Skip to main content

Thoracic Aorta

  • Chapter
  • First Online:
Magnetic Resonance Angiography

Abstract

Diseases of the thoracic aorta are a significant cause of morbidity and mortality and can result in potentially catastrophic consequences, if the condition remains undiagnosed. Conventional digital subtraction angiography (DSA) has been the gold standard for imaging the thoracic aorta for many years; however, this is associated with well-recognized complications due to its invasive nature and is essentially a projectional two dimensional technique, thus providing only limited information about vessel morphology. DSA also uses ionizing radiation and potentially nephrotoxic-iodinated contrast. DSA is now primarily used for guiding interventional procedures, such as stent graft placement, and is occasionally employed as a diagnostic tool in the setting of trauma. Computed tomography (CT) is now the most frequently utilized modality for evaluating the thoracic aorta and has high diagnostic accuracy for detection of aortic pathology, particularly with the advent of multidetector scanners. CT has the advantage of being quick and readily available in most hospital settings; however, it too employs ionizing radiation and potentially nephrotoxic contrast agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waugh JR, Sacharias N. Arteriographic complications in the DSA era. Radiology.1992;182:243–246.

    PubMed  CAS  Google Scholar 

  2. Mirvis SE, Pais SO, Gens DR. Thoracic aortic rupture: advantages of intraarterial digital subtraction angiography. AJR Am J Roentgenol. 1986;146:987–991.

    PubMed  CAS  Google Scholar 

  3. Hartnell GG. Imaging of aortic aneurysms and dissection: CT and MRI. J Thorac Imaging. 2001;16:35–46.

    Article  PubMed  CAS  Google Scholar 

  4. Rubin GD. Helical CT angiography of the thoracic aorta. J Thorac Imaging. 1997;12:128–149.

    Article  PubMed  CAS  Google Scholar 

  5. Hidajat N, Maurer J, Schroder RJ, Wolf M, Vogl T, Felix R. Radiation exposure in spiral computed tomography. Dose distribution and dose reduction. Invest Radiol. 1999;34:51–57.

    CAS  Google Scholar 

  6. Scott CH, Keane MG, Ferrari VA. Echocardiographic evaluation of the thoracic aorta. Semin Roentgenol. 2001;36:325–333.

    Article  PubMed  CAS  Google Scholar 

  7. Roberts DA. Magnetic resonance imaging of thoracic aortic aneurysm and dissection. Semin Roentgenol. 2001;36:295–308.

    Article  PubMed  CAS  Google Scholar 

  8. Fattori R, Nienaber CA. MRI of acute and chronic aortic pathology: pre-operative and postoperative evaluation. J Magn Resonan Imaging. 1999;10:741–750.

    Article  CAS  Google Scholar 

  9. Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology. 2001;219:828–834.

    PubMed  CAS  Google Scholar 

  10. Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology. 2001;219:264–269.

    PubMed  CAS  Google Scholar 

  11. Oppelt A, Graumann R, Barfuss H. FISP-a new fast MRI sequence. Electromedica. 1986;54:15–18.

    Google Scholar 

  12. Fang W, Pereles FS, Bundy J et al. Evaluating left ventricular function using real-time TrueFISP: a comparison with conventional techniques. Proceedings of the Eighth Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, CA: International Society for Magnetic Resonance in Medicine, 2000; 8:308.

    Google Scholar 

  13. Deimling M, Heid O. Magnetization prepared True FISP imaging [abstract]. Proceedings of the Second Meeting of the Society of Magnetic Resonance. Berkeley, CA: Society of Magnetic Resonance. 1994:495.

    Google Scholar 

  14. Bundy J, Simonetti O, Laub G, Finn JP. Segmented TrueFISP imaging of the heart. Proceedings of the Seventh Meeting of the International Society for Magnetic Resonance in Medicine. Philadelphia, PA, 1999;2:1282.

    Google Scholar 

  15. Pereles FS, McCarthy RM, Baskaran V, et al. Thoracic aortic dissection and aneurysm: evaluation with nonenhanced true FISP MR angiography in less than 4 minutes. Radiology. 2002;223:270–274.

    Article  PubMed  Google Scholar 

  16. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38:591–603.

    Article  PubMed  CAS  Google Scholar 

  17. Sodickson DK, McKenzie CA, Li W, Wolff S, Manning WJ, Edelmann RR. Contrast-enhanced 3D MR angiography with simultaneous acquisition of spatial harmonics: a pilot study. Radiology. 2000;217:284–289.

    PubMed  CAS  Google Scholar 

  18. Weiger M, Pruessmann KP, Boesiger P. Cardiac real-time imaging using SENSE. SENSitivity Encoding scheme. Magn Reson Med. 2000;43:177–184.

    CAS  Google Scholar 

  19. Weiger M, Pruessmann KP, Kassner A, Roditi G, Lawton T, Reid A, Boesiger P. Contrast-enhanced 3D MRA using SENSE. J Magn Reson Imaging. 2000;12:671–677.

    Article  PubMed  CAS  Google Scholar 

  20. Barkhausen J, Goyen M, Ruhm SG, Eggebrecht H, Debatin JF, Ladd ME. Assessment of ventricular function with single breath-hold real-time steady-state free precession cine MR imaging. AJR Am J Roentgenol. 2002;178:731–735.

    PubMed  Google Scholar 

  21. Lee VS, Resnick D, Bundy JM, Simonetti O, Lee P, Weinreb JC. Cardiac function: MR evaluation in one breath hold with real-time true fast imaging with steady-state precession. Radiology. 2002;222:835–842.

    Article  PubMed  Google Scholar 

  22. Francois CJ, Carr JC. MRI of the thoracic aorta. Cardiol Clin. 2007;25:171–184, vii.

    Google Scholar 

  23. Simonetti OP, Finn JP, White RD, Laub G, Henry DA. “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology.1996;199:49–57.

    PubMed  CAS  Google Scholar 

  24. Stehling MK, Holzknecht NG, Laub G, Bohm D, von Smekal A, Reiser A. Single-shot T1- and T2-weighted magnetic resonance imaging of the heart with black blood: preliminary experience. Magma. 1996;4(3–4):231–240.

    Article  PubMed  CAS  Google Scholar 

  25. Koktzoglou I, Kirpalani A, Carroll TJ, Li D, Carr JC. Dark-blood MRI of the thoracic aorta with 3D diffusion-prepared steady-state free precession: initial clinical evaluation. AJR Am J Roentgenol. 2007;189:966–972.

    Article  PubMed  Google Scholar 

  26. Summers RM, Sostman HD, Spritzer CE, Fidler JL. Fast spoiled gradient-recalled MR imaging of thoracic aortic dissection: preliminary clinical experience at 1.5 T. Magn Reson Imaging. 1996;14:1–9.

    Article  PubMed  CAS  Google Scholar 

  27. Finn JP, Baskaran V, Carr JC, et al. Thorax: low-dose contrast-enhanced three-dimensional MR angiography with subsecond temporal resolution – initial results. Radiology. 2002;224:896–904.

    Article  PubMed  Google Scholar 

  28. Korosec FR, Frayne R, Grist TM, Mistretta CA. Time-resolved contrast-enhanced 3D MR angiography. Magn Resn Med. 1996;36:345–351.

    Article  CAS  Google Scholar 

  29. Prince MR. Gadolinium-enhanced MR aortography. Radiology. 1994;191:155–164.

    PubMed  CAS  Google Scholar 

  30. Princ MR, Narasimham DL, Stanley JC, et al. Breath-hold gadolinium-enhanced MR angiography of the abdominal aorta and its major branches. Radiology. 1995;197:785–792.

    Google Scholar 

  31. Krinsky GA, Rofsky NM, DeCorato DR, et al. Thoracic aorta: comparison of gadolinium-enhanced three-dimensional MR angiography with conventional MR imaging. Radiology. 1997;202:183–193.

    PubMed  CAS  Google Scholar 

  32. Prince MR, Narasimham DL, Jacoby WT, et al. Three-dimensional gadolinium-enhanced MR angiography of the thoracic aorta. AJR Am J Roentgenol. 1996;166:1387–1397.

    PubMed  CAS  Google Scholar 

  33. Krinsky GA, Reuss PM, Lee VS, Carbognin G, Rofsky NM. Thoracic aorta: comparison of single-dose breath-hold and double-dose non-breath-hold gadolinium-enhanced three-dimensional MR angiography. AJR Am J Roentgenol. 1999;173:145–150.

    PubMed  CAS  Google Scholar 

  34. Bireley WR 2nd, Diniz LO, Groves EM, Dill K, Carroll TJ, Carr JC. Orthogonal measurement of thoracic aorta luminal diameter using ECG-gated high-resolution contrast-enhanced MR angiography. J Magn Reson Imaging. 2007;26:1480–1485.

    Article  PubMed  Google Scholar 

  35. Groves EM, Bireley W, Dill K, Carroll TJ, Carr JC. Quantitative analysis of ECG-gated high-resolution contrast-enhanced MR angiography of the thoracic aorta. AJR Am J Roentgenol. 2007;188:522–528.

    Article  PubMed  Google Scholar 

  36. Czermak BV, Mallouhi A, Perkmann R, et al. Serial CT volume and thrombus length measurements after endovascular repair of Stanford type B aortic dissection. J Endovasc Ther. 2004;11:1–12.

    Article  PubMed  Google Scholar 

  37. Kritpracha B, Beebe HG, Comerota AJ. Aortic diameter is an insensitive measurement of early aneurysm expansion after endografting. J Endovasc Ther. 2004;11:184–190.

    Article  PubMed  Google Scholar 

  38. Dumoulin CL, Yucel EK, Vock P, et al. Two- and three-dimensional phase contrast MR angiography of the abdomen. J Comput Assist Tomogr.1990;14:779–784.

    Article  PubMed  CAS  Google Scholar 

  39. Lundin B, Cooper TG, Meyer RA, Potchen EJ. Measurement of total and unilateral renal blood flow by oblique-angle velocity-encoded 2D-cine magnetic resonance angiography. Magn Reson Imaging. 1993;11:51–59.

    Article  PubMed  CAS  Google Scholar 

  40. Liu X, Zhao X, Huang J, et al. Comparison of 3D free-breathing coronary MR angiography and 64-MDCT angiography for detection of coronary stenosis in patients with high calcium scores. AJR Am J Roentgenol. 2007;189:1326–1332.

    Article  PubMed  Google Scholar 

  41. Bock J, Frydrychowicz A, Lorenz R, et al. In vivo noninvasive 4D pressure difference mapping in the human aorta: phantom comparison and application in healthy volunteers and patients. Magn Reson Med. 2011.

    Google Scholar 

  42. Bock J, Frydrychowicz A, Stalder AF, et al. 4D phase contrast MRI at 3 T: effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magn Reson Med. 2010;63:330–338.

    Article  PubMed  Google Scholar 

  43. Barker AJ, Markl M. Editorial: the role of hemodynamics in bicuspid aortic valve disease. Eur J Cardiothorac Surg. 2011;39:805–806.

    Article  PubMed  Google Scholar 

  44. Miyazaki M, Lee VS. Nonenhanced MR angiography. Radiology. 2008;248:20–43.

    Google Scholar 

  45. Francois CJ, Lum DP, Johnson KM, et al. Renal arteries: isotropic, high-spatial-resolution, unenhanced MR angiography with three-dimensional radial phase contrast. Radiology. 2011;258:254–260.

    Article  PubMed  Google Scholar 

  46. DeSanctis RW, Doroghazi RM, Austen WG, Buckley MJ. Aortic dissection. N Engl J Med.1987;317:1060–1067.

    Article  PubMed  CAS  Google Scholar 

  47. Debakey ME, Henley WS, Cooley DA, Morris GC Jr, Crawford ES, Beall AC Jr. Surgical management of dissecting aneurysms of the aorta. J Thorac Cardiovasc Surg. 1965;49:130–149.

    PubMed  CAS  Google Scholar 

  48. Nienaber CA, von Kodolitsch Y, Nicolas V, et al. The diagnosis of thoracic aortic dissection by noninvasive imaging procedures. N Engl J Med.1993;328:1–9.

    Article  PubMed  CAS  Google Scholar 

  49. Svensson LG, Crawford ES, Coselli JS, Safi HJ, Hess KR. Impact of cardiovascular operation on survival in the Marfan patient. Circulation. 1989;80(3 Pt 1):I233-I242.

    PubMed  CAS  Google Scholar 

  50. Svensson LG,Labib SB, Eisenhauer AC, Butterly JR. Intimal tear without hematoma: an important variant of aortic dissection that can elude current imaging techniques. Circulation. 1999;99:1331–1336.

    PubMed  CAS  Google Scholar 

  51. Meszaros I, Morocz J, Szlavi J, et al. Epidemiology and clinicopathology of aortic dissection. Chest. 2000;117:1271–1278.

    Article  PubMed  CAS  Google Scholar 

  52. Bickerstaff LK, Pairolero PC, Hollier LH, et al. Thoracic aortic aneurysms: a population-based study. Surgery. 1982;92:1103–1108.

    PubMed  CAS  Google Scholar 

  53. Clouse WD, Hallett JW Jr, Schaff HV, et al. Acute aortic dissection: population-based incidence compared with degenerative aortic aneurysm rupture. Mayo Clinic Proc. 2004;79:176–180.

    Article  Google Scholar 

  54. Hiratzka LF, Bakris GL, Beckman JA, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. 2010;121:e266-e369.

    Article  PubMed  Google Scholar 

  55. Wolff KA, Herold CJ, Tempany CM, Parravano JG, Zerhouni EA. Aortic dissection: atypical patterns seen at MR imaging. Radiology. 1991;181:489–495.

    PubMed  CAS  Google Scholar 

  56. Harris JA, Bis KG, Glover JL, Bendick PJ, Shetty A, Brown OW. Penetrating atherosclerotic ulcers of the aorta. J Vasc Surg. 1994;19:90–98; discussion 98–99.

    Google Scholar 

  57. Cooke JP, Kazmier FJ, Orszulak TA. The penetrating aortic ulcer: pathologic manifestations, diagnosis, and management. Mayo Clinic Proc. 1988;63:718–725.

    CAS  Google Scholar 

  58. Yucel EK, Steinberg FL, Egglin TK, Geller SC, Waltman AC, Athanasoulis CA. Penetrating aortic ulcers: diagnosis with MR imaging. Radiology. 1990;177:779–781.

    PubMed  CAS  Google Scholar 

  59. Pressler V, McNamara JJ. Aneurysm of the thoracic aorta. Review of 260 cases. J Thorac Cardiovasc Surg. 1985;89:50–54.

    PubMed  CAS  Google Scholar 

  60. Mohiaddin RH, McCrohon J, Francis JM, Barbir M, Pennell DJ. Contrast-enhanced magnetic resonance angiogram of penetrating aortic ulcer. Circulation. 2001;103:E18-E19.

    PubMed  CAS  Google Scholar 

  61. Pitt MP, Bonser RS. The natural history of thoracic aortic aneurysm disease: an overview. J Cardiac Surg. 1997;12(2 Suppl):270–278.

    CAS  Google Scholar 

  62. Schmidta M, Theissen P, Klempt G, et al., Long-term follow-up of 82 patients with chronic disease of the thoracic aorta using spin-echo and cine gradient magnetic resonance imaging. Magn Reson Imaging.2000;18:795–806.

    Article  PubMed  CAS  Google Scholar 

  63. Mohiaddin RH, Kilner PJ, Rees S, Longmore DB. Magnetic resonance volume flow and jet velocity mapping in aortic coarctation. J Am Coll Cardiol. 1993;22:1515–1521.

    Article  PubMed  CAS  Google Scholar 

  64. Roche KJ, Krinsky G, Lee VS, Rosky N, Genieser NB. Interrupted aortic arch: diagnosis with gadolinium-enhanced 3D MRA. J Comput Assist Tomogr. 1999;23:197–202.

    Article  PubMed  CAS  Google Scholar 

  65. Soler R, Rodriguez E, Reguejo I, Fernandez R, Raposo I. Magnetic resonance imaging of congenital abnormalities of the thoracic aorta. Eur Radiol. 1998;8:540–546.

    Article  PubMed  CAS  Google Scholar 

  66. Desai MY, Stone JH, Foo TK, Hellmann DB, Lima JA, Bluemke DA. Delayed contrast-enhanced MRI of the aortic wall in Takayasu’s arteritis: initial experience. AJR Am J Roentgenol. 2005;184:1427–1431.

    PubMed  Google Scholar 

  67. Gotway MB, Araoz PA, Macedo TA, et al. Imaging findings in Takayasu’s arteritis. AJR Am J Roentgenol. 2005;184:1945–1950.

    PubMed  Google Scholar 

  68. Evangelista A, Flachskampf FA, Erbel R, et al. Echocardiography in aortic diseases: EAE recommendations for clinical practice. Eur J Echocardiogr. 2010;11: 645–658.

    Article  PubMed  Google Scholar 

  69. Jennette JC, Falk RJ. The pathology of vasculitis involving the kidney. Am J Kidney Dis. 1994; 24:130–141.

    PubMed  CAS  Google Scholar 

  70. Nastri MV, Baptista LP, Baroni RH, et al. Gadolinium-enhanced three-dimensional MR angiography of Takayasu arteritis. Radiographics. 2004;24:773–786

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Ward MB, BCH, BAO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ward, E., Carr, J.C. (2012). Thoracic Aorta. In: Carr, J., Carroll, T. (eds) Magnetic Resonance Angiography. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1686-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1686-0_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1685-3

  • Online ISBN: 978-1-4419-1686-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics