Skip to main content

Venous Imaging: Techniques, Protocols, and Clinical Applications

  • Chapter
  • First Online:
Magnetic Resonance Angiography

Abstract

Magnetic resonance imaging (MRI) is intrinsically sensitive to flowing blood. The earliest investigators of MRI recognized that blood flow altered the intraluminal magnetic resonance signal. MRI techniques in imaging blood flow have been principally directed toward interrogation of the arterial system. However, the same techniques that have made magnetic resonance angiography such a useful clinical tool have also been applied to the venous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prince MR. Gadolinium-enhanced MR aortography. Radiology. 1994;191(1):155–64.

    PubMed  CAS  Google Scholar 

  2. Spritzer CE. Progress in MR imaging of the venous system. Perspect Vasc Surg Endovasc Ther. 2009;21(2):105–16.

    Article  PubMed  Google Scholar 

  3. Miyazaki M, Lee VS. Nonenhanced MR angiography. Radiology. 2008;248(1):20–43.

    Article  PubMed  Google Scholar 

  4. Prince MR, Arnoldus C, Frisoli JK. Nephrotoxicity of high-dose gadolinium compared with iodinated contrast. J Magn Reson Imaging. 1996;6(1):162–6.

    Article  PubMed  CAS  Google Scholar 

  5. Marckmann P, Skov L, Rossen K, Heaf JG, Thomsen HS. Case-control study of gadodiamide-related nephrogenic systemic fibrosis. Nephrol Dial Transplant. 2007;22(11):3174–8.

    Article  PubMed  CAS  Google Scholar 

  6. Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet. 2000;356(9234):1000–1.

    Article  PubMed  CAS  Google Scholar 

  7. Guerrero A, Montes R, Munoz-Terol J, et al. Peripheral arterial disease in patients with stages IV and V chronic renal failure. Nephrol Dial Transplant. 2006;21(12):3525–31.

    Article  PubMed  Google Scholar 

  8. Ito K, Koike S, Shimizu A, et al. Portal venous system: evaluation with unenhanced MR angiography with a single-breath-hold ­ECG-synchronized 3D half-Fourier fast spin-echo sequence. Ajr. 2008;191(2):550–4.

    Article  PubMed  Google Scholar 

  9. Ono A, Murase K, Taniguchi T, et al. Deep venous thrombosis: diagnostic value of non-contrast-enhanced MR venography using electrocardiography-triggered three-dimensional half-Fourier FSE. Magn Reson Med. 2010;64(1):88–97.

    Article  PubMed  Google Scholar 

  10. Wehrli FW, Shimakawa A, Gullberg GT, MacFall JR. Time-of-flight MR flow imaging: selective saturation recovery with gradient refocusing. Radiology. 1986;160(3):781–5.

    PubMed  CAS  Google Scholar 

  11. Kirchhof K, Welzel T, Jansen O, Sartor K. More reliable noninvasive visualization of the cerebral veins and dural sinuses: comparison of three MR angiographic techniques. Radiology. 2002;224(3):804–10.

    Article  PubMed  Google Scholar 

  12. Liauw L, van Buchem MA, Spilt A, et al. MR angiography of the intracranial venous system. Radiology. 2000;214(3):678–82.

    PubMed  CAS  Google Scholar 

  13. Laissy JP, Trillaud H, Douek P. MR angiography: noninvasive vascular imaging of the abdomen. Abdom Imaging. 2002;27(5):488–506.

    Article  PubMed  CAS  Google Scholar 

  14. Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology. 2001;219(3):828–34.

    PubMed  CAS  Google Scholar 

  15. Liu X, Berg N, Sheehan J, et al. Renal transplant: nonenhanced renal MR angiography with magnetization-prepared steady-state free precession. Radiology. 2009;251(2):535–42.

    Article  PubMed  Google Scholar 

  16. Stafford RB, Sabati M, Mahallati H, Frayne R. 3D non-contrast-enhanced MR angiography with balanced steady-state free precession Dixon method. Magn Reson Med. 2008;59(2):430–3.

    Article  PubMed  Google Scholar 

  17. Edelman RR, Koktzoglou I. Unenhanced flow-independent MR venography by using signal targeting alternative radiofrequency and flow-independent relaxation enhancement. Radiology. 2009;250(1):236–45.

    Article  PubMed  Google Scholar 

  18. Miyazaki M, Sugiura S, Tateishi F, Wada H, Kassai Y, Abe H. Non-contrast-enhanced MR angiography using 3D ECG-synchronized half-Fourier fast spin echo. J Magn Reson Imaging. 2000;12(5):776–83.

    Article  PubMed  CAS  Google Scholar 

  19. Fraser DG, Moody AR, Morgan PS, Martel AL, Davidson I. Diagnosis of lower-limb deep venous thrombosis: a prospective blinded study of magnetic resonance direct thrombus imaging. Annals of internal medicine. 2002;136(2):89–98.

    PubMed  Google Scholar 

  20. Spritzer CE, Blinder RA. Practical aspects of vascular imaging using MRI. Crit Rev Diagn Imaging. 1990;31(2):145–85.

    PubMed  CAS  Google Scholar 

  21. Bremerich J, Bilecen D, Reimer P. MR angiography with blood pool contrast agents. European radiology. 2007;17(12):3017–24.

    Article  PubMed  Google Scholar 

  22. Baxter AB, Melnikoff S, Stites DP, Brasch RC. AUR Memorial Award 1991. Immunogenicity of gadolinium-based contrast agents for magnetic resonance imaging. Induction and characterization of antibodies in animals. Investigative radiology. 1991;26(12):1035–40.

    Article  PubMed  CAS  Google Scholar 

  23. Li W, Salanitri J, Tutton S, et al. Lower extremity deep venous thrombosis: evaluation with ferumoxytol-enhanced MR imaging and dual-contrast mechanism--preliminary experience. Radiology. 2007;242(3):873–81.

    Article  PubMed  Google Scholar 

  24. Fowkes FJ, Price JF, Fowkes FG. Incidence of diagnosed deep vein thrombosis in the general population: systematic review. Eur J Vasc Endovasc Surg. 2003;25(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  25. Spritzer CE, Sostman HD, Wilkes DC, Coleman RE. Deep venous thrombosis: experience with gradient-echo MR imaging in 66 patients. Radiology. 1990;177(1):235–41.

    PubMed  CAS  Google Scholar 

  26. Spritzer CE, Norconk JJ, Jr., Sostman HD, Coleman RE. Detection of deep venous thrombosis by magnetic resonance imaging. Chest. 1993;104(1):54–60.

    Article  PubMed  CAS  Google Scholar 

  27. Sampson FC, Goodacre SW, Thomas SM, van Beek EJ. The accuracy of MRI in diagnosis of suspected deep vein thrombosis: systematic review and meta-analysis. European radiology. 2007;17(1):175–81.

    Article  PubMed  Google Scholar 

  28. Evans AJ, Sostman HD, Knelson MH, et al. 1992 ARRS Executive Council Award. Detection of deep venous thrombosis: prospective comparison of MR imaging with contrast venography. Ajr. 1993;161(1):131–9.

    Google Scholar 

  29. Erdman WA, Jayson HT, Redman HC, Miller GL, Parkey RW, Peshock RW. Deep venous thrombosis of extremities: role of MR imaging in the diagnosis. Radiology. 1990;174(2):425–31.

    PubMed  CAS  Google Scholar 

  30. Spuentrup E, Botnar RM, Wiethoff AJ, et al. MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. European radiology. 2008;18(9):1995–2005.

    Article  PubMed  Google Scholar 

  31. Bertsch NM, Mastrobattista JM, Kawashima A, Kramer LA. Antepartum bilateral ovarian vein thrombosis: magnetic resonance imaging diagnosis. Am J Perinatol. 1997;14(10):597–9.

    Article  PubMed  CAS  Google Scholar 

  32. Twickler DM, Setiawan AT, Evans RS, et al. Imaging of puerperal septic thrombophlebitis: prospective comparison of MR imaging, CT, and sonography. Ajr. 1997;169(4):1039–43.

    PubMed  CAS  Google Scholar 

  33. Rordorf G, Koroshetz WJ, Copen WA, et al. Regional ischemia and ischemic injury in patients with acute middle cerebral artery stroke as defined by early diffusion-weighted and perfusion-weighted MRI. Stroke. 1998;29(5):939–43.

    Article  PubMed  CAS  Google Scholar 

  34. Erdman WA, Parkey RW. MR imaging of deep venous thrombosis. Ajr. 1990;155(4):897.

    PubMed  CAS  Google Scholar 

  35. Kubik-Huch RA, Hebisch G, Huch R, Hilfiker P, Debatin JF, Krestin GP. Role of duplex color Doppler ultrasound, computed tomography, and MR angiography in the diagnosis of septic puerperal ovarian vein thrombosis. Abdom Imaging. 1999;24(1):85–91.

    Article  PubMed  CAS  Google Scholar 

  36. Shimada K, Isoda H, Okada T, et al. Non-contrast-enhanced MR portography with time-spatial labeling inversion pulses: comparison of imaging with three-dimensional half-fourier fast spin-echo and true steady-state free-precession sequences. J Magn Reson Imaging. 2009;29(5):1140–6.

    Article  PubMed  Google Scholar 

  37. Jacob AG, Driscoll DJ, Shaughnessy WJ, Stanson AW, Clay RP, Gloviczki P. Klippel-Trenaunay syndrome: spectrum and management. Mayo Clin Proc. 1998;73(1):28–36.

    Article  PubMed  CAS  Google Scholar 

  38. Cha SH, Romeo MA, Neutze JA. Visceral manifestations of Klippel-Trenaunay syndrome. Radiographics. 2005;25(6):1694–7.

    Article  PubMed  Google Scholar 

  39. Vilanova JC, Barcelo J, Smirniotopoulos JG, et al. Hemangioma from head to toe: MR imaging with pathologic correlation. Radiographics. 2004;24(2):367–85.

    Article  PubMed  Google Scholar 

  40. Elsayes KM, Menias CO, Dillman JR, Platt JF, Willatt JM, Heiken JP. Vascular malformation and hemangiomatosis syndromes: spectrum of imaging manifestations. Ajr. 2008;190(5):1291–9.

    Article  PubMed  Google Scholar 

  41. Ganeshan A, Upponi S, Hon LQ, Uthappa MC, Warakaulle DR, Uberoi R. Chronic pelvic pain due to pelvic congestion syndrome: the role of diagnostic and interventional radiology. Cardiovasc Intervent Radiol. 2007;30(6):1105–11.

    Article  PubMed  Google Scholar 

  42. Asciutto G, Mumme A, Marpe B, Koster O, Asciutto KC, Geier B. MR venography in the detection of pelvic venous congestion. Eur J Vasc Endovasc Surg. 2008;36(4):491–6.

    Article  PubMed  CAS  Google Scholar 

  43. Pandey T, Shaikh R, Viswamitra S, Jambhekar K. Use of time resolved magnetic resonance imaging in the diagnosis of pelvic congestion syndrome. J Magn Reson Imaging. 2010;32(3):700–4.

    Article  PubMed  Google Scholar 

  44. Kim CY, Miller MJ, Jr., Merkle EM. Time-resolved MR angiography as a useful sequence for assessment of ovarian vein reflux. Ajr. 2009;193(5):W458-63.

    Article  PubMed  Google Scholar 

  45. Wong HI, Chen MC, Wu CS, et al. The usefulness of fast-spin-echo T2-weighted MR imaging in Nutcracker syndrome: a case report. Korean J Radiol. 2010;11(3):373–7.

    Article  PubMed  Google Scholar 

  46. Oguzkurt L, Ozkan U, Tercan F, Koc Z. Ultrasonographic diagnosis of iliac vein compression (May-Thurner) syndrome. Diagnostic and interventional radiology (Ankara, Turkey). 2007;13(3):152–5.

    Google Scholar 

  47. Wolpert LM, Rahmani O, Stein B, Gallagher JJ, Drezner AD. Magnetic resonance venography in the diagnosis and management of May-Thurner syndrome. Vasc Endovascular Surg. 2002;36(1):51–7.

    Article  PubMed  Google Scholar 

  48. Gurel K, Gurel S, Karavas E, Buharalioglu Y, Daglar B. Direct contrast-enhanced MR venography in the diagnosis of May-Thurner Syndrome. Eur J Radiol. 2010.

    Google Scholar 

  49. Ruehm SG, Wiesner W, Debatin JF. Pelvic and lower extremity veins: contrast-enhanced three-dimensional MR venography with a dedicated vascular coil-initial experience. Radiology. 2000;215(2):421–7.

    PubMed  CAS  Google Scholar 

  50. Heiss SG, Shifrin RY, Sommer FG. Contrast-enhanced three-dimensional fast spoiled gradient-echo renal MR imaging: evaluation of vascular and nonvascular disease. Radiographics. 2000;20(5):1341–52; discussion 53–4.

    Google Scholar 

  51. Pfluger T, Czekalla R, Hundt C, et al. MR angiography versus color Doppler sonography in the evaluation of renal vessels and the inferior vena cava in abdominal masses of pediatric patients. Ajr. 1999;173(1):103–8.

    PubMed  CAS  Google Scholar 

  52. Laissy JP, Menegazzo D, Debray MP, et al. Renal carcinoma: diagnosis of venous invasion with Gd-enhanced MR venography. European radiology. 2000;10(7):1138–43.

    Article  PubMed  CAS  Google Scholar 

  53. McFarland EG, Kaufman JA, Saini S, et al. Preoperative staging of cancer of the pancreas: value of MR angiography versus conventional angiography in detecting portal venous invasion. Ajr. 1996;166(1):37–43.

    PubMed  CAS  Google Scholar 

  54. Morrin MM, Pedrosa I, Rofsky NM. Magnetic resonance imaging for disorders of liver vasculature. Top Magn Reson Imaging. 2002;13(3):177–90.

    Article  PubMed  Google Scholar 

  55. Smedby O, Riesenfeld V, Karlson B, et al. Magnetic resonance angiography in the resectability assessment of suspected pancreatic tumours. European radiology. 1997;7(5):649–53.

    Article  PubMed  CAS  Google Scholar 

  56. Finn JP, Zisk JH, Edelman RR, et al. Central venous occlusion: MR angiography. Radiology. 1993;187(1):245–51.

    PubMed  CAS  Google Scholar 

  57. Tanju S, Sancak T, Dusunceli E, Yagmurlu B, Erden I, Sanlidilek U. Direct contrast-enhanced 3D MR venography evaluation of upper extremity deep venous system. Diagnostic and interventional radiology (Ankara, Turkey). 2006;12(2):74–9.

    Google Scholar 

  58. Thornton MJ, Ryan R, Varghese JC, Farrell MA, Lucey B, Lee MJ. A three-dimensional gadolinium-enhanced MR venography technique for imaging central veins. Ajr. 1999;173(4):999–1003.

    PubMed  CAS  Google Scholar 

  59. Francois CJ, Tuite D, Deshpande V, Jerecic R, Weale P, Carr JC. Pulmonary vein imaging with unenhanced three-dimensional balanced steady-state free precession MR angiography: initial clinical evaluation. Radiology. 2009;250(3):932–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir H. Davarpanah MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Davarpanah, A.H., Hodnett, P., Collins, J.D., Carr, J.C., Scanlon, T. (2012). Venous Imaging: Techniques, Protocols, and Clinical Applications. In: Carr, J., Carroll, T. (eds) Magnetic Resonance Angiography. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1686-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1686-0_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1685-3

  • Online ISBN: 978-1-4419-1686-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics