Renal Vascular Diseases

  • Tim Leiner
  • Henrik Michaely


Renal artery stenosis (RAS) is a relatively common and well-known condition and potentially curable cause of secondary hypertension. The main clinical syndromes associated with RAS are renovascular hypertension (RVH), ischemic nephropathy, proteinuria, and flash pulmonary edema. Diagnosis and management of RAS remains an important clinical problem especially considering that the prevalence of RAS is increasing, mainly due to greater awareness of the long-term deleterious consequences of untreated RVH and the increase in patients with diabetes mellitus.


Contrast Agent Renal Artery Renal Artery Stenosis Arterial Spin Label Nephrogenic Systemic Fibrosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Safian RD, Textor SC. Renal-artery stenosis. N Engl J Med. 2001;344:431–442.PubMedCrossRefGoogle Scholar
  2. 2.
    Textor SC, Wilcox CS. Renal artery stenosis: a common, treatable cause of renal failure? Annu Rev Med. 2001;52:421–442.PubMedCrossRefGoogle Scholar
  3. 3.
    Crook ED. The role of hypertension, obesity, and diabetes in causing renal vascular disease. Am J Med Sci. 1999;317:183–188.PubMedCrossRefGoogle Scholar
  4. 4.
    Cheung CM, Hegarty J, Kalra PA. Dilemmas in the management of renal artery stenosis. Br Med Bull. 2005;73–74:35–55.PubMedCrossRefGoogle Scholar
  5. 5.
    Ives NJ, Wheatley K, Stowe RL, et al. Continuing uncertainty about the value of percutaneous revascularization in atherosclerotic renovascular disease: a meta-analysis of randomized trials. Nephrol Dial Transplant. 2003;18:298–304.PubMedCrossRefGoogle Scholar
  6. 6.
    Plouin PF, Chatellier G, Darne B, Raynaud A. Blood pressure outcome of angioplasty in atherosclerotic renal artery stenosis: a randomized trial. Essai Multicentrique Medicaments vs Angioplastie (EMMA) Study Group. Hypertension. 1998;31:823–829.PubMedGoogle Scholar
  7. 7.
    van de Ven PJ, Kaatee R, Beutler JJ, et al. Arterial stenting and balloon angioplasty in ostial atherosclerotic renovascular disease: a randomised trial. Lancet. 1999;353:282–286.PubMedCrossRefGoogle Scholar
  8. 8.
    van Jaarsveld BC, Krijnen P, Pieterman H, et al. The effect of ­balloon angioplasty on hypertension in atherosclerotic renal-artery stenosis. Dutch Renal Artery Stenosis Intervention Cooperative Study Group. N Engl J Med. 2000;342:1007–1014.PubMedCrossRefGoogle Scholar
  9. 9.
    Webster J, Marshall F, Abdalla M, et al. Randomised comparison of percutaneous angioplasty vs continued medical therapy for hypertensive patients with atheromatous renal artery stenosis. Scottish and Newcastle Renal Artery Stenosis Collaborative Group. J Hum Hypertens. 1998;12:329–335.Google Scholar
  10. 10.
    Leiner T. Magnetic resonance angiography of abdominal and lower extremity vasculature. Top Magn Reson Imaging. 2005;16:21–66.PubMedCrossRefGoogle Scholar
  11. 11.
    Michaely HJ, Sourbron S, Dietrich O, Attenberger U, Reiser MF, Schoenberg SO. Functional renal MR imaging: an overview. Abdom Imaging. 2006;32:758–771.Google Scholar
  12. 12.
    Detection, evaluation, and treatment of renovascular hypertension. Final report. Working Group on Renovascular Hypertension. Arch Intern Med. 1987;147:820–829.Google Scholar
  13. 13.
    Slovut DP, Olin JW. Fibromuscular dysplasia. N Engl J Med. 2004;350:1862–1871.PubMedCrossRefGoogle Scholar
  14. 14.
    Schreij G, de Haan MW, Oei TK, Koster D, de Leeuw PW. Interpretation of renal angiography by radiologists. J Hypertens. 1999;17:1737–1741.PubMedCrossRefGoogle Scholar
  15. 15.
    Kaufman JA. Renal Arteries. In: Kaufman JA, Lee MJ, eds. Vascular and Interventional Radiolgy. The Requisites. Philadelphia: Mosby; 2004:323–349.Google Scholar
  16. 16.
    Vasbinder GB, Nelemans PJ, Kessels AG, et al. Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Ann Intern Med. 2004;141:674–682; discussion 682.Google Scholar
  17. 17.
    Bude RO, Forauer AR, Caoili EM, Nghiem HV. Is it necessary to study accessory arteries when screening the renal arteries for renovascular hypertension? Radiology. 2003;226:411–416.PubMedCrossRefGoogle Scholar
  18. 18.
    Vasbinder GB, Nelemans PJ, Kessels AG, Kroon AA, de Leeuw PW, van Engelshoven JM. Diagnostic tests for renal artery stenosis in patients suspected of having renovascular hypertension: a meta-analysis. Ann Intern Med. 2001;135:401–411.PubMedGoogle Scholar
  19. 19.
    Hoogeveen RM, Bakker CJ, Viergever MA. Limits to the accuracy of vessel diameter measurement in MR angiography. J Magn Reson Imaging. 1998;8:1228–1235.PubMedCrossRefGoogle Scholar
  20. 20.
    Schoenberg SO, Prince MR, Knopp MV, Allenberg JR. Renal MR angiography. Magn Reson Imaging Clin N Am. 1998;6:351–370.PubMedGoogle Scholar
  21. 21.
    Michaely HJ, Kramer H, Oesingmann N, et al. Intraindividual Comparison of MR-Renal Perfusion Imaging at 1.5 T and 3.0 T. Invest Radiol. 2007;42:406–411.PubMedCrossRefGoogle Scholar
  22. 22.
    Vasbinder GB, Maki JH, Nijenhuis RJ, et al. Motion of the distal renal artery during three-dimensional contrast-enhanced breath-hold MRA. J Magn Reson Imaging. 2002;16:685–696.PubMedCrossRefGoogle Scholar
  23. 23.
    Maki JH, Chenevert TL, Prince MR. Three-dimensional contrast-enhanced MR angiography. Top Magn Reson Imaging. 1996;8:322–344.PubMedCrossRefGoogle Scholar
  24. 24.
    Weiger M, Pruessmann KP, Kassner A, et al. Contrast-enhanced 3D MRA using SENSE. J Magn Reson Imaging. 2000;12:671–677.PubMedCrossRefGoogle Scholar
  25. 25.
    Bakker J, Beek FJ, Beutler JJ, et al. Renal artery stenosis and accessory renal arteries: accuracy of detection and visualization with gadolinium-enhanced breath-hold MR angiography. Radiology. 1998;207:497–504.PubMedGoogle Scholar
  26. 26.
    Shetty AN, Bis KG, Kirsch M, Weintraub J, Laub G. Contrast-enhanced breath-hold three-dimensional magnetic resonance angiography in the evaluation of renal arteries: optimization of technique and pitfalls. J Magn Reson Imaging. 2000;12:912–923.PubMedCrossRefGoogle Scholar
  27. 27.
    Willoteaux S, Faivre-Pierret M, Moranne O, et al. Fibromuscular dysplasia of the main renal arteries: comparison of contrast-enhanced MR angiography with digital subtraction angiography. Radiology. 2006;241:922–929.PubMedCrossRefGoogle Scholar
  28. 28.
    Soulez G, Pasowicz M, Benea G, et al. Renal artery stenosis evaluation: diagnostic performance of gadobenate dimeglumine-enhanced MR angiography – comparison with DSA. Radiology. 2008;247:273–285.PubMedCrossRefGoogle Scholar
  29. 29.
    Garovic VD, Achauer MA, Kittner T, Horak D, Sheng R, Stanson AW. Comparison of gadodiamide-enhanced MR angiography to intraarterial digital subtraction angiography for evaluation of renal artery stenosis: results of a phase III multicenter trial. J Magn Reson Imaging. 2010;31:390–397.PubMedCrossRefGoogle Scholar
  30. 30.
    Wilson GJ, Maki JH. Non-contrast-enhanced MR imaging of renal artery stenosis at 1.5 tesla. Magn Reson Imaging Clin N Am. 2009;17:13–27.Google Scholar
  31. 31.
    Spuentrup E, Manning WJ, Bornert P, Kissinger KV, Botnar RM, Stuber M. Renal arteries: navigator-gated balanced fast field-echo projection MR angiography with aortic spin labeling: initial experience. Radiology. 2002;225:589–596.PubMedCrossRefGoogle Scholar
  32. 32.
    Fenchel M, Martirosian P, Langanke J, et al. Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology. 2006;238:1013–1021.PubMedCrossRefGoogle Scholar
  33. 33.
    Katoh M, Buecker A, Stuber M, Gunther RW, Spuentrup E. Free-breathing renal MR angiography with steady-state free-precession (SSFP) and slab-selective spin inversion: initial results. Kidney Int. 2004;66:1272–1278.PubMedCrossRefGoogle Scholar
  34. 34.
    Katoh M, Spuentrup E, Stuber M, Hoogeveen R, Gunther RW, Buecker A. Free-breathing renal magnetic resonance angiography with steady-state free-precession and slab-selective spin inversion combined with radial k-space sampling and water-selective excitation. Magn Reson Med. 2005;53:1228–1233.PubMedCrossRefGoogle Scholar
  35. 35.
    Wyttenbach R, Braghetti A, Wyss M, et al. Renal artery assessment with nonenhanced steady-state free precession versus contrast-enhanced MR angiography. Radiology. 2007;245:186–195.PubMedCrossRefGoogle Scholar
  36. 36.
    Coenegrachts KL, Hoogeveen RM, Vaninbroukx JA, et al. High-spatial-resolution 3D balanced turbo field-echo technique for MR angiography of the renal arteries: initial experience. Radiology. 2004;231:237–242.PubMedCrossRefGoogle Scholar
  37. 37.
    Herborn CU, Watkins DM, Runge VM, Gendron JM, Montgomery ML, Naul LG. Renal arteries: comparison of steady-state free precession MR angiography and contrast-enhanced MR angiography. Radiology. 2006;239:263–268.PubMedCrossRefGoogle Scholar
  38. 38.
    Maki JH, Wilson GJ, Eubank WB, Glickerman DJ, Millan JA, Hoogeveen RM. Navigator-gated MR angiography of the renal arteries: a potential screening tool for renal artery stenosis. AJR Am J Roentgenol. 2007;188:W540-546.PubMedCrossRefGoogle Scholar
  39. 39.
    Maki JH, Wilson GJ, Eubank WB, Glickerman DJ, Pipavath S, Hoogeveen RM. Steady-state free precession MRA of the renal arteries: breath-hold and navigator-gated techniques vs. CE-MRA. J Magn Reson Imaging. 2007;26:966–973.PubMedCrossRefGoogle Scholar
  40. 40.
    Glockner JF, Takahashi N, Kawashima A, et al. Non-contrast renal artery MRA using an inflow inversion recovery steady state free precession technique (Inhance): comparison with 3D contrast-enhanced MRA. J Magn Reson Imaging. 2010;31:1411–1418.PubMedCrossRefGoogle Scholar
  41. 41.
    Jun-ling X, Da-Peng S, Yong-Li L, Ji-liang Z, Shao-cheng Z, Hao S. Non-enhanced MR angiography of renal artery using inflow-sensitive inversion recovery pulse sequence: A prospective comparison with enhanced CT angiography. Eur J Radiol. 80:e57–63.Google Scholar
  42. 42.
    Schoenberg SO, Rieger J, Weber CH, et al. High-spatial-resolution MR angiography of renal arteries with integrated parallel acquisitions: comparison with digital subtraction angiography and US. Radiology. 2005;235:687–698.PubMedCrossRefGoogle Scholar
  43. 43.
    van Assen HC, Vasbinder GB, Stoel BC, Putter H, van Engelshoven JM, Reiber JH. Quantitative assessment of the morphology of renal arteries from X-ray images: quantitative vascular analysis. Invest Radiol. 2004;39:365–373.PubMedCrossRefGoogle Scholar
  44. 44.
    Marckmann P. Nephrogenic systemic fibrosis: epidemiology update. Curr Opin Nephrol Hypertens. 2008;17:315–319.PubMedCrossRefGoogle Scholar
  45. 45.
    Cowper SE, Rabach M, Girardi M. Clinical and histological findings in nephrogenic systemic fibrosis. Eur J Radiol. 2008;66:191–199.PubMedCrossRefGoogle Scholar
  46. 46.
    Idee JM, Port M, Medina C, et al. Possible involvement of gadolinium chelates in the pathophysiology of nephrogenic systemic fibrosis: A critical review. Toxicology. 2008;248:77–88.PubMedCrossRefGoogle Scholar
  47. 47.
    Thomsen HS, Marckmann P. MRI contrast media are used to improve visualization of abnormal structures or lesions in various parts of the body. Introduction. Eur J Radiol. 2008;66:153–159.Google Scholar
  48. 48.
    European Medicines Agency. European Medicines Agency makes recommendations to minimise risk of nephrogenic systemic fibrosis with gadolinium-containing contrast agents. Accessed September 20, 2010.
  49. 49.
    United States Food and Drug Administration. FDA Drug Safety Communication: New warnings for using gadolinium-based contrast agents in patients with kidney dysfunction. Accessed September 20, 2010.
  50. 50.
    Schoenberg SO, Just A, Bock M, Knopp MV, Persson PB, Kirchheim HR. Noninvasive analysis of renal artery blood flow dynamics with MR cine phase-contrast flow measurements. Am J Physiol. 1997;272:H2477–2484.PubMedGoogle Scholar
  51. 51.
    Montet X, Ivancevic MK, Belenger J, et al. Noninvasive measurement of absolute renal perfusion by contrast medium-enhanced magnetic resonance imaging. Invest Radiol. 2003;38:584–592.PubMedCrossRefGoogle Scholar
  52. 52.
    Schoenberg SO, Aumann S, Just A, et al. Quantification of renal perfusion abnormalities using an intravascular contrast agent (part 2): results in animals and humans with renal artery stenosis. Magn Reson Med. 2003;49:288–298.PubMedCrossRefGoogle Scholar
  53. 53.
    Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO. MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Invest Radiol. 2008;43:40–48.PubMedCrossRefGoogle Scholar
  54. 54.
    Vallee JP, Lazeyras F, Khan HG, Terrier F. Absolute renal blood flow quantification by dynamic MRI and Gd-DTPA. Eur Radiol. 2000;10:1245–1252.PubMedCrossRefGoogle Scholar
  55. 55.
    Boss A, Martirosian P, Graf H, Claussen CD, Schlemmer HP, Schick F. High resolution MR perfusion imaging of the kidneys at 3 Tesla without administration of contrast media. Rofo. 2005;177:1625–1630.PubMedCrossRefGoogle Scholar
  56. 56.
    Martirosian P, Klose U, Mader I, Schick F. FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med. 2004;51:353–361.PubMedCrossRefGoogle Scholar
  57. 57.
    Lee VS, Rusinek H, Noz ME, Lee P, Raghavan M, Kramer EL. Dynamic three-dimensional MR renography for the measurement of single kidney function: initial experience. Radiology. 2003;227:289–294.PubMedCrossRefGoogle Scholar
  58. 58.
    Teh HS, Ang ES, Wong WC, et al. MR renography using a dynamic gradient-echo sequence and low-dose gadopentetate dimeglumine as an alternative to radionuclide renography. AJR Am J Roentgenol. 2003;181:441–450.PubMedGoogle Scholar
  59. 59.
    Baltes C, Kozerke S, Hansen MS, Pruessmann KP, Tsao J, Boesiger P. Accelerating cine phase-contrast flow measurements using k-t BLAST and k-t SENSE. Magn Reson Med. 2005;54:1430–1438.PubMedCrossRefGoogle Scholar
  60. 60.
    Bock M, Schoenberg SO, Schad LR, Knopp MV, Essig M, van Kaick G. Interleaved gradient echo planar (IGEPI) and phase contrast CINE-PC flow measurements in the renal artery. J Magn Reson Imaging. 1998;8:889–895.PubMedCrossRefGoogle Scholar
  61. 61.
    Michaely HJ, Schoenberg SO, Ittrich C, Dikow R, Bock M, Guenther M. Renal Disease: Value of Functional Magnetic Resonance Imaging With Flow and Perfusion Measurements. Invest Radiol. 2004;39:698–705.PubMedCrossRefGoogle Scholar
  62. 62.
    Pettigrew RI, Avruch L, Dannels W, Coumans J, Bernardino ME. Fast-field-echo MR imaging with Gd-DTPA: physiologic evaluation of the kidney and liver. Radiology. 1986;160:561–563.PubMedGoogle Scholar
  63. 63.
    Michaely HJ, Sourbron SP, Buettner C, Lodemann KP, Reiser MF, Schoenberg SO. Temporal Constraints in Renal Perfusion Imaging With a 2-Compartment Model. Invest Radiol. 2008;43:120–128.PubMedCrossRefGoogle Scholar
  64. 64.
    Michaely HJ, Schoenberg SO, Oesingmann N, et al. Renal artery stenosis: functional assessment with dynamic MR perfusion measurements – feasibility study. Radiology. 2006;238:586–596.PubMedCrossRefGoogle Scholar
  65. 65.
    Gandy SJ, Sudarshan TA, Sheppard DG, Allan LC, McLeay TB, Houston JG. Dynamic MRI contrast enhancement of renal cortex: a functional assessment of renovascular disease in patients with renal artery stenosis. J Magn Reson Imaging. 2003;18:461–466.PubMedCrossRefGoogle Scholar
  66. 66.
    Song T, Lee VS, Rusinek H, Wong S, Laine AF. Integrated four dimensional registration and segmentation of dynamic renal MR images. Med Image Comput Comput Assist Interv. 2006;9:758–765.PubMedGoogle Scholar
  67. 67.
    Huang AJ, Lee VS, Rusinek H. Functional renal MR imaging. Magn Reson Imaging Clin N Am. 2004;12:469–486, vi.Google Scholar
  68. 68.
    Carvlin MJ, Arger PH, Kundel HL, et al. Use of Gd-DTPA and fast gradient-echo and spin-echo MR imaging to demonstrate renal function in the rabbit. Radiology. 1989;170:705–711.PubMedGoogle Scholar
  69. 69.
    Grobner T. Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21:1104–1108.PubMedCrossRefGoogle Scholar
  70. 70.
    Lee VS, Rusinek H, Johnson G, Rofsky NM, Krinsky GA, Weinreb JC. MR renography with low-dose gadopentetate dimeglumine: feasibility. Radiology. 2001;221:371–379.PubMedCrossRefGoogle Scholar
  71. 71.
    Attenberger UI, Sourbron SP, Notohamiprodjo M, et al. MR-based semi-automated quantification of renal functional parameters with a two-compartment model – an interobserver analysis. Eur J Radiol. 2008;65:59–65.PubMedCrossRefGoogle Scholar
  72. 72.
    Song T, Lee VS, Rusinek H, Kaur M, Laine AF. Automatic 4-D registration in dynamic MR renography based on over-complete dyadic wavelet and Fourier transforms. Med Image Comput Comput Assist Interv. 2005;8:205–213.PubMedGoogle Scholar
  73. 73.
    Rusinek H, Boykov Y, Kaur M, et al. Performance of an automated segmentation algorithm for 3D MR renography. Magn Reson Med. 2007;57:1159–1167.PubMedCrossRefGoogle Scholar
  74. 74.
    Annet L, Hermoye L, Peeters F, Jamar F, Dehoux JP, Van Beers BE. Glomerular filtration rate: assessment with dynamic contrast-enhanced MRI and a cortical-compartment model in the rabbit kidney. J Magn Reson Imaging. 2004;20:843–849.PubMedCrossRefGoogle Scholar
  75. 75.
    Lee VS, Rusinek H, Bokacheva L, et al. Renal function measurements from MR renography and a simplified multicompartmental model. Am J Physiol Renal Physiol. 2007;292:F1548-1559.PubMedCrossRefGoogle Scholar
  76. 76.
    Martin DR, Sharma P, Salman K, et al. Individual kidney blood flow measured with contrast-enhanced first-pass perfusion MR imaging. Radiology. 2008;246:241–248.PubMedGoogle Scholar
  77. 77.
    Michoux N, Montet X, Pechere A, et al. Parametric and quantitative analysis of MR renographic curves for assessing the functional behaviour of the kidney. Eur J Radiol. 2005;54:124–135.PubMedCrossRefGoogle Scholar
  78. 78.
    Schoenberg SO, Knopp MV, Bock M, et al. Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements. Radiology. 1997;203:45–53.PubMedGoogle Scholar
  79. 79.
    Schoenberg SO, Knopp MV, Londy F, et al. Morphologic and functional magnetic resonance imaging of renal artery stenosis: a multireader tricenter study. J Am Soc Nephrol. 2002;13:158–169.PubMedGoogle Scholar
  80. 80.
    Ritt M, Janka R, Schneider MP, et al. Measurement of kidney perfusion by magnetic resonance imaging: comparison of MRI with arterial spin labeling to para-aminohippuric acid plasma clearance in male subjects with metabolic syndrome. Nephrol Dial Transplant. 2010;25:1126–1133.PubMedCrossRefGoogle Scholar
  81. 81.
    Michaely HJ, Herrmann KA, Nael K, Oesingmann N, Reiser MF, Schoenberg SO. Functional renal imaging: nonvascular renal disease. Abdom Imaging. 2007;32:1–16.PubMedCrossRefGoogle Scholar
  82. 82.
    Bax L, Woittiez AJ, Kouwenberg HJ, et al. Stent placement in patients with atherosclerotic renal artery stenosis and impaired renal function: a randomized trial. Ann Intern Med. 2009;150:840–848.PubMedGoogle Scholar
  83. 83.
    Wheatley K, Ives N, Gray R, et al. Revascularization versus medical therapy for renal-artery stenosis. N Engl J Med. 2009;361:1953–1962.PubMedCrossRefGoogle Scholar
  84. 84.
    Murphy TP, Cooper CJ, Dworkin LD, et al. The Cardiovascular Outcomes with Renal Atherosclerotic Lesions (CORAL) study: rationale and methods. J Vasc Interv Radiol. 2005;16:1295–1300.PubMedGoogle Scholar
  85. 85.
    Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–1281.PubMedCrossRefGoogle Scholar
  86. 86.
    Mounier-Vehier C, Haulon S, Devos P, et al. Renal atrophy outcome after revascularization in fibromuscular dysplasia disease. J Endovasc Ther. 2002;9:605–613.PubMedCrossRefGoogle Scholar
  87. 87.
    Mounier-Vehier C, Haulon S, Lions C, et al. Renal atrophy in atherosclerotic renovascular disease: gradual changes 6 months after successful angioplasty. J Endovasc Ther. 2002;9:863–872.PubMedCrossRefGoogle Scholar
  88. 88.
    Michaely HJ, Dietrich O, Reiser MF, Schoenberg SO. Neue konzepte für die funktionelle MRT bei nierenerkrankungen. Der Nephrologe. 2006;1:40–49.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of RadiologyUtrecht University Medical CenterUtrechtThe Netherlands
  2. 2.Institute of Clinical Radiology and Nuclear MedicineUniversity Medical Center MannheimMannheimGermany

Personalised recommendations