Noninvasive Imaging for Coronary Artery Disease

  • Reza Nezafat
  • Susie N. Hong
  • Peng Hu
  • Mehdi Hedjazi Moghari
  • Warren J. Manning


Coronary artery disease (CAD) is the largest killer of Americans. Approximately every 25 s, an American will have a coronary event, and approximately every minute, someone will die of one [1]. In 2010, an estimated 785,000 Americans will have a myocardial infarction, and ∼470,000 will have a recurrent infarction. An additional 195,000 silent first myocardial infarctions occur each year. Catheter-based, diagnostic invasive X-ray coronary angiography remains the clinical “gold standard” for the diagnosis of significant (≥50% diameter stenosis) CAD with over a million catheter-based X-ray coronary angiograms performed annually in the USA and higher volume in Europe. Although numerous noninvasive tests are available to help discriminate among those with and without significant angiographic disease, over 35% of patients referred for their initial elective catheter-based X-ray coronary angiography are found to have no significant stenosis. Even without significant CAD, these individuals remain exposed to the cost, inconvenience, and potential morbidity (vascular complications, exposure to both ionizing radiation and iodinated contrast) of X-ray angiography.


Cardiac Resynchronization Therapy Late Gadolinium Enhancement Steady State Free Precession Takayasu Arteritis Coronary Vein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–e215.PubMedCrossRefGoogle Scholar
  2. 2.
    Omran H, Schmidt H, Hackenbroch M, et al. Silent and apparent cerebral embolism after retrograde catheterisation of the aortic valve in valvular stenosis: a prospective, randomised study. Lancet. 2003;361:1241–1246.PubMedCrossRefGoogle Scholar
  3. 3.
    Gerber BL, Coche E, Pasquet A, et al. Coronary artery stenosis: direct comparison of four-section multi-detector row CT and 3D navigator MR imaging for detection – initial results. Radiology. 2005;234:98.PubMedCrossRefGoogle Scholar
  4. 4.
    Kefer J, Coche E, Legros G, et al. Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patients. J Am Coll Cardiol. 2005;46:92–100.PubMedCrossRefGoogle Scholar
  5. 5.
    Pouleur AC, le Polain de Waroux JB, Kefer J, Pasquet A, Vanoverschelde JL, Gerber BL. Direct comparison of whole-heart navigator-gated magnetic resonance coronary angiography and 40- and 64-slice multidetector row computed tomography to detect the coronary artery stenosis in patients scheduled for conventional coronary angiography. Circ Cardiovasc Imaging. 2008;1:114–121.PubMedCrossRefGoogle Scholar
  6. 6.
    Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol. 2005;46:552–557.PubMedCrossRefGoogle Scholar
  7. 7.
    Maintz D, Ozgun M, Hoffmeier A, et al. Whole-heart coronary magnetic resonance angiography: value for the detection of coronary artery stenoses in comparison to multislice computed tomography angiography. Acta Radiol. 2007;48:967–973.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu X, Zhao X, Huang J, et al. Comparison of 3D free-breathing coronary MR angiography and 64-MDCT angiography for detection of coronary stenosis in patients with high calcium scores. AJR Am J Roentgenol. 2007;189:1326–1332.PubMedCrossRefGoogle Scholar
  9. 9.
    Choi SI, George RT, Schuleri KH, Chun EJ, Lima JA, Lardo AC. Recent developments in wide-detector cardiac computed tomography. Int J Cardiovasc Imaging. 2009;25(Suppl 1):23–29.PubMedCrossRefGoogle Scholar
  10. 10.
    Hein PA, Romano VC, Lembcke A, May J, Rogalla P. Initial experience with a chest pain protocol using 320-slice volume MDCT. Eur Radiol. 2009;19:1148–1155.PubMedCrossRefGoogle Scholar
  11. 11.
    Hoe J, Toh KH. First experience with 320-row multidetector CT coronary angiography scanning with prospective electrocardiogram gating to reduce radiation dose. J Cardiovasc Comput Tomogr. 2009;3:257–261.PubMedCrossRefGoogle Scholar
  12. 12.
    Pasricha SS, Nandurkar D, Seneviratne SK, et al. Image quality of coronary 320-MDCT in patients with atrial fibrillation: initial experience. AJR Am J Roentgenol. 2009;193:1514–1521.PubMedCrossRefGoogle Scholar
  13. 13.
    Rixe J, Conradi G, Rolf A, et al. Radiation dose exposure of computed tomography coronary angiography: comparison of dual-source, 16-slice and 64-slice CT. Heart. 2009;95:1337–1342.PubMedCrossRefGoogle Scholar
  14. 14.
    Achenbach S, Anders K, Kalender WA. Dual-source cardiac ­computed tomography: image quality and dose considerations. Eur Radiol. 2008;18:1188–1198.PubMedCrossRefGoogle Scholar
  15. 15.
    Achenbach S, Marwan M, Ropers D, et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J. 2010;31:340–346.PubMedCrossRefGoogle Scholar
  16. 16.
    Achenbach S, Ropers D, Kuettner A, et al. Contrast-enhanced coronary artery visualization by dual-source computed tomography--initial experience. Eur J Radiol. 2006;57:331–335.PubMedCrossRefGoogle Scholar
  17. 17.
    Achenbach S, Ropers U, Kuettner A, et al. Randomized comparison of 64-slice single- and dual-source computed tomography coronary angiography for the detection of coronary artery disease. JACC Cardiovasc Imaging. 2008;1:177–186.PubMedCrossRefGoogle Scholar
  18. 18.
    Kuettner A, Gehann B, Spolnik J, et al. Strategies for dose-optimized imaging in pediatric cardiac dual source CT. Rofo. 2009;181:339–348.PubMedCrossRefGoogle Scholar
  19. 19.
    Lell M, Marwan M, Schepis T, et al. Prospectively ECG-triggered high-pitch spiral acquisition for coronary CT angiography using dual source CT: technique and initial experience. Eur Radiol. 2009;19:2576–2583.PubMedCrossRefGoogle Scholar
  20. 20.
    Marwan M, Ropers D, Pflederer T, Daniel WG, Achenbach S. Clinical characteristics of patients with obstructive coronary lesions in the absence of coronary calcification: an evaluation by coronary CT angiography. Heart. 2009;95:1056–1060.PubMedCrossRefGoogle Scholar
  21. 21.
    Pflederer T, Jakstat J, Marwan M, et al. Radiation exposure and image quality in staged low-dose protocols for coronary dual-source CT angiography: a randomized comparison. Eur Radiol. 2010;20:1197–1206.PubMedCrossRefGoogle Scholar
  22. 22.
    Schepis T, Marwan M, Pflederer T, et al. Quantification of noncalcified coronary atherosclerotic plaques with dual source computed tomography: comparison to intravascular ultrasound. Heart. 2010;96:610–615.PubMedCrossRefGoogle Scholar
  23. 23.
    Blankstein R, Shah A, Pale R, et al. Radiation dose and image quality of prospective triggering with dual-source cardiac computed tomography. Am J Cardiol. 2009;103:1168–1173.PubMedCrossRefGoogle Scholar
  24. 24.
    Kalra MK, Brady TJ. Current status and future directions in technical developments of cardiac computed tomography. J Cardiovasc Comput Tomogr. 2008;2:71–80.PubMedCrossRefGoogle Scholar
  25. 25.
    Kimbiris D, Iskandrian AS, Segal BL, Bemis CE. Anomalous aortic origin of coronary arteries. Circulation. 1978;58:606–615.PubMedGoogle Scholar
  26. 26.
    Davis JA, Cecchin F, Jones TK, Portman MA. Major coronary artery anomalies in a pediatric population: incidence and clinical importance. J Am Coll Cardiol. 2001;37:593–597.PubMedCrossRefGoogle Scholar
  27. 27.
    Maron BJ, Thompson PD, Ackerman MJ, et al. Recommendations and considerations related to preparticipation screening for cardiovascular abnormalities in competitive athletes: 2007 update: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism: endorsed by the American College of Cardiology Foundation. Circulation. 2007;115:1643–1455.PubMedCrossRefGoogle Scholar
  28. 28.
    Maron BJ, Carney KP, Lever HM, et al. Relationship of race to sudden cardiac death in competitive athletes with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2003;41:974–980.PubMedCrossRefGoogle Scholar
  29. 29.
    Corrado D, Basso C, Schiavon M, Thiene G. Screening for hypertrophic cardiomyopathy in young athletes. N Engl J Med. 1998;339:364–369.PubMedCrossRefGoogle Scholar
  30. 30.
    Eckart RE, Scoville SL, Campbell CL, et al. Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann Int Med. 2004;141:829–834.PubMedGoogle Scholar
  31. 31.
    Taylor AJ, Rogan KM, Virmani R. Sudden cardiac death associated with isolated congenital coronary artery anomalies. J Am Coll Cardiol. 1992;20:640–647.PubMedCrossRefGoogle Scholar
  32. 32.
    Taylor AJ, Byers JP, Cheitlin MD, Virmani R. Anomalous right or left coronary artery from the contralateral coronary sinus: “high-risk” abnormalities in the initial coronary artery course and heterogeneous clinical outcomes. Am Heart J. 1997;133:428–435.PubMedCrossRefGoogle Scholar
  33. 33.
    Cheitlin MD, De Castro CM, McAllister HA. Sudden death as a complication of anomalous left coronary origin from the anterior sinus of Valsalva, a not-so-minor congenital anomaly. Circulation. 1974;50:780–787.PubMedGoogle Scholar
  34. 34.
    McConnell MV, Ganz P, Selwyn AP, Li W, Edelman RR, Manning WJ. Identification of anomalous coronary arteries and their anatomic course by magnetic resonance coronary angiography. Circulation. 1995;92:3158–3162.PubMedGoogle Scholar
  35. 35.
    Post JC, van Rossum AC, Bronzwaer JG, et al. Magnetic resonance angiography of anomalous coronary arteries. A new gold standard for delineating the proximal course? Circulation. 1995;92:3163–3171.PubMedGoogle Scholar
  36. 36.
    Taylor AM, Thorne SA, Rubens MB, et al. Coronary artery imaging in grown up congenital heart disease: complementary role of magnetic resonance and x-ray coronary angiography. Circulation. 2000;101:1670–1678.PubMedGoogle Scholar
  37. 37.
    Bunce NH, Lorenz CH, Keegan J, et al. Coronary artery anomalies: assessment with free-breathing three-dimensional coronary MR angiography. Radiology. 2003;227:201–208.PubMedCrossRefGoogle Scholar
  38. 38.
    Hendel RC, Patel MR, Kramer CM, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006;48:1475–1497.PubMedCrossRefGoogle Scholar
  39. 39.
    Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Circulation. 2010;55:2614–2662.Google Scholar
  40. 40.
    Burns JC, Glode MP. Kawasaki syndrome. Lancet. 2004;364:533–544.PubMedCrossRefGoogle Scholar
  41. 41.
    Holman RC, Curns AT, Belay ED, Steiner CA, Schonberger LB. Kawasaki syndrome hospitalizations in the United States, 1997 and 2000. Pediatrics. 2003;112(3 Pt 1):495–501.PubMedCrossRefGoogle Scholar
  42. 42.
    Du ZD, Zhao D, Du J, et al. Epidemiologic study on Kawasaki disease in Beijing from 2000 through 2004. Pediatr Infect Dis J. 2007;26:449–451.PubMedCrossRefGoogle Scholar
  43. 43.
    Burns JC, Cayan DR, Tong G, et al. Seasonality and temporal clustering of Kawasaki syndrome. Epidemiology 2005;16:220–225.PubMedCrossRefGoogle Scholar
  44. 44.
    Akagi T, Rose V, Benson LN, Newman A, Freedom RM. Outcome of coronary artery aneurysms after Kawasaki disease. J Pediatr. 1992;121(5 Pt 1):689–694.PubMedGoogle Scholar
  45. 45.
    Greil GF, Stuber M, Botnar RM, et al. Coronary magnetic resonance angiography in adolescents and young adults with Kawasaki disease. Circulation. 2002;105:908–911.PubMedCrossRefGoogle Scholar
  46. 46.
    Mavrogeni S, Papadopoulos G, Douskou M, et al. Magnetic resonance angiography, function and viability evaluation in patients with Kawasaki disease. J Cardiovasc Magn Reson. 2006;8:493–498.PubMedCrossRefGoogle Scholar
  47. 47.
    Mavrogeni S, Papadopoulos G, Douskou M, et al. Magnetic resonance angiography is equivalent to X-ray coronary angiography for the evaluation of coronary arteries in Kawasaki disease. J Am Coll Cardiol. 2004;43(4):649–652.PubMedCrossRefGoogle Scholar
  48. 48.
    Mavrogeni SI, Manginas A, Papadakis E, et al. Correlation between magnetic resonance angiography (MRA) and quantitative coronary angiography (QCA) in ectatic coronary vessels. J Cardiovasc Magn Reson. 2004;6:17–23.PubMedCrossRefGoogle Scholar
  49. 49.
    Harrison A, Abolhoda A, Ahsan C. Cardiovascular complications in Behcet syndrome: acute myocardial infarction with late stent thrombosis and coronary, ventricular, and femoral pseudoaneurysms. Tex Heart Inst J. 2009;36:498–500.PubMedGoogle Scholar
  50. 50.
    Yakut ZI, Odev K. Pulmonary and cardiac involvement in Behcet disease: 3 case reports. Clin Appl Thromb Hemost. 2007;13(3):318–322.PubMedCrossRefGoogle Scholar
  51. 51.
    Kanaan S, Baker C, Starnes V. Resection of giant coronary artery aneurysms in a Takayasu’s arteritis patient. Ann Thorac Surg. 2008;85:1795–1796.PubMedCrossRefGoogle Scholar
  52. 52.
    Malik IS, Harare O, AL-Nahhas A, Beatt K, Mason J. Takayasu’s arteritis: management of left main stem stenosis. Heart. 2003;89:e9.PubMedCrossRefGoogle Scholar
  53. 53.
    Khalaf HH, Arafah MR, Refaat AA, Ibrahim MF. Coronary artery bypass grafting for Takayasu arteritis with severe coronary, carotid, subclavian, and renal artery involvement and subsequent pregnancy. Interact Cardiovasc Thorac Surg. 2006;5:153–155.PubMedCrossRefGoogle Scholar
  54. 54.
    White R, Caputo G, Mark A, Modin G, Higgins C. Coronary artery bypass graft patency: noninvasive evaluation with MR imaging. Radiology. 1987;164:681–686.PubMedGoogle Scholar
  55. 55.
    White R, Pflugfelder P, Lipton M, Higgins C. Coronary artery bypass grafts: evaluation of patency with cine MR imaging. AJR Am J Roentgenol. 1988;150:1271–1274.PubMedGoogle Scholar
  56. 56.
    Rubinstein R, Askenase A, Thickman D, Feldman M, Agarwal J, Helfant R. Magnetic resonance imaging to evaluate patency of aortocoronary bypass grafts. Circulation. 1987;76:786–791.PubMedCrossRefGoogle Scholar
  57. 57.
    Wintersperger B, Engelmann M, Von Smekal A, et al. Patency of coronary bypass grafts: assessment with breath-hold contrast-enhanced MR angiography--value of a non-electrocardiographically triggered technique. Radiology. 1998;208:345–351.PubMedGoogle Scholar
  58. 58.
    Engelmann M, Knez A, von Smekal A, et al. Non-invasive coronary bypass graft imaging after multivessel revascularisation. Int J Cardiol. 2000;76:65–74.PubMedCrossRefGoogle Scholar
  59. 59.
    Vrachliotis T, Bis K, Aliabadi D, Shetty A, Safian R, Simonetti O. Contrast-enhanced breath-hold MR angiography for evaluating patency of coronary artery bypass grafts. AJR Am J Roentgenol. 1997;168:1073–1080.PubMedGoogle Scholar
  60. 60.
    Klein C, Nagel E, Gebker R, et al. Magnetic resonance adenosine perfusion imaging in patients after coronary artery bypass graft surgery. J Am Coll Cardiol Img. 2009;2:437–445.Google Scholar
  61. 61.
    Manning WJ, Edelman RR. Magnetic resonance coronary angiography. Magn Reson Q. 1993;9:131–151.PubMedGoogle Scholar
  62. 62.
    Manning WJ, Li W, Edelman RR. A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med. 1993;328:828–832.PubMedCrossRefGoogle Scholar
  63. 63.
    Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med. 2001;345:1863–1869.PubMedCrossRefGoogle Scholar
  64. 64.
    Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ. Breathhold three-dimensional coronary magnetic resonance angiography using real-time navigator technology. J Cardiovasc Magn Reson. 1999;1:233–238.PubMedCrossRefGoogle Scholar
  65. 65.
    Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ. Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology. 1999;212:579–587.PubMedGoogle Scholar
  66. 66.
    Stuber M, Botnar RM, Danias PG, et al. Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography. J Am Coll Cardiol. 1999;34:524–531.PubMedCrossRefGoogle Scholar
  67. 67.
    Bhat H, Zuehlsdorff S, Bi X, Li D. Whole-heart contrast-enhanced coronary magnetic resonance angiography using gradient echo interleaved EPI. Magn Reson Med. 2009;61:1388–1395.PubMedCrossRefGoogle Scholar
  68. 68.
    Bi X, Carr JC, Li D. Whole-heart coronary magnetic resonance angiography at 3 Tesla in 5 minutes with slow infusion of Gd-BOPTA, a high-relaxivity clinical contrast agent. Magn Reson Med. 2007;58:1–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Bi X, Deshpande V, Carr J, Li D. Coronary artery magnetic resonance angiography (MRA): a comparison between the whole-heart and volume-targeted methods using a T2-prepared SSFP sequence. J Cardiovasc Magn Reson. 2006;8:703–707.PubMedCrossRefGoogle Scholar
  70. 70.
    Kim YJ, Seo JS, Choi BW, Choe KO, Jang Y, Ko YG. Feasibility and diagnostic accuracy of whole heart coronary MR angiography using free-breathing 3D balanced turbo-field-echo with SENSE and the half-fourier acquisition technique. Korean J Radiol. 2006;7:235–242.PubMedCrossRefGoogle Scholar
  71. 71.
    Lai P, Bi X, Jerecic R, Li D. A respiratory self-gating technique with 3D-translation compensation for free-breathing whole-heart coronary MRA. Magn Reson Med. 2009;62:731–738.PubMedCrossRefGoogle Scholar
  72. 72.
    Lai P, Larson AC, Bi X, Jerecic R, Li D. A dual-projection respiratory self-gating technique for whole-heart coronary MRA. J Magn Reson Imaging. 2008;28:612–620.PubMedCrossRefGoogle Scholar
  73. 73.
    Liu X, Bi X, Huang J, Jerecic R, Carr J, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T: comparison with steady-state free precession technique at 1.5 T. Invest Radiol. 2008;43:663–668.PubMedCrossRefGoogle Scholar
  74. 74.
    Nehrke K, Bornert P, Mazurkewitz P, Winkelmann R, Grasslin I. Free-breathing whole-heart coronary MR angiography on a clinical scanner in four minutes. J Magn Reson Imaging. 2006;23:752–756.PubMedCrossRefGoogle Scholar
  75. 75.
    Niendorf T, Hardy CJ, Giaquinto RO, et al. Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med. 2006;56:167–176.PubMedCrossRefGoogle Scholar
  76. 76.
    Okada T, Kanao S, Ninomiya A, et al. Whole-heart coronary magnetic resonance angiography with parallel imaging: comparison of acceleration in one-dimension vs. two-dimensions. Eur J Radiol. 2009;71:486–491.PubMedCrossRefGoogle Scholar
  77. 77.
    Sakuma H, Ichikawa Y, Chino S, Hirano T, Makino K, Takeda K. Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol. 2006;48:1946–1950.PubMedCrossRefGoogle Scholar
  78. 78.
    Sakuma H, Ichikawa Y, Suzawa N, et al. Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology. 2005;237:316–321.PubMedCrossRefGoogle Scholar
  79. 79.
    Stehning C, Bornert P, Nehrke K, Eggers H, Stuber M. Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med. 2005;54:476–480.PubMedCrossRefGoogle Scholar
  80. 80.
    Weber OM, Martin AJ, Higgins CB. Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med. 2003;50:1223–1228.PubMedCrossRefGoogle Scholar
  81. 81.
    Deshpande VS, Shea SM, Laub G, Simonetti OP, Finn JP, Li D. 3D magnetization-prepared true-FISP: a new technique for imaging coronary arteries. Magn Reson Med. 2001;46:494–502.PubMedCrossRefGoogle Scholar
  82. 82.
    Ozgun M, Hoffmeier A, Kouwenhoven M, et al. (2005) Comparison of 3D segmented gradient-echo and steady-state free precession coronary MRI sequences in patients with coronary artery disease. AJR Am. J Roentgenol. 185:103–109.PubMedGoogle Scholar
  83. 83.
    Maintz D, Aepfelbacher FC, Kissinger KV, et al. Coronary MR angiography: comparison of quantitative and qualitative data from four techniques. AJR Am J Roentgenol. 2004;182:515–521.PubMedGoogle Scholar
  84. 84.
    Nezafat R, Herzka D, Stehning C, Peters DC, Nehrke K, Manning WJ. Inflow quantification in three-dimensional cardiovascular MR imaging. J Magn Reson Imaging. 2008;28:1273–1279.PubMedCrossRefGoogle Scholar
  85. 85.
    Scott A, Keegan J, Firmin D. Motion in cardiovascular MR imaging. Radiology. 2009;250:331–351.PubMedCrossRefGoogle Scholar
  86. 86.
    Lu B, Mao S, Zhuang N, et al. Coronary artery motion during the cardiac cycle and optimal ECG triggering for coronary artery imaging. Invest Radiol. 2001;36:250–256.PubMedCrossRefGoogle Scholar
  87. 87.
    Hofman M, Wickline S, Lorenz C. Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. J Magn Res Imaging. 1998;8:568–576.CrossRefGoogle Scholar
  88. 88.
    Wang Y, Vidan E, Bergman G. Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology. 1999;213:751–758.PubMedGoogle Scholar
  89. 89.
    Ehman R, Felmlee J. Adaptive technique for high-definition MR imaging of moving structures. Radiology. 1989;173:255–263.PubMedGoogle Scholar
  90. 90.
    Wang Y, Rossman P, Grimm R, Riederer S, Ehman R. Navigator-echo-based real-time respiratory gating and triggering for reduction of respiration effects in three-dimensional coronary MR angiography. Radiology. 1996;198:55–60.PubMedGoogle Scholar
  91. 91.
    McConnell M, Khasgiwala V, Savord B, et al. Comparison of respiratory suppression methods and navigator locations for MR coronary angiography. AJR Am J Roentgenol. 1997;168:1369–1375.PubMedGoogle Scholar
  92. 92.
    Taylor A, Jhooti P, Wiesmann F, Keegan J, Firmin D, Pennell D. MR navigator-echo monitoring of temporal changes in diaphragm position: implications for MR coronary angiography. J Magn Res Imaging. 1997;7:629–636.CrossRefGoogle Scholar
  93. 93.
    Huber A, Nikolaou K, Gonschior P, Knez A, Stehling M, Reiser M. Navigator echo-based respiratory gating for three-dimensional MR coronary angiography: results from healthy volunteers and patients with proximal coronary artery stenoses. AJR Am J Roentgenol. 1999;173:95–101.PubMedGoogle Scholar
  94. 94.
    Wang Y, Riederer S, Ehman R. Respiratory motion of the heart: kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med. 1995;33:713–719.PubMedCrossRefGoogle Scholar
  95. 95.
    Danias PG, McConnell MV, Khasgiwala VC, Chuang ML, Edelman RR, Manning WJ. Prospective navigator correction of image position for coronary MR angiography. Radiology. 1997;203:733–736.PubMedGoogle Scholar
  96. 96.
    Danias PG, Stuber M, Botnar RM, Kissinger KV, Edelman RR, Manning WJ. Relationship between motion of coronary arteries and diaphragm during free breathing: lessons from real-time MR imaging. AJR Am J Roentgenol. 1999;172:1061–1065.PubMedGoogle Scholar
  97. 97.
    Nezafat R, Stehning C, Gharib AM, et al. Improved spatial-temporal resolution MR coronary blood flow imaging at 3 T. J Cardiovasc Magn Res. 2005;7:199.Google Scholar
  98. 98.
    Nehrke K, Bornert P. Prospective correction of affine motion for arbitrary MR sequences on a clinical scanner. Magn Reson Med. 2005;54(5).Google Scholar
  99. 99.
    Lai P, Larson AC, Park J, Carr JC, Li D. Respiratory self-gated four-dimensional coronary MR angiography: a feasibility study. Magn Reson Med. 2008;59:1378–1385.PubMedCrossRefGoogle Scholar
  100. 100.
    Larson AC, Kellman P, Arai A, et al. Preliminary investigation of respiratory self-gating for free-breathing segmented cine MRI. Magn Reson Med. 2005;53:159–168.PubMedCrossRefGoogle Scholar
  101. 101.
    Park J, Larson AC, Zhang Q, Simonetti O, Li D. 4D radial coronary artery imaging within a single breath-hold: cine angiography with phase-sensitive fat suppression (CAPS). Magn Reson Med. 2005;54:833–840.PubMedCrossRefGoogle Scholar
  102. 102.
    Keegan J, Gatehouse P, Yang G, Firmin D. Non-model based correction of respiratory motion using beat-to-beat 3d spiral fat-selective imaging. J Magn Reson Imaging. 2007;26:624–629.PubMedCrossRefGoogle Scholar
  103. 103.
    Nguyen T, Spincemaille P, Cham M, Weinsaft J, Prince M, Wang Y. Free-breathing 3D steady-state free precession coronary magnetic resonance angiography: comparison of diaphragm and cardiac fat navigators. J Magn Reson Imaging. 2008;28:509–514.PubMedCrossRefGoogle Scholar
  104. 104.
    Nguyen T, Spincemaille P, Prince M, Wang Y. 2128 Free-breathing steady-state free precession 3D coronary MRA: comparison of diaphragm and cardiac fat navigator techniques. J Cardiovasc Magn Res. 2008;10(Suppl 1):A397.CrossRefGoogle Scholar
  105. 105.
    Nguyen T, Spincemaille P, Cham M, Weinsaft J, Prince M, Wang Y. Free-breathing 3-dimensional steady-state free precession coronary magnetic resonance angiography: comparison of four navigator gating techniques. Magn Res Imaging. 2009;27:807–814.CrossRefGoogle Scholar
  106. 106.
    Uribe S, Muthurangu V, Boubertakh R, et al. Whole-heart cine MRI using real-time respiratory self-gating. Magn Reson Med. 2007;57:606–613.PubMedCrossRefGoogle Scholar
  107. 107.
    Brau AC, Brittain JH. Generalized self-navigated motion detection technique: Preliminary investigation in abdominal imaging. Magn Reson Med. 2006;55:263–270.PubMedCrossRefGoogle Scholar
  108. 108.
    Nehrke K, Bornert P, Manke D, Bock JC. Free-breathing cardiac MR imaging: study of implications of respiratory motion--initial results. Radiology. 2001;220:810–815.PubMedCrossRefGoogle Scholar
  109. 109.
    Gurney PT, Hargreaves BA, Nishimura DG. Design and analysis of a practical 3D cones trajectory. Magn Reson Med. 2006;55:575–582.PubMedCrossRefGoogle Scholar
  110. 110.
    Santos JM, Cunningham CH, Lustig M, et al. Single breath-hold whole-heart MRA using variable-density spirals at 3 T. Magn Reson Med. 2006;55:371–379.PubMedCrossRefGoogle Scholar
  111. 111.
    Sussman M, Stainsby J, Robert N, Merchant N, Wright G. Variable-density adaptive imaging for high-resolution coronary artery MRI. Magn Reson Med. 2002;48:753–764.PubMedCrossRefGoogle Scholar
  112. 112.
    Brittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG. Coronary angiography with magnetization-prepared T2 contrast. Magn Reson Med. 1995;33:689–696.PubMedCrossRefGoogle Scholar
  113. 113.
    Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ. Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation. 1999;99:3139–3148.PubMedGoogle Scholar
  114. 114.
    Nezafat R, Derbyshire J, Ouwerkerk R, Stuber M, McVeigh E. Spectrally selective B1 insensitive T2 preparation sequence for 3 T imaging. Proceedings of 14th Scientific Meeting, International Society for Magnetic Resonance in Medicine. 2006:596.Google Scholar
  115. 115.
    Nezafat R, Ouwerkerk R, Derbyshire AJ, Stuber M, McVeigh ER. Spectrally selective B1-insensitive T2 magnetization preparation sequence. Magn Reson Med. 2009;61(6):1326–1335.PubMedCrossRefGoogle Scholar
  116. 116.
    Li D, Paschal CB, Haacke EM, Adler LP. Coronary arteries: three-dimensional MR imaging with fat saturation and magnetization transfer contrast. Radiology. 1993;187:401–406.PubMedGoogle Scholar
  117. 117.
    Nezafat R, Han Y, Peters DC, et al. Coronary magnetic resonance vein imaging: imaging contrast, sequence, and timing. Magn Reson Med. 2007;58:1196–1206.PubMedCrossRefGoogle Scholar
  118. 118.
    Stuber M, Botnar RM, Fischer SE, et al. Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med. 2002;48:425–429.PubMedCrossRefGoogle Scholar
  119. 119.
    Schar M, Kozerke S, Fischer Se Boesiger P. Cardiac SSFP imaging at 3 Tesla. Magn Reson Med. 2004;51:799–806.PubMedCrossRefGoogle Scholar
  120. 120.
    Nezafat R, Stuber M, Ouwerkerk R, Gharib AM, Desai MY, Pettigrew RI. B1-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T. Magn Reson Med. 2006;55:858–864.PubMedCrossRefGoogle Scholar
  121. 121.
    van Elderen SG, Versluis MJ, Webb AG, et al. Initial results on in vivo human coronary MR angiography at 7 T. Magn Reson Med. 2009;62:1379–1384.PubMedCrossRefGoogle Scholar
  122. 122.
    Terashima M, Meyer CH, Keeffe BG, et al. Noninvasive assessment of coronary vasodilation using magnetic resonance angiography. J Am Coll Cardiol. 2005;45:104–110.PubMedCrossRefGoogle Scholar
  123. 123.
    Hu P, Chuang ML, Ngo LH, et al. Coronary MR imaging: effect of timing and dose of isosorbide dinitrate administration. Radiology. 2010;254:401–409.PubMedCrossRefGoogle Scholar
  124. 124.
    Zheng J, Bae KT, Woodard PK, Haacke EM, Li D. Efficacy of slow infusion of gadolinium contrast agent in three-dimensional MR coronary artery imaging. J Magn Reson Imaging. Nov 1999;10:800–805.PubMedCrossRefGoogle Scholar
  125. 125.
    Goldfarb JW, Edelman RR. Coronary arteries: breath-hold, gadolinium-enhanced, three-dimensional MR angiography. Radiology. 1998;206:830–834.PubMedGoogle Scholar
  126. 126.
    Knuesel PR, Nanz D, Wolfensberger U, et al. Multislice breath-hold spiral magnetic resonance coronary angiography in patients with coronary artery disease: effect of intravascular contrast medium. J Magn Reson Imaging. 2002;16:660–667.PubMedCrossRefGoogle Scholar
  127. 127.
    Herborn CU, Barkhausen J, Paetsch I, et al. Coronary arteries: contrast-enhanced MR imaging with SH L 643A--experience in 12 volunteers. Radiology. 2003;229:217–223.PubMedCrossRefGoogle Scholar
  128. 128.
    Prompona M, Cyran C, Nikolaou K, Bauner K, Reiser M, Huber A. Contrast-enhanced whole-heart MR coronary angiography at 3.0 T using the intravascular contrast agent gadofosveset. Invest Radiol. 2009;44:369–374.PubMedCrossRefGoogle Scholar
  129. 129.
    Kelle S, Thouet T, Tangcharoen T, et al. Whole-heart coronary magnetic resonance angiography with MS-325 (Gadofosveset). Med Sci Monit. 2007;13:CR469-CR474.Google Scholar
  130. 130.
    de Haen C, Anelli PL, Lorusso V, et al. Gadocoletic acid trisodium salt (b22956/1): a new blood pool magnetic resonance contrast agent with application in coronary angiography. Invest Radiol. 2006;41:279–291.PubMedCrossRefGoogle Scholar
  131. 131.
    Tang L, Merkle N, Schar M, et al. Volume-targeted and whole-heart coronary magnetic resonance angiography using an intravascular contrast agent. J Magn Reson Imaging. 2009;30:1191–1196.PubMedCrossRefGoogle Scholar
  132. 132.
    Yang Q, Li K, Liu X, et al. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol. 2009;54:69–76.PubMedCrossRefGoogle Scholar
  133. 133.
    Hu P, Chan J, Smink J, et al. Contrast-enhanced whole-heart coronary MRI with a bolus infusion of gadobenate dimeglumine at 1.5 T. Magn Reson Imaging. 2011;66:392–398.Google Scholar
  134. 134.
    Bunce NH, Jhooti P, Keegan J, et al. Evaluation of free-breathing three-dimensional magnetic resonance coronary angiography with hybrid ordered phase encoding (HOPE) for the detection of proximal coronary artery stenosis. J Magn Reson Imaging. 2001;14:677–684.PubMedCrossRefGoogle Scholar
  135. 135.
    Sommer T, Hofer U, Hackenbroch M, et al. [Submillimeter 3D coronary MR angiography with real-time navigator correction in 107 patients with suspected coronary artery disease]. Rofo. 2002;174:459–466.PubMedCrossRefGoogle Scholar
  136. 136.
    Bogaert J, Kuzo R, Dymarkowski S, Beckers R, Piessens J, Rademakers FE. Coronary artery imaging with real-time navigator three-dimensional turbo-field-echo MR coronary angiography: initial experience. Radiology. 2003;226:707–716.PubMedCrossRefGoogle Scholar
  137. 137.
    Jahnke C, Paetsch I, Schnackenburg B, et al. Coronary MR angiography with steady-state free precession: individually adapted breath-hold technique versus free-breathing technique. Radiology. 2004;232:669–676.PubMedCrossRefGoogle Scholar
  138. 138.
    Kusano KF, Morita H, Fujimoto Y, Hirose E, Ohe T. Catheter ablation of an epicardial accessory pathway via the middle cardiac vein guided by monophasic action potential recordings. Europace. 2001;3:164–167.PubMedCrossRefGoogle Scholar
  139. 139.
    Haissaguerre M, Gaita F, Fischer B, Egloff P, Lemetayer P, Warin JF. Radiofrequency catheter ablation of left lateral accessory pathways via the coronary sinus. Circulation. 1992;86:1464–1468.PubMedGoogle Scholar
  140. 140.
    Kar S, Nordlander R. Coronary veins: an alternate route to ischemic myocardium. Heart Lung. 1992;21:148–157.PubMedGoogle Scholar
  141. 141.
    Stellbrink C, Diem B, Schauerte P, Ziegert K, Hanrath P. Transcoronary venous radiofrequency catheter ablation of ­ventricular tachycardia. J Cardiovasc Electrophysiol. 1997;8:916–921.PubMedCrossRefGoogle Scholar
  142. 142.
    Butter C, Meisel E, Engelmann L, et al. Human experience with transvenous biventricular defibrillation using an electrode in a left ventricular vein. Pacing Clin Electrophysiol. 2002;25:324–331.PubMedCrossRefGoogle Scholar
  143. 143.
    Thompson CA, Nasseri BA, Makower J, et al. Percutaneous transvenous cellular cardiomyoplasty. A novel nonsurgical approach for myocardial cell transplantation. J Am Coll Cardiol. 2003;41:1964–1971.PubMedCrossRefGoogle Scholar
  144. 144.
    Oesterle SN, Reifart N, Hauptmann E, Hayase M, Yeung AC. Percutaneous in situ coronary venous arterialization: report of the first human catheter-based coronary artery bypass. Circulation. 2001;103:2539–2543.PubMedGoogle Scholar
  145. 145.
    de Paola AA, Melo WD, Tavora MZ, Martinez EE. Angiographic and electrophysiological substrates for ventricular tachycardia mapping through the coronary veins. Heart. 1998;79:59–63.PubMedGoogle Scholar
  146. 146.
    Singh JP, Houser S, Heist EK, Ruskin JN. The coronary venous anatomy: a segmental approach to aid cardiac resynchronization therapy. J Am Coll Cardiol. 2005;46:68–74.PubMedCrossRefGoogle Scholar
  147. 147.
    Bax JJ, Abraham T, Barold SS, et al. Cardiac resynchronization therapy: Part 1--issues before device implantation. J Am Coll Cardiol. 2005;46:2153–2167.PubMedCrossRefGoogle Scholar
  148. 148.
    Bax JJ, Abraham T, Barold SS, et al. Cardiac resynchronization therapy: Part 2--issues during and after device implantation and unresolved questions. J Am Coll Cardiol. 2005;46:2168–2182.PubMedCrossRefGoogle Scholar
  149. 149.
    Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346:1845–1853.PubMedCrossRefGoogle Scholar
  150. 150.
    Nezafat R, Han Y, Peters DC, et al. Magnetic resonance coronary vein imaging: sequence, contrast and timing. Magn Reson Med. 2007;58:1196–1206.PubMedCrossRefGoogle Scholar
  151. 151.
    Stoeck CT, Han Y, Peters DC, et al. Whole heart magnetization-prepared steady-state free precession coronary vein MRI. J Magn Reson Imaging. 2009;29:1293–1299.PubMedCrossRefGoogle Scholar
  152. 152.
    Rasche V, Binner L, Cavagna F, et al. Whole-heart coronary vein imaging: a comparison between non-contrast-agent-and contrast-agent-enhanced visualization of the coronary venous system. Magn Reson Med. 2007;57:1019–1026.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Reza Nezafat
    • 1
  • Susie N. Hong
    • 2
  • Peng Hu
    • 3
  • Mehdi Hedjazi Moghari
    • 2
  • Warren J. Manning
    • 2
    • 4
  1. 1.Department of MedicineBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA
  2. 2.Cardiovascular Division, Department of MedicineBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA
  3. 3.Department of RadiologyRonald Reagan Medical CenterLos AngelesUSA
  4. 4.Department of RadiologyBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA

Personalised recommendations