Google Scholar
  27. 27.
    Hassold T, Hunt PA, Sherman S. Trisomy in humans: incidence, origin and etiology. Curr Opin Genet Dev. 1993;3:398–403.CrossRefPubMedGoogle Scholar
  28. 28.
    Kamiguchi Y, Rosenbusch B, Sterzik K, Mikamo K. Chromosomal analysis of unfertilized human oöcytes prepared by a gradual fixation – air drying method. Hum Genet. 1993;90:533–41.CrossRefPubMedGoogle Scholar
  29. 29.
    Pellestor F. Frequency and distribution of aneuploidy in human female gametes. Hum Genet. 1991;86:283–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Martin RH, Rademaker AW, Hildebrand K, Long-Simpson L, Peterson D, Yamamato J. Variation in the frequency and type of sperm chromosomal abnormalities among normal men. Hum Genet. 1987;77:108–14.CrossRefPubMedGoogle Scholar
  31. 31.
    Miharu N, Best RG, Young SR. Numerical chromosome abnormalities in spermatozoa of fertile and infertile men detected by fluorescence in situ hybridization. Hum Genet. 1994;93:502–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Guttenbach M, Schakowski R, Schmid M. Incidence of chromosome 18 disomy in human sperm nuclei as detected by nonisotopic in situ hybridization. Hum Genet. 1994;93:421–3.PubMedGoogle Scholar
  33. 33.
    Guttenbach M, Schakowski R, Schmid M. Incidence of chromosome 3, 7, 10, 11, 17 and X disomy in mature human sperm nuclei as determined by nonradioactive in situ hybridization. Hum Genet. 1994;93:7–12.PubMedGoogle Scholar
  34. 34.
    Hassold T. Chromosome abnormalities in human reproductive wastage. Trends Genet. 1986;2:105–10.CrossRefGoogle Scholar
  35. 35.
    Creasy MR, Crolla JA, Alberman ED. A cytogenetic study of human spontaneous abortions using banding techniques. Hum Genet. 1976;31:177–96.CrossRefPubMedGoogle Scholar
  36. 36.
    Hook EB, Warburton D. The distribution of chromosomal genotypes associated with Turner’s syndrome: livebirth prevalence rates and severity in genotypes associated with structural X abnormalities of mosaicism. Hum Genet. 1983;64:24–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Hassold T, Benham F, Leppert M. Cytogenetic and molecular analysis of sex-chromosome monosomy. Am J Hum Genet. 1988;42:534–41.PubMedGoogle Scholar
  38. 38.
    Hassold T, Pettay D, Robinson A, Uchida I. Molecular studies of parental origin and mosaicism in 45, X conceptuses. Hum Genet. 1992;89:647–52.CrossRefPubMedGoogle Scholar
  39. 39.
    Held KR, Kerber S, Kaminsky E, Singh S, Goetz P, Seemanova E, Goedde HW. Mosaicism in 45, X Turner syndrome: does survival in early pregnancy depend on the presence of two sex chromosomes? Hum Genet. 1992;88:288–94.CrossRefPubMedGoogle Scholar
  40. 40.
    Baldinger S, Millard C, Schmeling D, Bendel RP. Prenatal diagnosis of trisomy 20 mosaicism indicating an extra embryonic origin. Prenat Diagn. 1987;7:273–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Morssink LP, Sikkema-Raddatz B, Beekhuis JR, deWolf BTHM, Mantingh A. Placental mosaicism is associated with unexplained second-trimester elevation of MshCG levels, but not with elevation of MSAFP levels. Prenat Diagn. 1996;16:845–51.CrossRefPubMedGoogle Scholar
  42. 42.
    Kalousek DK, Barrett I. Confined placental mosaicism and stillbirth. Pediatr Pathol. 1994;14:151–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Kalousek DK, Barrett IJ, Gärtner AB. Spontaneous abortion and confined placental mosaicism. Hum Genet. 1992;88:642–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Robinson WP, Binkert F, Bernasconi F, Lorda-Sanchez I, Werder EA, Schinzel AA. Molecular studies of chromosomal mosaicism: relative frequency of chromosome gain or loss and possible role of cell selection. Am J Hum Genet. 1995;56:444–51.PubMedGoogle Scholar
  45. 45.
    Kalousek DK, Barrett IJ, McGillivray BC. Placental mosaicism and intrauterine survival of trisomies 13 and 18. Am J Hum Genet. 1989;44:338–43.PubMedGoogle Scholar
  46. 46.
    Harrison KJ, Barrett IJ, Lomax BL, Kuchinka BD, Kalousek DK. Detection of confined placental mosaicism in trisomy 18 conceptions using interphase cytogenetic analysis. Hum Genet. 1993;92:353–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Betts DR, Fear CN, Barry T, Seller MJ. A 45,X/69,XXY fetus. Clin Genet. 1989;35:285–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Blackburn WR, Miller WP, Superneau DW, Cooley NR, Zellweger H, Wertelecki W. Comparative studies of infants with mosaic and complete triploidy: an analysis of 55 cases. Birth Defects Orig Artic Ser. 1982;18:251–74.PubMedGoogle Scholar
  49. 49.
    Dewald G, Alvarez MN, Cloutier MD, Kelalis PP, Gordon H. Clin Genet. 1975;8:149–60.CrossRefPubMedGoogle Scholar
  50. 50.
    Thomas JH. Genomic imprinting proposed as a surveillance mechanism for chromosome loss PNAS 1995;92:480–2.CrossRefPubMedGoogle Scholar
  51. 51.
    Neuber M, Rehder H, Zuther C, Lettau R, Schwinger E. Polyploidies in abortion material decrease with maternal age. Hum Genet. 1993;91:563–6.CrossRefPubMedGoogle Scholar
  52. 52.
    O’Neill GT, Kaufmann MH. Ovulation and fertilization of primary and secondary oöcytes in LT/Sv strain mice. Gamete Res. 1987;18:27–36.CrossRefPubMedGoogle Scholar
  53. 53.
    Jacobs PA, Hassold TJ, Matsuyama AM, Newlands IM. Chromosome constitution of gestational trophoblastic disease. Lancet. 1978;2:49.CrossRefPubMedGoogle Scholar
  54. 54.
    Lindor NM, Ney JA, Gaffey TA, Jenkins RB, Thibodeau SN, Dewald GW. A genetic review of complete and partial hydatidiform moles and nonmolar triploidy. Mayo Clin Proc. 1992;67:791–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Levavi H, Neri A, Bar J, Regev D, Nordenberg J, Ovadia J. “Hook effect” in complete hydatidiform molar pregnancy: a falsely low level of b-hCG. Obstet Gynecol. 1993;82:720–1.PubMedGoogle Scholar
  56. 56.
    Berkowitz RS, Goldstein DP, Bernstein MR. Evolving concepts of molar pregnancy. J Reprod Med. 1991;36:40–4.PubMedGoogle Scholar
  57. 57.
    Benirschke K, Kaufmann P. Pathology of the human placenta. 3rd ed. New York: Springer; 1995.Google Scholar
  58. 58.
    Szulman AE. Syndromes of hydatidiform moles: partial vs. complete. J Reprod Med. 1984;11:788–91.Google Scholar
  59. 59.
    Mutter GL, Stewart CL, Chaponot ML, Pomponio RJ. Oppositely imprinted genes H19 and insulin-like growth factor 2 are coexpressed in human androgenic trophoblast. Am J Hum Genet. 1993;53:1096–102.PubMedGoogle Scholar
  60. 60.
    Ariel I, Lustin O, Oyer CE, Eikin M, Gonik B, Rachmilewitz J, Biram H, Goshen R, deGroot N, Hochberg A. Relaxation of imprinting in trophoblastic disease. Gynecol Oncol. 1994;53:212–9.CrossRefPubMedGoogle Scholar
  61. 61.
    McFadden DE, Kwong LC, Yam IYL, Langlois S. Parental origin of triploidy in human fetuses: evidence for genomic imprinting. Hum Genet. 1993;92:465–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Berkowitz RS, Bernstrin MR, Laborde O, Goldstein DP. Subsequent pregnancy experience in patients with gestational trophoblastic disease. New England Trophoblastic Disease Center, 1965–1992. J Reprod Med. 1994;39:228–32.PubMedGoogle Scholar
  63. 63.
    Matalon M, Modan B. Epidemiologic aspects of hydatidiform mole in Israel. Am J Obstet Gynecol. 1972;112:107–12.PubMedGoogle Scholar
  64. 64.
    Rice LW, Lage JM, Berkowitz RS, Goldstein DP, Bernstein MR. Repetitive complete and partial hydatidiform mole. Obstet Gynecol. 1989;74:217–9.PubMedGoogle Scholar
  65. 65.
    Sebire NJ, Fisher RA, Foskett M, Rees H, Seckl MJ, Newlands ES. Risk of recurrent hydatidiform mole and subsequent pregnancy outcome following complete or partial hydatidiform molar pregnancy. BJOG. 2003;110(1):22–6.CrossRefPubMedGoogle Scholar
  66. 66.
    LaVecchia C, Franceschi S, Fasoli M, Mangioni C. Gestational trophoblastic neoplasms in homozygous twins. Obstet Gynecol. 1982;60:250–2.Google Scholar
  67. 67.
    Ambrani LM, Vaidya RA, Rao CS, Daftary SD, Motashaw ND. Familial occurrence of trophoblastic disease – report of recurrent molar pregnancies in sisters in three families. Clin Genet. 1980;18:27–9.CrossRefGoogle Scholar
  68. 68.
    Parazzini F, LaVecchia C, Franceschi S, Mangili G. Familial trophoblastic disease: case report. Am J Obstet Gynecol. 1984;149:382–3.PubMedGoogle Scholar
  69. 69.
    Kircheisen R, Schroeder-Kurth T. Familiäres blasenmolen-syndrom und genetische aspekte dieser gestörten trophoblastentwicklung. Geburtshilfe Frauenheilkd. 1991;51:560–71.CrossRefGoogle Scholar
  70. 70.
    Jacobs PA. Mutation rates of structural chromosome rearrangements in man. Am J Hum Genet. 1981;33:44–54.PubMedGoogle Scholar
  71. 71.
    Dewald G, Michels VV. Recurrent miscarriages: cytogenetic causes and genetic counseling of affected families. Clin Obstet Gynecol. 1986;29:865–85.CrossRefPubMedGoogle Scholar
  72. 72.
    Jacobs PA. Epidemiology of chromosome abnormalities in man. Am J Epidemiol. 1977;105:180–91.PubMedGoogle Scholar
  73. 73.
    Olson SB, Magenis RE. Preferential paternal origin of de novo structural chromosome arrangements. In: Daniel A, editor. The cytogenetics of mammalian autosomal rearrangements. New York: A.R. Liss; 1988. p. 583–99.Google Scholar
  74. 74.
    Simpson JL, Elias S, Meyers CM, Ober C, Martin AO. Translocations are infrequent among couples having repeated spontaneous abortions but no other abnormal pregnancies. Fertil Steril. 1989;51:811–4.PubMedGoogle Scholar
  75. 75.
    Campana M, Serra A, Neri G. Role of chromosome aberrations in recurrent abortion: a study of 269 balanced translocations. Am J Med Genet. 1986;24:341–56.CrossRefPubMedGoogle Scholar
  76. 76.
    Braekeleer MDe, Dao T-N. Cytogenetic studies in couples experiencing repeated pregnancy losses. Hum Reprod. 1990;5:519–28.PubMedGoogle Scholar
  77. 77.
    Gadow EC, Lippold S, Otano L, Serafin E, Scarpati R, Metayoshi T. Chromosome rearrangements among couples with pregnancy losses and other adverse reproductive outcomes. Am J Med Genet. 1991;41:279–81.CrossRefPubMedGoogle Scholar
  78. 78.
    Petrosky DL, Borgaonkar DS. Segregation analysis in reciprocal translocation carriers. Am J Hum Genet. 1984;19:137–59.Google Scholar
  79. 79.
    Cowchock FS, Gibas Z, Jackson LG. Chromosomal errors as a cause of spontaneous abortion: the relative importance of maternal age and obstetrical history. Fertil Steril. 1993;59:1011–4.PubMedGoogle Scholar
  80. 80.
    Morton NE, Chiu D, Holland C, Jacobs PA, Pettay D. Chromosome anomalies as predictors of recurrence risk for spontaneous abortion. Am J Med Genet. 1987;28:353–60.CrossRefPubMedGoogle Scholar
  81. 81.
    Hassold T. A cytogenetic study of repeated spontaneous abortions. Hum Genet. 1980;32:723–30.Google Scholar
  82. 82.
    Warburton D, Kline J, Stein Z, Hutzler M, Chin A, Hassold T. Does the karyotype of a spontaneous abortion predict the karyotype of a subsequent abortion? Evidence from 272 women with two karyotyped spontaneous abortions. Am J Hum Genet. 1987;41:465–83.PubMedGoogle Scholar
  83. 83.
    Hasegawa I, Imai T, Tanaka K, Fujimori R, Sanada H. Studies on the cytogenetic and endocrinologic background of spontaneous abortion. Fertil Steril. 1996;65:52–4.PubMedGoogle Scholar
  84. 84.
    Scott JR, Rote NS, Branch DW. Immunologic aspects of recurrent abortion and fetal death. Obstet Gynecol. 1987;70:645–56.PubMedGoogle Scholar
  85. 85.
    Gimovsky ML, Montoro M. Systemic lupus erythematosus and other connective tissue diseases in pregnancy. Clin Obstet Gynecol. 1991;34:35–50.CrossRefPubMedGoogle Scholar
  86. 86.
    Lubbe WF, Liggins GC. Role of lupus anticoagulant and autoimmunity in recurrent pregnancy loss. Semin Reprod Endocrinol. 1988;6:181–90.CrossRefGoogle Scholar
  87. 87.
    Branch PW, Ward K. Autoimmunity and pregnancy loss. Semin Reprod Endocrinol. 1989;7:168–77.CrossRefGoogle Scholar
  88. 88.
    Brown HL. Antiphospholipid antibodies and recurrent pregnancy loss. Clin Obstet Gynecol. 1991;34:17–26.CrossRefPubMedGoogle Scholar
  89. 89.
    Mowbry JF, Gibbings C, Liddell H, Reginald PW, Underwood JL, Beard RW. Control trial of treatment of recurrent spontaneous abortion by immunization with paternal cells. Lancet. 1985;1:941–3.CrossRefGoogle Scholar
  90. 90.
    Yamada H, Kishida T, Kobayashi N, Kato EH, Hoshi N, Fujimoto S. Massive immunoglobulin treatment in women with four or more recurrent spontaneous primary abortions of unexplained aetiology. Hum Reprod. 1999;13(9):2620–3.CrossRefGoogle Scholar
  91. 91.
    McDonough PG. The role of molecular mutation in recurrent euploidic abortion. Semin Reprod Endocrinol. 1988;6:155–61.CrossRefGoogle Scholar
  92. 92.
    Gill TJ. Influence of MHC and MHC-linked genes on reproduction. Am J Hum Genet. 1992;50:1–5.PubMedGoogle Scholar
  93. 93.
    Gelman-Kohan Z, Rosensaft J, Ben-Hur H, Haber A, Chemke J. Cytogenetic analysis of fetal chondrocytes: a comparative study. Prenat Diagn. 1996;16(2):165–8.CrossRefPubMedGoogle Scholar
  94. 94.
    Ohno M, Maeda T, Matsunobu A. A cytogenetic study of spontaneous abortions with direct analysis of chorionic villi. Obstet Gynecol. 1991;77:394–8.PubMedGoogle Scholar
  95. 95.
    Griffin DK, Millie EA, Redline RW, Hassold TJ, Zaragoza MV. Cytogenetic analysis of spontaneous abortions: comparison of techniques and assessment of the incidence of confined placental mosaicism. Am J Med Genet. 1997;72(3):297–301.CrossRefPubMedGoogle Scholar
  96. 96.
    Lathi RB, Milki AA. Tissue sampling technique affects accuracy of karyotype from missed abortions. J Assist Reprod Genet. 2002;19(1):536–8.CrossRefPubMedGoogle Scholar
  97. 97.
    Baretton GB, Muller M, Wirtz A, Murken J, Arnholdt H. Numerical chromosome aberrations in abortion tissue. Comparison of conventional cytogenetics and interphase cytogenetics in paraffin sections and nuclear suspensions. Pathologe. 1998;12(2):120–8.CrossRefGoogle Scholar
  98. 98.
    Berezowsky J, Zbieranowski I, Demers J, Murray D. DNA ploidy of hydatidiform moles and nonmolar conceptuses: a study using flow and tissue section image cytometry. Mod Pathol. 1995;8:775–81.PubMedGoogle Scholar
  99. 99.
    van de Kaa CA, Schijf CP, de Wilde PC, Hanselaar AG, Vooijs PG. The role of deoxyribonucleic acid image cytometric and interphase cytogenetic analyses in the differential diagnosis, prognosis, and clinical follow-up of hydatidiform moles. A report from the Central Molar Registration in The Netherlands. Am J Obstet Gynecol. 1997;177(5):1219–29.CrossRefPubMedGoogle Scholar
  100. 100.
    Daniely M, Aviram-Goldring A, Barkai G, Goldman B. Detection of chromosomal aberration in fetuses arising from recurrent spontaneous abortion by comparative genomic hybridization. Hum Reprod. 1998;13(4):805–9.CrossRefPubMedGoogle Scholar
  101. 101.
    Barrett IJ, Lomax BL, Loukianova T, Tang SS, Lestou VS, Kalousek DK. Comparative genomic hybridization: a new tool for reproductive pathology. Arch Pathol Lab Med. 2001;125(1):81–4.PubMedGoogle Scholar
  102. 102.
    Tabet AC, Aboura A, Dauge MC, Audibert F, Coulomb A, Batallan A, Couturier-Turpin MH, Feldmann G, Tachdjian G. Cytogenetic analysis of trophoblasts by comparative genomic hybridization in embryo-fetal development anomalies. Prenat Diagn. 2001;21(8):613–8.CrossRefPubMedGoogle Scholar
  103. 103.
    Lomax B, Tang S, Separovic E, Phillips D, Hillard E, Thomson T, Kalousek DK. Comparative genomic hybridization in combination with flow cytometry improves results of cytogenetic analysis of spontaneous abortions. Am J Hum Genet. 2000;66(5):1516–21.CrossRefPubMedGoogle Scholar
  104. 104.
    Ballif BC, Kashork CD, Saleki R, Rorem E, Sundin K, Bejjani BA, Shaffer LG. Detecting sex chromosome anomalies and common triploidies in products of conception by array-based comparative genomic hybridization. Prenat Diagn. 2006;26:333–9.CrossRefPubMedGoogle Scholar
  105. 105.
    Nowinski GP, VanDyke DL, Tilley BC, Jacobsen G, Babu VR, Worsham MJ, Wilson GN, Weiss L. The frequency of aneuploidy in cultured lymphocytes is correlated with age and gender but not reproductive history. Am J Hum Genet. 1990;46:1101–11.PubMedGoogle Scholar
  106. 106.
    Simpson JL. Genes, chromosomes, and reproductive failure. Fertil Steril. 1980;33:107–16.PubMedGoogle Scholar
  107. 107.
    Curry CJR. Pregnancy loss, stillbirth, and neonatal death: a guide for the pediatrician. Pediatr Clin North Am. 1992;39:157–92.PubMedGoogle Scholar
  108. 108.
    Mueller RF, Sybert VP, Johnson J, Brown ZA, Chen W-J. Evaluation of a protocol for post-mortem examination of stillbirths. N Eng J Med. 1983;309:586–90.CrossRefGoogle Scholar
  109. 109.
    Schauer GM, Kalousek DK, Magee JF. Genetic causes of stillbirth. Semin Perinatol. 1992;16:341–51.PubMedGoogle Scholar
  110. 110.
    Harger JH. Recurrent spontaneous abortion and pregnancy loss. In: Moore TR, Reiter RC, Rebar RW, Baker VV, editors. Gynecology and obstetrics, a longitudinal approach. New York: Churchill Livingston; 1993. p. 247–61.Google Scholar
  111. 111.
    Coulam CB. Epidemiology of recurrent spontaneous abortion. Am J Reprod Immunol. 1991;26:23–7.PubMedGoogle Scholar
  112. 112.
    Tharapel AT, Tharapel SA, Bannerman RM. Recurrent pregnancy losses and parental chromosome abnormalities: a review. BJOG. 1985;92:899–914.CrossRefGoogle Scholar
  113. 113.
    Drugan A, Koppitch FC, Williams JC, Johnson MP, Moghissi KS, Evans MI. Obstet Gynecol. 1990;75:381–4.PubMedGoogle Scholar
  114. 114.
    Munné S, Grifo J, Cohen J, Weier H-UG. Chromosome abnormalities in human arrested preimplantation embryos: a multiple-probe FISH study. Am J Hum Genet. 1994;55:150–9.PubMedGoogle Scholar
  115. 115.
    Zenzes MT, Casper RF. Cytogenetics of human oöcytes, zygotes, and embryos after in vitro fertilization. Hum Genet. 1992;88:367–75.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Pathology, Baystate Medical CenterTufts University School of MedicineSpringfieldUSA

Personalised recommendations