Parallel Imaging in Angiography

  • Nicole Seiberlich
  • Mark Griswold


One of the main goals in magnetic resonance angiography (MRA) is to acquire data quickly, both to reduce longer scan times to avoid artifacts due to patient motion (for time-of-flight and phase-contrast imaging) and to capture relevant dynamic information (contrast-enhanced MRA). However, the amount of time it takes to generate an MRI image depends directly on the desired spatial resolution. Images with higher spatial resolution require more k-space data, and thus, a longer time is needed to acquire these data. In order to meet both goals of high spatial resolution and high temporal resolution simultaneously, one must look to advanced image acquisition and reconstruction techniques, such as parallel imaging.


Magnetic Resonance Angiography Parallel Imaging Acceleration Factor Receiver Coil Coil Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kelton J, Magin RM, Wright SM. An algorithm for rapid image acquisition using multiple receiver coils. Proc Intl Soc Magn Reson Med. 1989;8:1172.Google Scholar
  2. 2.
    Ra JB, Rim CY. Fast imaging using subencoding data sets from multiple detectors. Magn Reson Med. 1993;30:142–145.PubMedCrossRefGoogle Scholar
  3. 3.
    Carlson JW, Minemura T. Imaging time reduction through multiple receiver coil data acquisition and image reconstruction. Magn Reson Med. 1993;29:681–687.PubMedCrossRefGoogle Scholar
  4. 4.
    Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38:591–603.PubMedCrossRefGoogle Scholar
  5. 5.
    Jakob PM, Griswold MA, Edelman RR, Sodickson DK. AUTO-SMASH: a self-calibrating technique for SMASH imaging. SiMultaneous Acquisition of Spatial Harmonics. MAGMA. 1998;7:42–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–962.PubMedCrossRefGoogle Scholar
  7. 7.
    Griswold MA, Jakob PM, Nittka M, Goldfarb JW, Haase A. Partially parallel imaging with localized sensitivities (PILS). Magn Reson Med. 2000;44:602–609.PubMedCrossRefGoogle Scholar
  8. 8.
    Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47:1202–1210.PubMedCrossRefGoogle Scholar
  9. 9.
    Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med. 2001;46:638–651.PubMedCrossRefGoogle Scholar
  10. 10.
    Griswold MA, Heidemann RM, Jakob PM. Direct parallel imaging reconstruction of radially sampled data using GRAPPA with relative shifts. Proc Intl Soc Mag Reson Med. 2003;11:2349.Google Scholar
  11. 11.
    Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med. 2001;45:846–852.PubMedCrossRefGoogle Scholar
  12. 12.
    Breuer FA, Kellman P, Griswold MA, Jakob PM. Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn Reson Med. 2005;53:981–985.PubMedCrossRefGoogle Scholar
  13. 13.
    Heidemann RM, Seiberlich N, Griswold MA, Wohlfarth K, Krueger G, Jakob PM Perspectives and limitations of parallel MR imaging at high field strengths. Neuroimaging Clin N Am. 2006; 16:311–320, xi.PubMedCrossRefGoogle Scholar
  14. 14.
    Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging. 2004;15:223–236.PubMedCrossRefGoogle Scholar
  15. 15.
    Griswold MA, Jakob PM, Chen Q, Goldfarb JW, Manning WJ, Edelman RR, Sodickson DK. Resolution enhancement in single-shot imaging using simultaneous acquisition of spatial harmonics (SMASH). Magn Reson Med. 1999;41:1236–1245.PubMedCrossRefGoogle Scholar
  16. 16.
    Weiger M, Boesiger P, Hilfiker PR, Weishaupt D, Pruessmann KP., Sensitivity encoding as a means of enhancing the SNR efficiency in steady-state MRI. Magn Reson Med. 2005;53:177–185.PubMedCrossRefGoogle Scholar
  17. 17.
    Kressler B, Spincemaille P, Nguyen TD, Cheng L, Xi Hai Z, Prince MR, Wang Y. Three-dimensional cine imaging using variable-density spiral trajectories and SSFP with application to coronary artery angiography. Magn Reson Med. 2007;58:535–543.PubMedCrossRefGoogle Scholar
  18. 18.
    Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med. 1990;16:192–225.PubMedCrossRefGoogle Scholar
  19. 19.
    Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med. 2000;43:682–690.PubMedCrossRefGoogle Scholar
  20. 20.
    Huber ME, Kozerke S, Pruessmann KP, Smink J, Boesiger P. Sensitivity-encoded coronary MRA at 3T. Magn Reson Med. 2004;52:221–227.PubMedCrossRefGoogle Scholar
  21. 21.
    Jahnke C, Paetsch I, Schnackenburg B, Bornstedt A, Gebker R, Fleck E, Nagel E. Coronary MR angiography with steady-state free precession: individually adapted breath-hold technique versus free-breathing technique. Radiology. 2004;232:669–676.PubMedCrossRefGoogle Scholar
  22. 22.
    Huber ME, Kozerke S, Boesiger P. Improved artery delineation in dual-stack coronary magnetic resonance angiography using parallel imaging at 3 T. J Magn Reson Imaging. 2005;21:443–448.PubMedCrossRefGoogle Scholar
  23. 23.
    Niendorf T, Saranathan M, Lingamneni A, Pedrosa I, Spencer M, Cline H, Foo TK, Rofsky NM. Short breath-hold, volumetric coronary MR angiography employing steady-state free precession in conjunction with parallel imaging. Magn Reson Med. 2005;53:885–894.PubMedCrossRefGoogle Scholar
  24. 24.
    Plein S, Radjenovic A, Ridgway JP, Barmby D, Greenwood JP, Ball SG, Sivananthan MU. Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology. 2005;235:423–430.PubMedCrossRefGoogle Scholar
  25. 25.
    Niendorf T, Hardy CJ, Giaquinto RO, Gross P, Cline HE, Zhu Y, Kenwood G, Cohen S, Grant AK, Joshi S, Rofsky NM, Sodickson DK. Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med. 2006;56:167–176.PubMedCrossRefGoogle Scholar
  26. 26.
    Gharib AM, Herzka DA, Ustun AO, Desai MY, Locklin J, Pettigrew RI, Stuber M. Coronary MR angiography at 3T during diastole and systole. J Magn Reson Imaging. 2007;26:921–926.PubMedCrossRefGoogle Scholar
  27. 27.
    Summers PE, Kollias SS, Valavanis A. Resolution improvement in thick-slab magnetic resonance digital subtraction angiography using SENSE at 3T. J Magn Reson Imaging. 2004;20:662–673.PubMedCrossRefGoogle Scholar
  28. 28.
    Taschner CA, Gieseke J, Le Thuc V, Rachdi H, Reyns N, Gauvrit JY, Leclerc X. Intracranial arteriovenous malformation: time-resolved contrast-enhanced MR angiography with combination of parallel imaging, keyhole acquisition, and k-space sampling techniques at 1.5 T. Radiology. 2008;246:871–879.PubMedCrossRefGoogle Scholar
  29. 29.
    Petkova M, Gauvrit JY, Trystram D, Nataf F, Godon-Hardy S, Munier T, Oppenheim C, Meder JF. Three-dimensional dynamic time-resolved contrast-enhanced MRA using parallel imaging and a variable rate k-space sampling strategy in intracranial arteriovenous malformations. J Magn Reson Imaging. 2009;29:7–12.PubMedCrossRefGoogle Scholar
  30. 30.
    Parmar H, Ivancevic MK, Dudek N, Gandhi D, Mukherji SK. Dynamic MRA with four-dimensional time-resolved angiography using keyhole at 3 tesla in head and neck vascular lesions. J Neuroophthalmol. 2009;29:119–127.PubMedCrossRefGoogle Scholar
  31. 31.
    Willinek WA, Hadizadeh DR, von Falkenhausen M, Urbach H, Hoogeveen R, Schild HH, Gieseke J. 4D time-resolved MR angiography with keyhole (4D-TRAK): more than 60 times accelerated MRA using a combination of CENTRA, keyhole, and SENSE at 3.0T. J Magn Reson Imaging. 2008;27:1455–1460.PubMedCrossRefGoogle Scholar
  32. 32.
    Bicakci K, Soker G, Binokay F, Akgul E, Aksungur E, Sertdemir Y. Estimation of the ratio of renal artery stenosis with magnetic resonance angiography using parallel imaging technique in suspected renovascular hypertension. Nephron Clin Pract. 2006;104:c169-c175.PubMedCrossRefGoogle Scholar
  33. 33.
    Gufler H, Weimer W, Neu K, Wagner S, Rau WS. Contrast enhanced MR angiography with parallel imaging in the early period after renal transplantation. J Magn Reson Imaging. 2009;29:909–916.PubMedCrossRefGoogle Scholar
  34. 34.
    Muthupillai R, Douglas E, Huber S, Lambert B, Pereyra M, Wilson GJ, Flamm SD. Direct comparison of sensitivity encoding (SENSE) accelerated and conventional 3D contrast enhanced magnetic resonance angiography (CE-MRA) of renal arteries: effect of increasing spatial resolution. J Magn Reson Imaging. 2010;31:149–159.PubMedCrossRefGoogle Scholar
  35. 35.
    Maki JH, Wilson GJ, Eubank WB, Hoogeveen RM. Utilizing SENSE to achieve lower station sub-millimeter isotropic resolution and minimal venous enhancement in peripheral MR angiography. J Magn Reson Imaging. 2002;15:484–491.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang MS, Haynor DR, Wilson GJ, Leiner T, Maki JH. Maximizing contrast-to-noise ratio in ultra-high resolution peripheral MR angiography using a blood pool agent and parallel imaging. J Magn Reson Imaging. 2007;26:580–588.PubMedCrossRefGoogle Scholar
  37. 37.
    Ruhl KM, Katoh M, Langer S, Mommertz G, Guenther RW, Niendorf T, Spuentrup E. Time-resolved 3D MR angiography of the foot at 3 T in patients with peripheral arterial disease. AJR Am J Roentgenol. 2008;190:W360-W364.PubMedCrossRefGoogle Scholar
  38. 38.
    de Vries M, Nijenhuis RJ, Hoogeveen RM, de Haan MW, van Engelshoven JM, Leiner T. Contrast-enhanced peripheral MR angiography using SENSE in multiple stations: feasibility study. J Magn Reson Imaging. 2005;21:37–45.PubMedCrossRefGoogle Scholar
  39. 39.
    Sumi T, Sumi M, Van Cauteren M, Kimura Y, Nakamura T. Parallel imaging technique for the external carotid artery and its branches: comparison of balanced turbo field echo, phase contrast, and time-of-flight sequences. J Magn Reson Imaging. 2007;25:1028–1034.PubMedCrossRefGoogle Scholar
  40. 40.
    Riederer SJ, Hu HH, Kruger DG, Haider CR, Campeau NG, Huston J 3rd. Intrinsic signal amplification in the application of 2D SENSE parallel imaging to 3D contrast-enhanced elliptical centric MRA and MRV. Magn Reson Med. 2007;58:855–864.PubMedCrossRefGoogle Scholar
  41. 41.
    Yu J, Schär M, Vonken EJ, Kelle S, Stuber M. Improved SNR efficiency in gradient echo coronary MRA with high temporal resolution using parallel imaging. Magn Reson Med. 2009;62:1211–1220.PubMedCrossRefGoogle Scholar
  42. 42.
    Haider CR, Hu HH, Campeau NG, Huston J 3rd, Riederer SJ. 3D high temporal and spatial resolution contrast-enhanced MR angiography of the whole brain. Magn Reson Med. 2008;60:749–760.PubMedCrossRefGoogle Scholar
  43. 43.
    Haider CR, Glockner JF, Stanson AW, Riederer SJ. Peripheral vasculature: high-temporal- and high-spatial-resolution three-­dimensional contrast-enhanced MR angiography. Radiology. 2009;253:831–843.PubMedCrossRefGoogle Scholar
  44. 44.
    Ozsarlak O, Van Goethem JW, Parizel PM. 3D time-of-flight MR angiography of the intracranial vessels: optimization of the technique with water excitation, parallel acquisition, eight-channel phased-array head coil and low-dose contrast administration. Eur Radiol. 2004;14:2067–2071.PubMedCrossRefGoogle Scholar
  45. 45.
    Gaa J, Weidauer S, Requardt M, Kiefer B, Lanfermann H, Zanella FE. Comparison of intracranial 3D-ToF-MRA with and without parallel acquisition techniques at 1.5T and 3.0T: preliminary results. Acta Radiol. 2004;45:327–332.PubMedCrossRefGoogle Scholar
  46. 46.
    Hope MD, Purcell DD, Hope TA, von Morze C, Vigneron DB, Alley MT, Dillon WP. Complete intracranial arterial and venous blood flow evaluation with 4D flow MR imaging. AJNR Am J Neuroradiol. 2009;30:362–366.PubMedCrossRefGoogle Scholar
  47. 47.
    Hope TA, Hope MD, Purcell DD, von Morze C, Vigneron DB, Alley MT, Dillon WP. Evaluation of intracranial stenoses and aneurysms with accelerated 4D flow. Magn Reson Imaging. 2010;28:41–46.PubMedCrossRefGoogle Scholar
  48. 48.
    Meckel S, Mekle R, Taschner C, Haller S, Scheffler K, Radue EW, Wetzel SG. Time-resolved 3D contrast-enhanced MRA with GRAPPA on a 1.5-T system for imaging of craniocervical vascular disease: initial experience. Neuroradiology. 2006;48:291–299.PubMedCrossRefGoogle Scholar
  49. 49.
    Markl M, Uhl M, Wieben O, Ness T, Langer M, Hennig J, Bley TA. High resolution 3T MRI for the assessment of cervical and superficial cranial arteries in giant cell arteritis. J Magn Reson Imaging. 2006;24:423–427.PubMedCrossRefGoogle Scholar
  50. 50.
    von Morze C, Purcell DD, Banerjee S, Xu D, Mukherjee P, Kelley DA, Majumdar S, Vigneron DB. High-resolution intracranial MRA at 7T using autocalibrating parallel imaging: initial experience in vascular disease patients. Magn Reson Imaging. 2008;26:1329–1333.CrossRefGoogle Scholar
  51. 51.
    Lettau M, Sartor K, Heiland S, Hähnel S. 3T high-spatial-resolution contrast-enhanced MR angiography of the intracranial venous system with parallel imaging. AJNR Am J Neuroradiol. 2009;30:185–187.PubMedCrossRefGoogle Scholar
  52. 52.
    Schoenberg SO, Rieger J, Weber CH, Michaely HJ, Waggershauser T, Ittrich C, Dietrich O, Reiser MF. High-spatial-resolution MR angiography of renal arteries with integrated parallel acquisitions: comparison with digital subtraction angiography and US. Radiology. 2005;235:687–698.PubMedCrossRefGoogle Scholar
  53. 53.
    Michaely HJ, Herrmann KA, Kramer H, Dietrich O, Laub G, Reiser MF, Schoenberg SO. High-resolution renal MRA: comparison of image quality and vessel depiction with different parallel imaging acceleration factors. J Magn Reson Imaging. 2006;24:95–100.PubMedCrossRefGoogle Scholar
  54. 54.
    Nael K, Saleh R, Lee M, McNamara T, Godinez SR, Laub G, Finn JP, Ruehm SG. High-spatial-resolution contrast-enhanced MR angiography of abdominal arteries with parallel acquisition at 3.0 T: initial experience in 32 patients. AJR Am J Roentgenol. 2006;187:W77–W85.PubMedCrossRefGoogle Scholar
  55. 55.
    Fenchel M, Nael K, Deshpande VS, Finn JP, Kramer U, Miller S, Ruehm S, Laub G. Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions. Invest Radiol. 2006;41:697–703.PubMedCrossRefGoogle Scholar
  56. 56.
    Lum DP, Busse RF, Francois CJ, Brau AC, Beatty PJ, Huff J, Brittain JH, Reeder SB. Increased volume of coverage for abdominal contrast-enhanced MR angiography with two-dimensional autocalibrating parallel imaging: initial experience at 3.0 Tesla. J Magn Reson Imaging. 2009;30:1093–1100.PubMedCrossRefGoogle Scholar
  57. 57.
    Tongdee R, Narra VR, McNeal G, Hildebolt CF, El-Merhi F, Foster G, Brown JJ. Hybrid peripheral 3D contrast-enhanced MR angiography of calf and foot vasculature. AJR Am J Roentgenol. 2006;186:1746–1753.PubMedCrossRefGoogle Scholar
  58. 58.
    Kramer H, Michaely HJ, Matschl V, Schmitt P, Reiser MF, Schoenberg SO. High-resolution magnetic resonance angiography of the lower extremities with a dedicated 36-element matrix coil at 3 Tesla. Invest Radiol. 2007;42:477–483.PubMedCrossRefGoogle Scholar
  59. 59.
    Potthast S, Bongartz GM, Huegli R, Schulte AC, Schwarz JG, Aschwanden M, Bilecen D. Intraarterial contrast-enhanced MR aortography with and without parallel acquisition technique in patients with peripheral arterial occlusive disease. AJR Am J Roentgenol. 2007;188:823–829.PubMedCrossRefGoogle Scholar
  60. 60.
    Zenge MO, Vogt FM, Brauck K, Jökel M, Barkhausen J, Kannengiesser S, Ladd ME, Quick HH. High-resolution continuously acquired peripheral MR angiography featuring partial parallel imaging GRAPPA. Magn Reson Med. 2006;56:859–865.PubMedCrossRefGoogle Scholar
  61. 61.
    Quick HH, Vogt FM, Maderwald S, Herborn CU, Bosk S, Göhde S, Debatin JF, Ladd ME. High spatial resolution whole-body MR angiography featuring parallel imaging: initial experience. Rofo. 2004;176:163–169.PubMedCrossRefGoogle Scholar
  62. 62.
    Nikolaou K, Kramer H, Grosse C, Clevert D, Dietrich O, Hartmann M, Chamberlin P, Assmann S, Reiser MF, Schoenberg SO. High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology. 2006;241:861–872.PubMedCrossRefGoogle Scholar
  63. 63.
    Nael K, Fenchel M, Krishnam M, Laub G, Finn JP, Ruehm SG. High-spatial-resolution whole-body MR angiography with high-acceleration parallel acquisition and 32-channel 3.0-T unit: initial experience. Radiology. 2007;242:865–872.PubMedCrossRefGoogle Scholar
  64. 64.
    Fenchel M, Doering J, Seeger A, Kramer U, Rittig K, Klumpp B, Claussen CD, Miller S. Ultrafast whole-body MR angiography with two-dimensional parallel imaging at 3.0 T: feasibility study. Radiology. 2009;250:254–263.PubMedCrossRefGoogle Scholar
  65. 65.
    Nikolaou K, Schoenberg SO, Attenberger U, Scheidler J, Dietrich O, Kuehn B, Rosa F, Huber A, Leuchte H, Baumgartner R, Behr J, Reiser MF. Pulmonary arterial hypertension: diagnosis with fast perfusion MR imaging and high-spatial-resolution MR angiography – preliminary experience. Radiology. 2005;236:694–703.PubMedCrossRefGoogle Scholar
  66. 66.
    Nael K, Fenchel M, Krishnam M, Finn JP, Laub G, Ruehm SG. 3.0 Tesla high spatial resolution contrast-enhanced magnetic resonance angiography (CE-MRA) of the pulmonary circulation: initial experience with a 32-channel phased array coil using a high relaxivity contrast agent. Invest Radiol. 2007;42:392–398.PubMedCrossRefGoogle Scholar
  67. 67.
    Attenberger UI, Ingrisch M, Dietrich O, Herrmann K, Nikolaou K, Reiser MF, Schönberg SO, Fink C. Time-resolved 3D pulmonary perfusion MRI: comparison of different k-space acquisition strategies at 1.5 and 3 T. Invest Radiol. 2009;44:525–531.PubMedCrossRefGoogle Scholar
  68. 68.
    Park J, McCarthy R, Li D. Feasibility and performance of breath-hold 3D true-FISP coronary MRA using self-calibrating parallel acquisition. Magn Reson Med. 2004;52:7–13.PubMedCrossRefGoogle Scholar
  69. 69.
    Jin H, Zeng MS, Ge MY, Yang S, Chen CZ, Shen JZ, Li RC. A study of in vitro and in vivo MR of free-breathing whole-heart 3D coronary angiography using parallel imaging. Int J Cardiovasc Imaging. 2009;25(Suppl 1):121–129.PubMedCrossRefGoogle Scholar
  70. 70.
    Oleaga L, Dalal SS, Weigele JB, Hurst RW, Lee J, Voorhees A, Melhem ER. The role of time-resolved 3D contrast-enhanced MR angiography in the assessment and grading of cerebral arteriovenous malformations. Eur J Radiol. 2010;73:e117-e121.CrossRefGoogle Scholar
  71. 71.
    Lim RP, Shapiro M, Wang EY, Law M, Babb JS, Rueff LE, Jacob JS, Kim S, Carson RH, Mulholland TP, Laub G, Hecht EM. 3D time-resolved MR angiography (MRA) of the carotid arteries with time-resolved imaging with stochastic trajectories: comparison with 3D contrast-enhanced Bolus-Chase MRA and 3D time-of-flight MRA. AJNR Am J Neuroradiol. 2008;29:1847–1854.PubMedCrossRefGoogle Scholar
  72. 72.
    Lim RP, Jacob JS, Hecht EM, Kim DC, Huffman SD, Kim S, Babb JS, Laub G, Adelman MA, Lee VS. Time-resolved lower extremity MRA with temporal interpolation and stochastic spiral trajectories: preliminary clinical experience. J Magn Reson Imaging. 2010;31:663–672.PubMedCrossRefGoogle Scholar
  73. 73.
    Breuer FA, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM. Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med. 2005;53:684–691.PubMedCrossRefGoogle Scholar
  74. 74.
    Breuer FA, Blaimer M, Seiberlich N, Griswold MA, Jakob PM. A 3D GRAPPA algorithm for volumetric parallel imaging. Proc Intl Soc Mag Reson Med. 2006;14:286.Google Scholar
  75. 75.
    Lauzon ML, Rutt BK. Effects of polar sampling in k-space. Magn Reson Med. 1996;36:940–949.PubMedCrossRefGoogle Scholar
  76. 76.
    Scheffler K, Hennig J. Reduced circular field-of-view imaging. Magn Reson Med. 1998;40:474–480.PubMedCrossRefGoogle Scholar
  77. 77.
    Kannengiesser SAR and Noll TG. Towards a practical generalized image reconstruction method for MRI. In: Proc Intl Soc Mag Reson Med. 2002;10:155.Google Scholar
  78. 78.
    Bi X, Park J, Larson AC, Zhang Q, Simonetti O, Li D. Contrast-enhanced 4D radial coronary artery imaging at 3.0 T within a single breath-hold. Magn Reson Med. 2005;54:470–475.PubMedCrossRefGoogle Scholar
  79. 79.
    Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182–1195.Google Scholar
  80. 80.
    Seiberlich N, Ehses P, Duerk JL, Griswold MA. Through-Time Radial GRAPPA Calibration: Application to Real-Time Cardiac Imaging. In: Proc 3rd International Workshop on Parallel Imaging (2009), San Diego CA.Google Scholar
  81. 81.
    Jeong HJ, Eddleman CS, Shah S, Seiberlich N, Griswold MA, Batjer HH, Carr JC, Carroll TJ. Accelerating time-resolved MRA with multiecho acquisition. Magn Reson Med. 2010;63:1520–1528.PubMedCrossRefGoogle Scholar
  82. 82.
    Seiberlich N, Breuer FA, Blaimer M, Speier P, Griswold MA, Jakob PM. 3D Cylindrical GRAPPA. Proc Intl Soc Mag Reson Med. 2006;14:7.Google Scholar
  83. 83.
    Kellman P, Derbyshire JA, Agyeman KO, McVeigh ER, Arai AE. Extended coverage first-pass perfusion imaging using slice-interleaved TSENSE. Magn Reson Med. 2004;51:200–204.PubMedCrossRefGoogle Scholar
  84. 84.
    Han M, Daniel BL, Hargreaves BA. Accelerated bilateral dynamic contrast-enhanced 3D spiral breast MRI using TSENSE. J Magn Reson Imaging. 2008;28:1425–1434.PubMedCrossRefGoogle Scholar
  85. 85.
    Lai P, Huang F, Larson AC, Li D. Fast four-dimensional coronary MR angiography with k-t GRAPPA. J Magn Reson Imaging. 2008;27:659–665.PubMedCrossRefGoogle Scholar
  86. 86.
    Madore B, Glover GH, Pelc NJ. Unaliasing by fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med. 1999;42:813–828.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of RadiologyUniversity Hospitals of Cleveland/Case Western Reserve UniversityClevelandUSA

Personalised recommendations