Venous Imaging: Techniques, Protocols, and Clinical Applications

  • Amir H. Davarpanah
  • Philip Hodnett
  • Jeremy D. Collins
  • James C. Carr
  • Tim Scanlon


Magnetic resonance imaging (MRI) is intrinsically sensitive to flowing blood. The earliest investigators of MRI recognized that blood flow altered the intraluminal magnetic resonance signal. MRI techniques in imaging blood flow have been principally directed toward interrogation of the arterial system. However, the same techniques that have made magnetic resonance angiography such a useful clinical tool have also been applied to the venous system.


Inferior Vena Cava Magnetic Resonance Angiography Superior Vena Cava Left Renal Vein Fast Spin Echo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Prince MR. Gadolinium-enhanced MR aortography. Radiology. 1994;191(1):155–64.PubMedGoogle Scholar
  2. 2.
    Spritzer CE. Progress in MR imaging of the venous system. Perspect Vasc Surg Endovasc Ther. 2009;21(2):105–16.PubMedCrossRefGoogle Scholar
  3. 3.
    Miyazaki M, Lee VS. Nonenhanced MR angiography. Radiology. 2008;248(1):20–43.PubMedCrossRefGoogle Scholar
  4. 4.
    Prince MR, Arnoldus C, Frisoli JK. Nephrotoxicity of high-dose gadolinium compared with iodinated contrast. J Magn Reson Imaging. 1996;6(1):162–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Marckmann P, Skov L, Rossen K, Heaf JG, Thomsen HS. Case-control study of gadodiamide-related nephrogenic systemic fibrosis. Nephrol Dial Transplant. 2007;22(11):3174–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet. 2000;356(9234):1000–1.PubMedCrossRefGoogle Scholar
  7. 7.
    Guerrero A, Montes R, Munoz-Terol J, et al. Peripheral arterial disease in patients with stages IV and V chronic renal failure. Nephrol Dial Transplant. 2006;21(12):3525–31.PubMedCrossRefGoogle Scholar
  8. 8.
    Ito K, Koike S, Shimizu A, et al. Portal venous system: evaluation with unenhanced MR angiography with a single-breath-hold ­ECG-synchronized 3D half-Fourier fast spin-echo sequence. Ajr. 2008;191(2):550–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Ono A, Murase K, Taniguchi T, et al. Deep venous thrombosis: diagnostic value of non-contrast-enhanced MR venography using electrocardiography-triggered three-dimensional half-Fourier FSE. Magn Reson Med. 2010;64(1):88–97.PubMedCrossRefGoogle Scholar
  10. 10.
    Wehrli FW, Shimakawa A, Gullberg GT, MacFall JR. Time-of-flight MR flow imaging: selective saturation recovery with gradient refocusing. Radiology. 1986;160(3):781–5.PubMedGoogle Scholar
  11. 11.
    Kirchhof K, Welzel T, Jansen O, Sartor K. More reliable noninvasive visualization of the cerebral veins and dural sinuses: comparison of three MR angiographic techniques. Radiology. 2002;224(3):804–10.PubMedCrossRefGoogle Scholar
  12. 12.
    Liauw L, van Buchem MA, Spilt A, et al. MR angiography of the intracranial venous system. Radiology. 2000;214(3):678–82.PubMedGoogle Scholar
  13. 13.
    Laissy JP, Trillaud H, Douek P. MR angiography: noninvasive vascular imaging of the abdomen. Abdom Imaging. 2002;27(5):488–506.PubMedCrossRefGoogle Scholar
  14. 14.
    Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology. 2001;219(3):828–34.PubMedGoogle Scholar
  15. 15.
    Liu X, Berg N, Sheehan J, et al. Renal transplant: nonenhanced renal MR angiography with magnetization-prepared steady-state free precession. Radiology. 2009;251(2):535–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Stafford RB, Sabati M, Mahallati H, Frayne R. 3D non-contrast-enhanced MR angiography with balanced steady-state free precession Dixon method. Magn Reson Med. 2008;59(2):430–3.PubMedCrossRefGoogle Scholar
  17. 17.
    Edelman RR, Koktzoglou I. Unenhanced flow-independent MR venography by using signal targeting alternative radiofrequency and flow-independent relaxation enhancement. Radiology. 2009;250(1):236–45.PubMedCrossRefGoogle Scholar
  18. 18.
    Miyazaki M, Sugiura S, Tateishi F, Wada H, Kassai Y, Abe H. Non-contrast-enhanced MR angiography using 3D ECG-synchronized half-Fourier fast spin echo. J Magn Reson Imaging. 2000;12(5):776–83.PubMedCrossRefGoogle Scholar
  19. 19.
    Fraser DG, Moody AR, Morgan PS, Martel AL, Davidson I. Diagnosis of lower-limb deep venous thrombosis: a prospective blinded study of magnetic resonance direct thrombus imaging. Annals of internal medicine. 2002;136(2):89–98.PubMedGoogle Scholar
  20. 20.
    Spritzer CE, Blinder RA. Practical aspects of vascular imaging using MRI. Crit Rev Diagn Imaging. 1990;31(2):145–85.PubMedGoogle Scholar
  21. 21.
    Bremerich J, Bilecen D, Reimer P. MR angiography with blood pool contrast agents. European radiology. 2007;17(12):3017–24.PubMedCrossRefGoogle Scholar
  22. 22.
    Baxter AB, Melnikoff S, Stites DP, Brasch RC. AUR Memorial Award 1991. Immunogenicity of gadolinium-based contrast agents for magnetic resonance imaging. Induction and characterization of antibodies in animals. Investigative radiology. 1991;26(12):1035–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Li W, Salanitri J, Tutton S, et al. Lower extremity deep venous thrombosis: evaluation with ferumoxytol-enhanced MR imaging and dual-contrast mechanism--preliminary experience. Radiology. 2007;242(3):873–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Fowkes FJ, Price JF, Fowkes FG. Incidence of diagnosed deep vein thrombosis in the general population: systematic review. Eur J Vasc Endovasc Surg. 2003;25(1):1–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Spritzer CE, Sostman HD, Wilkes DC, Coleman RE. Deep venous thrombosis: experience with gradient-echo MR imaging in 66 patients. Radiology. 1990;177(1):235–41.PubMedGoogle Scholar
  26. 26.
    Spritzer CE, Norconk JJ, Jr., Sostman HD, Coleman RE. Detection of deep venous thrombosis by magnetic resonance imaging. Chest. 1993;104(1):54–60.PubMedCrossRefGoogle Scholar
  27. 27.
    Sampson FC, Goodacre SW, Thomas SM, van Beek EJ. The accuracy of MRI in diagnosis of suspected deep vein thrombosis: systematic review and meta-analysis. European radiology. 2007;17(1):175–81.PubMedCrossRefGoogle Scholar
  28. 28.
    Evans AJ, Sostman HD, Knelson MH, et al. 1992 ARRS Executive Council Award. Detection of deep venous thrombosis: prospective comparison of MR imaging with contrast venography. Ajr. 1993;161(1):131–9.Google Scholar
  29. 29.
    Erdman WA, Jayson HT, Redman HC, Miller GL, Parkey RW, Peshock RW. Deep venous thrombosis of extremities: role of MR imaging in the diagnosis. Radiology. 1990;174(2):425–31.PubMedGoogle Scholar
  30. 30.
    Spuentrup E, Botnar RM, Wiethoff AJ, et al. MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. European radiology. 2008;18(9):1995–2005.PubMedCrossRefGoogle Scholar
  31. 31.
    Bertsch NM, Mastrobattista JM, Kawashima A, Kramer LA. Antepartum bilateral ovarian vein thrombosis: magnetic resonance imaging diagnosis. Am J Perinatol. 1997;14(10):597–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Twickler DM, Setiawan AT, Evans RS, et al. Imaging of puerperal septic thrombophlebitis: prospective comparison of MR imaging, CT, and sonography. Ajr. 1997;169(4):1039–43.PubMedGoogle Scholar
  33. 33.
    Rordorf G, Koroshetz WJ, Copen WA, et al. Regional ischemia and ischemic injury in patients with acute middle cerebral artery stroke as defined by early diffusion-weighted and perfusion-weighted MRI. Stroke. 1998;29(5):939–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Erdman WA, Parkey RW. MR imaging of deep venous thrombosis. Ajr. 1990;155(4):897.PubMedGoogle Scholar
  35. 35.
    Kubik-Huch RA, Hebisch G, Huch R, Hilfiker P, Debatin JF, Krestin GP. Role of duplex color Doppler ultrasound, computed tomography, and MR angiography in the diagnosis of septic puerperal ovarian vein thrombosis. Abdom Imaging. 1999;24(1):85–91.PubMedCrossRefGoogle Scholar
  36. 36.
    Shimada K, Isoda H, Okada T, et al. Non-contrast-enhanced MR portography with time-spatial labeling inversion pulses: comparison of imaging with three-dimensional half-fourier fast spin-echo and true steady-state free-precession sequences. J Magn Reson Imaging. 2009;29(5):1140–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Jacob AG, Driscoll DJ, Shaughnessy WJ, Stanson AW, Clay RP, Gloviczki P. Klippel-Trenaunay syndrome: spectrum and management. Mayo Clin Proc. 1998;73(1):28–36.PubMedCrossRefGoogle Scholar
  38. 38.
    Cha SH, Romeo MA, Neutze JA. Visceral manifestations of Klippel-Trenaunay syndrome. Radiographics. 2005;25(6):1694–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Vilanova JC, Barcelo J, Smirniotopoulos JG, et al. Hemangioma from head to toe: MR imaging with pathologic correlation. Radiographics. 2004;24(2):367–85.PubMedCrossRefGoogle Scholar
  40. 40.
    Elsayes KM, Menias CO, Dillman JR, Platt JF, Willatt JM, Heiken JP. Vascular malformation and hemangiomatosis syndromes: spectrum of imaging manifestations. Ajr. 2008;190(5):1291–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Ganeshan A, Upponi S, Hon LQ, Uthappa MC, Warakaulle DR, Uberoi R. Chronic pelvic pain due to pelvic congestion syndrome: the role of diagnostic and interventional radiology. Cardiovasc Intervent Radiol. 2007;30(6):1105–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Asciutto G, Mumme A, Marpe B, Koster O, Asciutto KC, Geier B. MR venography in the detection of pelvic venous congestion. Eur J Vasc Endovasc Surg. 2008;36(4):491–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Pandey T, Shaikh R, Viswamitra S, Jambhekar K. Use of time resolved magnetic resonance imaging in the diagnosis of pelvic congestion syndrome. J Magn Reson Imaging. 2010;32(3):700–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Kim CY, Miller MJ, Jr., Merkle EM. Time-resolved MR angiography as a useful sequence for assessment of ovarian vein reflux. Ajr. 2009;193(5):W458-63.PubMedCrossRefGoogle Scholar
  45. 45.
    Wong HI, Chen MC, Wu CS, et al. The usefulness of fast-spin-echo T2-weighted MR imaging in Nutcracker syndrome: a case report. Korean J Radiol. 2010;11(3):373–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Oguzkurt L, Ozkan U, Tercan F, Koc Z. Ultrasonographic diagnosis of iliac vein compression (May-Thurner) syndrome. Diagnostic and interventional radiology (Ankara, Turkey). 2007;13(3):152–5.Google Scholar
  47. 47.
    Wolpert LM, Rahmani O, Stein B, Gallagher JJ, Drezner AD. Magnetic resonance venography in the diagnosis and management of May-Thurner syndrome. Vasc Endovascular Surg. 2002;36(1):51–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Gurel K, Gurel S, Karavas E, Buharalioglu Y, Daglar B. Direct contrast-enhanced MR venography in the diagnosis of May-Thurner Syndrome. Eur J Radiol. 2010.Google Scholar
  49. 49.
    Ruehm SG, Wiesner W, Debatin JF. Pelvic and lower extremity veins: contrast-enhanced three-dimensional MR venography with a dedicated vascular coil-initial experience. Radiology. 2000;215(2):421–7.PubMedGoogle Scholar
  50. 50.
    Heiss SG, Shifrin RY, Sommer FG. Contrast-enhanced three-dimensional fast spoiled gradient-echo renal MR imaging: evaluation of vascular and nonvascular disease. Radiographics. 2000;20(5):1341–52; discussion 53–4.Google Scholar
  51. 51.
    Pfluger T, Czekalla R, Hundt C, et al. MR angiography versus color Doppler sonography in the evaluation of renal vessels and the inferior vena cava in abdominal masses of pediatric patients. Ajr. 1999;173(1):103–8.PubMedGoogle Scholar
  52. 52.
    Laissy JP, Menegazzo D, Debray MP, et al. Renal carcinoma: diagnosis of venous invasion with Gd-enhanced MR venography. European radiology. 2000;10(7):1138–43.PubMedCrossRefGoogle Scholar
  53. 53.
    McFarland EG, Kaufman JA, Saini S, et al. Preoperative staging of cancer of the pancreas: value of MR angiography versus conventional angiography in detecting portal venous invasion. Ajr. 1996;166(1):37–43.PubMedGoogle Scholar
  54. 54.
    Morrin MM, Pedrosa I, Rofsky NM. Magnetic resonance imaging for disorders of liver vasculature. Top Magn Reson Imaging. 2002;13(3):177–90.PubMedCrossRefGoogle Scholar
  55. 55.
    Smedby O, Riesenfeld V, Karlson B, et al. Magnetic resonance angiography in the resectability assessment of suspected pancreatic tumours. European radiology. 1997;7(5):649–53.PubMedCrossRefGoogle Scholar
  56. 56.
    Finn JP, Zisk JH, Edelman RR, et al. Central venous occlusion: MR angiography. Radiology. 1993;187(1):245–51.PubMedGoogle Scholar
  57. 57.
    Tanju S, Sancak T, Dusunceli E, Yagmurlu B, Erden I, Sanlidilek U. Direct contrast-enhanced 3D MR venography evaluation of upper extremity deep venous system. Diagnostic and interventional radiology (Ankara, Turkey). 2006;12(2):74–9.Google Scholar
  58. 58.
    Thornton MJ, Ryan R, Varghese JC, Farrell MA, Lucey B, Lee MJ. A three-dimensional gadolinium-enhanced MR venography technique for imaging central veins. Ajr. 1999;173(4):999–1003.PubMedGoogle Scholar
  59. 59.
    Francois CJ, Tuite D, Deshpande V, Jerecic R, Weale P, Carr JC. Pulmonary vein imaging with unenhanced three-dimensional balanced steady-state free precession MR angiography: initial clinical evaluation. Radiology. 2009;250(3):932–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Amir H. Davarpanah
    • 1
  • Philip Hodnett
    • 2
  • Jeremy D. Collins
    • 3
  • James C. Carr
    • 4
  • Tim Scanlon
    • 5
  1. 1.Department of Radiology, Yale School of MedicineYale UniversityNew HavenUSA
  2. 2.Department of RadiologyNew York UniversityNew YorkUSA
  3. 3.Department of RadiologyNorthwestern Memorial Hospital and Northwestern University Feinberg School of MedicineChicagoUSA
  4. 4.Northwestern University, Feinberg School of MedicineChicagoUSA
  5. 5.Limerick regional HospitalDooradoyleIreland

Personalised recommendations