Advertisement

Low-Dose Contrast-Enhanced MR Angiography

  • Kambiz Nael
  • Roya Saleh
  • Gerhard Laub
  • J. Paul Finn
Chapter

Abstract

Today, three-dimensional contrast-enhanced magnetic resonance angiography (CE-MRA) is a widely accepted and powerful diagnostic tool for assessment of almost all vascular territories. Its noninvasive nature and flexibility make CE-MRA an appealing alternative to digital subtraction angiography (DSA) or computed tomography angiography (CTA). In addition, compared to the iodinated contrast agents used in CTA and DSA, gadolinium-based contrast agents have long enjoyed an excellent safety record. In the past, there has been little motivation for, or emphasis on, dose reduction strategies.

Keywords

Compute Tomography Angiography Digital Subtraction Angiography Nephrogenic Systemic Fibrosis Contrast Dose Excellent Safety Record 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sadowski EA, Bennett LK, Chan MR, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243:148–157.PubMedCrossRefGoogle Scholar
  2. 2.
    Marckmann P, Skov L, Rossen K, et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006;17:2359–2362.PubMedCrossRefGoogle Scholar
  3. 3.
    Clorius S, Technau K, Watter T, et al. Nephrogenic systemic fibrosis following exposure to gadolinium-containing contrast agent. Clin Nephrol. 2007;68:249–252.PubMedGoogle Scholar
  4. 4.
    Habibi R, Krishnam MS, Lohan DG, et al. High-spatial-resolution lower extremity MR angiography at 3.0 T: contrast agent dose comparison study. Radiology. 2008;248:680–692.PubMedCrossRefGoogle Scholar
  5. 5.
    Tomasian A, Salamon A, Lohan DG, Jalili M, Villablanca JP, Finn JP. Supraaortic arteries: contrast material dose reduction at 3.0-T high-spatial-resolution MR angiography--feasibility study. Radiology. 2008;249:980–990.PubMedCrossRefGoogle Scholar
  6. 6.
    Grobner T. Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21:1104–1108.PubMedCrossRefGoogle Scholar
  7. 7.
    Perazella MA, Rodby RA. Gadolinium-induced nephrogenic systemic fibrosis in patients with kidney disease. Am J Med. 2007;120:561–562.PubMedCrossRefGoogle Scholar
  8. 8.
    Collidge TA, Thomson PC, Mark PB, et al. Gadolinium-enhanced MR imaging and nephrogenic systemic fibrosis: retrospective study of a renal replacement therapy cohort. Radiology. 2007;245:168–175.PubMedCrossRefGoogle Scholar
  9. 9.
    Morcos SK, Thomsen HS, Webb JA. Dialysis and contrast media. Eur Radiol. 2002;12:3026–2030.PubMedGoogle Scholar
  10. 10.
    Prieto C, Uribe S, Razavi R, Atkinson D, Schaeffter T. 3D undersampled golden-radial phase encoding for DCE-MRA using inherently regularized iterative SENSE. Magn Reson Med. 2010;64:514–526.PubMedGoogle Scholar
  11. 11.
    Kang CK, Kim SH, Lee H, Park CA, Kim YB, Cho ZH. Functional MR angiography using phase contrast imaging technique at 3T MRI. Neuroimage. 2010;50:1036–1043.PubMedCrossRefGoogle Scholar
  12. 12.
    Wyttenbach R, Braghetti A, Wyss M, et al. Renal artery assessment with nonenhanced steady-state free precession versus contrast-enhanced MR angiography. Radiology. 2007;245:186–195.PubMedCrossRefGoogle Scholar
  13. 13.
    Francois CJ, Tuite D, Deshpande V, Jerecic R, Weale P, Carr JC. Unenhanced MR angiography of the thoracic aorta: initial clinical evaluation. AJR Am J Roentgenol. 2008;190:902–906.PubMedCrossRefGoogle Scholar
  14. 14.
    Francois CJ, Tuite D, Deshpande V, Jerecic R, Weale P, Carr JC. Pulmonary vein imaging with unenhanced three-dimensional balanced steady-state free precession MR angiography: initial clinical evaluation. Radiology. 2009;250:932–939.PubMedCrossRefGoogle Scholar
  15. 15.
    Campeau NG, Huston J 3rd, Bernstein M, Lin C, Gibbs GF. Magnetic resonance angiography at 3.0 Tesla: initial clinical experience. Top Magn Reson Imaging. 2001;12:183–204.PubMedCrossRefGoogle Scholar
  16. 16.
    Willinek WA, Born M, Simon B, et al. Time-of-flight MR angiography: comparison of 3.0-T imaging and 1.5-T imaging--initial experience. Radiology. 2003;229:913–920.PubMedCrossRefGoogle Scholar
  17. 17.
    Thulborn KR. Clinical rationale for very-high-field (3.0 Tesla) functional magnetic resonance imaging. Top Magn Reson Imaging. 1999;10:37–50.PubMedCrossRefGoogle Scholar
  18. 18.
    Robitaille PM, Abduljalil AM, Kangarlu A. Ultra high resolution imaging of the human head at 8 tesla: 2K x 2K for Y2K. J Comput Assist Tomogr. 2000;24:2–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Rinck PA, Muller RN. Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents. Eur Radiol. 1999;9:998–1004.PubMedCrossRefGoogle Scholar
  20. 20.
    Bodurka J, Ledden PJ, van Gelderen P, et al. Scalable multichannel MRI data acquisition system. Magn Reson Med. 2004;51:165–171.PubMedCrossRefGoogle Scholar
  21. 21.
    King SB DG, Peterson D, Varosi S, Molyneaux DA. A comparison of 1, 4, and 8 channel phased array head coils at 1.5 T. Presented at: 9th Annual Meeting of ISMRM, Glasgow, Scotland, 2001.Google Scholar
  22. 22.
    de Zwart JA, Ledden PJ, van Gelderen P, Bodurka J, Chu R, Duyn JH. Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla. Magn Reson Med. 2004;51:22–26.PubMedCrossRefGoogle Scholar
  23. 23.
    Hayes CE, Hattes N, Roemer PB. Volume imaging with MR phased arrays. Magn Reson Med. 1991;18:309–319.PubMedCrossRefGoogle Scholar
  24. 24.
    Roemer PB, Edelstein WA, Hayes CE,Souza SP, Mueller OM. The NMR phased array. Magn Reson Med. 1990;16:192–225.PubMedCrossRefGoogle Scholar
  25. 25.
    Wu Y, Wieben O, Mistretta CA, Korosec FR. Evaluation of temporal and spatial characteristics of 2D HYPR processing using simulations. Magn Reson Med. 2008;59:1090–1098.PubMedCrossRefGoogle Scholar
  26. 26.
    Frayne R, Grist TR, Swan JS, Peters DC, Korosec FR, Mistretta CR. 3D MR DSA: effects of injection protocol and image masking. J Magn Reson Imaging. 2000;12:476–487.PubMedCrossRefGoogle Scholar
  27. 27.
    Lohan DG, Tomasian A, Saleh RS, Singhal A, Krishnam MS, Finn JP. Ultra-low-dose, time-resolved contrast-enhanced magnetic resonance angiography of the carotid arteries at 3.0 tesla. Invest Radiol. 2009;44:207–217.PubMedCrossRefGoogle Scholar
  28. 28.
    Nael K, Krishnam MS, Ruehm SG, Michaely HJ, Laub G, Finn JP. Time-resolved MR angiography in the evaluation of central thoracic venous occlusive disease. AJR Am J Roentgenol. 2009;192:1731–1738.PubMedCrossRefGoogle Scholar
  29. 29.
    Port M, Corot C, Violas X, Robert P, Raynal I, Gagneur G. How to compare the efficiency of albumin-bound and nonalbumin-bound contrast agents in vivo: the concept of dynamic relaxivity. Invest Radiol. 2005;40:565–573.PubMedCrossRefGoogle Scholar
  30. 30.
    Dong Q, Hurst DR, Weinmann HJ, Chenevert TL, Londy FJ, Prince MR. Magnetic resonance angiography with gadomer-17. An animal study original investigation. Invest Radiol. 1998;33:699–708.PubMedCrossRefGoogle Scholar
  31. 31.
    Hayes CE, Roemer PB. Noise correlations in data simultaneously acquired from multiple surface coil arrays. Magn Reson Med. 1990;16:181–191.PubMedCrossRefGoogle Scholar
  32. 32.
    Constantinides CD, Westgate CR, O’Dell WG, Zerhouni EA, McVeigh ER. A phased array coil for human cardiac imaging. Magn Reson Med. 1995;34:92–98.PubMedCrossRefGoogle Scholar
  33. 33.
    Nael K, Saleh R, Nyborg GK, et al. Pulmonary MR perfusion at 3.0 Tesla using a blood pool contrast agent: initial results in a swine model. J Magn Reson Imaging. 2007;25:66–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Olukotun AY, Parker JR, Meeks MJ, Lucas MA, Fowler DR, Lucas TR. Safety of gadoteridol injection: U.S. clinical trial experience. J Magn Reson Imaging. 1995;5:17–25.PubMedCrossRefGoogle Scholar
  35. 35.
    Herborn CU, Lauenstein TC,Ruehm SG, Bosk S, Debatin JF, Goyen M. Intraindividual comparison of gadopentetate dimeglumine, gadobenate dimeglumine, and gadobutrol for pelvic 3D magnetic resonance angiography. Invest Radiol. 2003;38:27–33.PubMedCrossRefGoogle Scholar
  36. 36.
    Idee JM, Port M, Medina C, et al. Possible involvement of gadolinium chelates in the pathophysiology of nephrogenic systemic fibrosis: a critical review. Toxicology. 2008;248:77–88.PubMedCrossRefGoogle Scholar
  37. 37.
    Morcos SK. Extracellular gadolinium contrast agents: differences in stability. Eur J Radiol. 2008;66:175–179.PubMedCrossRefGoogle Scholar
  38. 38.
    Frenzel T, Lengsfeld P, Schirmer H, Hutter J, Weinmann HJ. Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol. 2008;43:817–828.PubMedCrossRefGoogle Scholar
  39. 39.
    Morasch MD, Collins J, Pereles FS, et al. Lower extremity stepping-table magnetic resonance angiography with multilevel contrast timing and segmented contrast infusion. J Vasc Surg. 2003;37:62–71.PubMedCrossRefGoogle Scholar
  40. 40.
    Pereles FS, Collins JD, Carr JC, et al. Accuracy of stepping-table lower extremity MR angiography with dual-level bolus timing and separate calf acquisition: hybrid peripheral MR angiography. Radiology. 2006;240:283–290.PubMedCrossRefGoogle Scholar
  41. 41.
    Nael K, Krishnam N, Nael A, Ton A, Ruehm SG, Finn JP. Peripheral contrast-enhanced MR angiography at 3.0T, improved spatial resolution and low dose contrast: initial clinical experience. Eur Radiol. 2008;18:2893–2900.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kambiz Nael
    • 1
  • Roya Saleh
    • 1
  • Gerhard Laub
    • 2
  • J. Paul Finn
    • 3
  1. 1.Department of Radiological SciencesDavid Geffen School of Medicine at University of California Los AngelesLos AngelesUSA
  2. 2.MR DivisionMR R&D West, Siemens Healthcare USAPleasantonUSA
  3. 3.Department of RadiologyRonald Reagan UCLA Medical CenterLos AngelesUSA

Personalised recommendations