Advertisement

Emerging Interventional MR Applications

  • Clifford R. Weiss
  • Aravindan Kolandaivelu
  • Jeff Bulte
  • Aravind Arepally
Chapter

Abstract

The desire to help patients without doing harm has driven medicine to develop minimally invasive methods for diagnosing and treating disease. It is not surprising, then, that over the past three decades medicine has evolved an increasing emphasis on image-guided intervention. Traditionally, these interventions have been performed using fluoroscopy, ultrasound, and computed tomography. Most recently, however, radiologists’ interventional skills and trends toward minimally invasive surgery have converged to create a burgeoning interest in the use of magnetic resonance imaging for guidance in interventional procedures, including the delivery of cellular therapeutics (Bulte, AJR Am J Roentgenol 193: 314–325, 2009).

Keywords

Ablation Lesion Intramyocardial Injection Injection Catheter Atrial Fibrillation Catheter Ablation Cellular Therapeutics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bulte JW. In vivo MRI cell tracking: clinical studies. AJR Am J Roentgenol. 2009;193:314–325.PubMedCrossRefGoogle Scholar
  2. 2.
    Tronnier VM, Wirtz CR, Knauth M, et al. Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery. Neurosurgery. 1997;40:891–900; discussion 900–892.Google Scholar
  3. 3.
    Maurer CR, Jr., Hill DL, Martin AJ, et al. Investigation of intraoperative brain deformation using a 1.5-T interventional MR system: preliminary results. IEEE Trans Med Imaging. 1998;17:817–825.Google Scholar
  4. 4.
    Ladd ME, Quick HH, Debatin JF. Interventional MRA and intravascular imaging. J Magn Reson Imaging. 2000;12:534–546.PubMedCrossRefGoogle Scholar
  5. 5.
    Godart F, Beregi JP, Nicol L, et al. MR-guided balloon angioplasty of stenosed aorta: in vivo evaluation using near-standard instruments and a passive tracking technique. J Magn Reson Imaging. 2000;12:639–644.PubMedCrossRefGoogle Scholar
  6. 6.
    Becker GJ. 2000 RSNA annual oration in diagnostic radiology: the future of interventional radiology. Radiology. 2001;220:281–292.PubMedGoogle Scholar
  7. 7.
    Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659–666.PubMedCrossRefGoogle Scholar
  8. 8.
    Pappone C, Rosanio S, Oreto G, et al. Circumferential radiofrequency ablation of pulmonary vein ostia: A new anatomic approach for curing atrial fibrillation. Circulation. 2000;102:2619–2628.PubMedGoogle Scholar
  9. 9.
    Calkins H. Further insight into the technique and outcomes of “curative” catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2008;1:238–239.PubMedCrossRefGoogle Scholar
  10. 10.
    Dong J, Calkins H. Technology insight: catheter ablation of the pulmonary veins in the treatment of atrial fibrillation. Nat Clin Pract Cardiovasc Med. 2005;2:159–166.PubMedCrossRefGoogle Scholar
  11. 11.
    Wittkampf FH, Nakagawa H. RF catheter ablation: Lessons on lesions. Pacing Clin Electrophysiol. 2006;29:1285–1297.PubMedCrossRefGoogle Scholar
  12. 12.
    Lardo AC, McVeigh ER, Jumrussirikul P, et al. Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging. Circulation. 2000;102:698–705.PubMedGoogle Scholar
  13. 13.
    Nazarian S, Kolandaivelu A, Zviman MM, et al. Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies. Circulation. 2008;118:223–229.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoffmann BA, Koops A, Rostock T, et al. Interactive real-time mapping and catheter ablation of the cavotricuspid isthmus guided by magnetic resonance imaging in a porcine model. Eur Heart J. 2010;31:450–456.PubMedCrossRefGoogle Scholar
  15. 15.
    Dickfeld T, Kato R, Zviman M, et al. Characterization of acute and subacute radiofrequency ablation lesions with nonenhanced magnetic resonance imaging. Heart Rhythm. 2007;4:208–214.PubMedCrossRefGoogle Scholar
  16. 16.
    Dickfeld T, Kato R, Zviman M, et al. Characterization of radiofrequency ablation lesions with gadolinium-enhanced cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2006;47:370–378.PubMedCrossRefGoogle Scholar
  17. 17.
    Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging. 2008;27:376–390.Google Scholar
  18. 18.
    Dumoulin CL, Souza SP, Darrow RD. Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med. 1993;29:411–415.PubMedCrossRefGoogle Scholar
  19. 19.
    Dukkipati SR, Mallozzi R, Schmidt EJ, et al. Electroanatomic mapping of the left ventricle in a porcine model of chronic myocardial infarction with magnetic resonance-based catheter tracking. Circulation. 2008;118:853–862.PubMedCrossRefGoogle Scholar
  20. 20.
    Schmidt EJ, Mallozzi RP, Thiagalingam A, et al. Electroanatomic mapping and radiofrequency ablation of porcine left atria and atrioventricular nodes using magnetic resonance catheter tracking. Circ Arrhythm Electrophysiol. 2009;2:695–704.PubMedCrossRefGoogle Scholar
  21. 21.
    Shellock FG, Crues JV. MR procedures: biologic effects, safety, and patient care. Radiology. 2004;232:635–652.PubMedCrossRefGoogle Scholar
  22. 22.
    Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J. On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging. 2001;13:105–114.PubMedCrossRefGoogle Scholar
  23. 23.
    Weiss S, Vernickel P, Schaeffter T, Schulz V, Gleich B. Transmission line for improved RF safety of interventional devices. Magn Reson Med. 2005;54:182–189.PubMedCrossRefGoogle Scholar
  24. 24.
    Krueger S, Schmitz S, Weiss S, et al. An MR guidewire based on micropultruded fiber-reinforced material. Magn Reson Med. 2008;60:1190–1196.PubMedCrossRefGoogle Scholar
  25. 25.
    Wirtz D, Lips O, David B, Krueger S, Wiess S. Diagnostic MR-electrophysiology catheter with highly resistive wires for reduction of RF-heating. In: Joint Annual Meeting ISMRM-ESMRMB. Berlin, 2007.Google Scholar
  26. 26.
    Ladd ME, Quick HH. Reduction of resonant RF heating in intravascular catheters using coaxial chokes. Magn Reson Med. 2000;43:615–619.PubMedCrossRefGoogle Scholar
  27. 27.
    Long CM, Bulte JW. In vivo tracking of cellular therapeutics using magnetic resonance imaging. Expert Opin Biol Ther. 2009;9:293–306.PubMedCrossRefGoogle Scholar
  28. 28.
    de Vries IJ, Lesterhuis WJ, Barentsz JO, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol. 2005;23:1407–1413.PubMedCrossRefGoogle Scholar
  29. 29.
    Long CM, van Laarhoven HW, Bulte JW, Levitsky HI. Magnetovaccination as a novel method to assess and quantify dendritic cell tumor antigen capture and delivery to lymph nodes. Cancer Res. 2009;69:3180–3187.PubMedCrossRefGoogle Scholar
  30. 30.
    Frank JA, Miller BR, Arbab AS, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology. 2003;228:480–487.PubMedCrossRefGoogle Scholar
  31. 31.
    Walczak P, Kedziorek DA, Gilad AA, Lin S, Bulte JW. Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med. 2005;54:769–774.PubMedCrossRefGoogle Scholar
  32. 32.
    Anderson SA, Lee KK, Frank JA. Gadolinium-fullerenol as a paramagnetic contrast agent for cellular imaging. Invest Radiol. 2006;41:332–338.PubMedCrossRefGoogle Scholar
  33. 33.
    Gao F, Kar S, Zhang J, et al. MRI of intravenously injected bone marrow cells homing to the site of injured arteries. NMR Biomed. 2007;20:673–681.PubMedCrossRefGoogle Scholar
  34. 34.
    Bulte JW. Hot spot MRI emerges from the background. Nat Biotechnol. 2005;23:945–946.PubMedCrossRefGoogle Scholar
  35. 35.
    Ahrens ET, Flores R, Xu H, Morel PA. In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol. 2005;23:983–987.PubMedCrossRefGoogle Scholar
  36. 36.
    Partlow KC, Chen J, Brant JA, et al. 19 F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. Faseb J. 2007;21:1647–1654.PubMedCrossRefGoogle Scholar
  37. 37.
    Ruiz-Cabello J, Walczak P, Kedziorek DA, et al. In vivo “hot spot” MR imaging of neural stem cells using fluorinated nanoparticles. Magn Reson Med. 2008;60:1506–1511.PubMedCrossRefGoogle Scholar
  38. 38.
    Barnett BP, Kraitchman DL, Lauzon C, et al. Radiopaque alginate microcapsules for X-ray visualization and immunoprotection of cellular therapeutics. Mol Pharm. 2006;3:531–538.PubMedCrossRefGoogle Scholar
  39. 39.
    Barnett BP, Arepally A, Karmarkar PV, et al. Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med. 2007;13:986–991.PubMedCrossRefGoogle Scholar
  40. 40.
    Lederman RJ, Guttman MA, Peters DC, et al. Catheter-based endomyocardial injection with real-time magnetic resonance imaging. Circulation. 2002;105:1282–1284.PubMedGoogle Scholar
  41. 41.
    Dick AJ, Guttman MA, Raman VK, et al. Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine. Circulation. 2003;108:2899–2904.PubMedCrossRefGoogle Scholar
  42. 42.
    Saeed M, Lee R, Martin A, et al. Transendocardial delivery of extracellular myocardial markers by using combination X-ray/MR fluoroscopic guidance: feasibility study in dogs. Radiology. 2004;231:689–696.PubMedCrossRefGoogle Scholar
  43. 43.
    Qiu B, Gao F, Walczak P, et al. In vivo MR imaging of bone marrow cells trafficking to atherosclerotic plaques. J Magn Reson Imaging. 2007;26:339–343.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Clifford R. Weiss
    • 1
  • Aravindan Kolandaivelu
    • 2
  • Jeff Bulte
    • 3
  • Aravind Arepally
    • 4
  1. 1.Division of Cardiovascular and Interventional Radiology, The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins HospitalBaltimoreUSA
  2. 2.Division of Cardiology, Cardiac Arrhythmia ServiceJohns Hopkins HospitalBaltimoreUSA
  3. 3.Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins Medical InstitutesBaltimoreUSA
  4. 4.Division of Interventional RadiologyPiedmont HealthcareAtlantaUSA

Personalised recommendations