MR Angiography and High Field Strength: 3.0 T and Higher



The motivation for performing MR angiography (MRA) at higher magnetic field strength can be appreciated by answering a few simple questions: Would you like to increase your spatial resolution in time-of-flight or contrast-enhanced (CE) MRA, increase your temporal resolution in dynamic MRA applications, decrease your contrast agent dose in CE-MRA, or even use new imaging contrasts for MRA not available at lower field strength? Higher static magnetic field strengths open opportunities in all of these areas.


Field Strength High Field Strength Specific Absorption Rate Intracranial Vessel Lower Field Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fischer HW, Rinck PA, Van Haverbeke Y, Muller RN. Nuclear relaxation of human brain gray and white matter: analysis of field dependence and implications for MRI. Magn Reson Med. 1990;16:317–334.PubMedCrossRefGoogle Scholar
  2. 2.
    Rooney WD, Johnson G, Li X, Cohen ER, Kim SG, Ugurbil K, Springer CS. Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med. 2007;57:308–318.PubMedCrossRefGoogle Scholar
  3. 3.
    von Falkenhausen MM, Lutterbey G, Morakkabati-Spitz N, Walter O, Gieseke J, Blömer R, Willinek WA, Schild HH, Kuhl CK. High-field-strength MR imaging of the liver at 3.0 T: intraindividual comparative study with MR imaging at 1.5 T. Radiology. 2006;241:156–166.Google Scholar
  4. 4.
    Ba-Ssalamah A, Nobauer-Huhmann IM, Pinker K, Schibany N, Prokesch R, Mehrain S, Mlynárik V, Fog A, Heimberger K, Trattnig S. Effect of contrast dose and field strength in the magnetic resonance detection of brain metastases. Invest Radiol. 2003;38:415–422.PubMedGoogle Scholar
  5. 5.
    Fenchel M, Nael K, Deshpande VS, Finn JP, Kramer U, Miller S, Ruehm S, Laub G. Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions. Invest Radiol. 2006;41:697–703.PubMedCrossRefGoogle Scholar
  6. 6.
    Krautmacher C, Willinek WA, Tschampa HJ, Born M, Träber F, Gieseke J, Textor HJ, Schild HH, Kuhl CK. Brain tumors: full- and half-dose contrast-enhanced MR imaging at 3.0 T compared with 1.5 T: initial experience. Radiology. 2005;237:1014–1019.PubMedCrossRefGoogle Scholar
  7. 7.
    Trattnig S, Pinker K, Ba-Ssalamah A, Nöbauer-Huhmann IM. The optimal use of contrast agents at high field MRI. Eur Radiol. 2006;16:1280–1287. Review.Google Scholar
  8. 8.
    Kramer U, Fenchel M, Laub G, Seeger A, Klumpp B, Bretschneider C, Finn JP, Claussen CD, Miller S. Low-dose, time-resolved, contrast-enhanced 3D MR angiography in the assessment of the abdominal aorta and its major branches at 3 Tesla. Acad Radiol. 2010;17:564–576.PubMedCrossRefGoogle Scholar
  9. 9.
    Willinek WA, Born M, Simon B, Tschampa HJ, Krautmacher C, Gieseke J, Urbach H, Textor HJ, Schild H. Time-of-flight MR angiography: comparison of 3.0-T imaging and 1.5-T imaging- ­initial experience. Radiology. 2003;229:913–920.Google Scholar
  10. 10.
    Al-Kwifi O, Emery DJ, Wilman AH. Vessel contrast at three Tesla in time-of-flight magnetic resonance angiography of the intracranial and carotid arteries. Magn Reson Imaging. 2002;20:181–187.PubMedCrossRefGoogle Scholar
  11. 11.
    Gibbs GF, Huston J 3rd, Bernstein MA, Riederer SJ, Brown RD Jr. Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography. Am J Neuroradiol. 2004;25:84–87.Google Scholar
  12. 12.
    Abraham R, Ibrahim TS. Proposed radiofrequency phased-array excitation scheme for homogenous and localized 7-Tesla whole-body imaging based on full-wave numerical simulations. Magn Reson Med. 2007;57:235–242.PubMedCrossRefGoogle Scholar
  13. 13.
    Mao W, Smith MB, Collins CM. Exploring the limits of RF shimming for high-field MRI of the human head. Magn Reson Med. 2006;56:918–922.PubMedCrossRefGoogle Scholar
  14. 14.
    Van de Moortele PF, Akgun C, Adriany G, Moeller S, Ritter J, Collins CM, Smith MB, Vaughan JT, Uğurbil K. B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med. 2005;54:1503–1518.PubMedCrossRefGoogle Scholar
  15. 15.
    Ladd ME. High-field-strength magnetic resonance: potential and limits. Top Magn Reson Imaging. 2007;18:139–152. Review.Google Scholar
  16. 16.
    Cho ZH, Kang CK, Han JY, et al. Observation of the lenticulostriate arteries in the human brain in vivo using 7.0 T MR angiography. Stroke. 2008;39:1604–1606.PubMedCrossRefGoogle Scholar
  17. 17.
    Kang CK, Park CW, Han JY, et al. Imaging and analysis of lenticulostriate arteries using 7.0-Tesla magnetic resonance angiography. Magn Reson Med. 2009;61:136–144.PubMedCrossRefGoogle Scholar
  18. 18.
    von Morze C, Xu D, Purcell DD, et al. Intracranial time-of-flight MR angiography at 7 T with comparison to 3 T. J Magn Reson Imaging. 2007;26:900–904.CrossRefGoogle Scholar
  19. 19.
    Heverhagen JT, Bourekas E, Sammet S, Knopp MV, Schmalbrock P. Time-of-flight magnetic resonance angiography at 7 Tesla. Invest Radiol. 2008;43:568–573.PubMedCrossRefGoogle Scholar
  20. 20.
    Cho ZH, Kang CK, Han JY, et al. Functional MR angiography with 7.0 T Is direct observation of arterial response during neural activity possible? Neuroimage. 2008;42:70–75.PubMedCrossRefGoogle Scholar
  21. 21.
    Monninghoff C, Maderwald S, Theysohn JM, et al. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography - initial experience. Rofo. 2009;181:16–23.Google Scholar
  22. 22.
    Maderwald S, Ladd SC, Gizewski ER, et al. To TOF or not to TOF: strategies for non-contrast-enhanced intracranial MRA at 7 T. MAGMA. 2008;21:159–167.PubMedCrossRefGoogle Scholar
  23. 23.
    Zwanenburg JJ, Hendrikse J, Takahara T, Visser F, Luijten PR. MR angiography of the cerebral perforating arteries with magnetization prepared anatomical reference at 7 T: comparison with time-of-flight. J Magn Reson Imaging. 2008;28:1519–26.PubMedCrossRefGoogle Scholar
  24. 24.
    Liang L, Korogi Y, Sugahara T, et al. Evaluation of the intracranial dural sinuses with a 3D contrast-enhanced MP-RAGE sequence: prospective comparison with 2D-TOF MR venography and digital subtraction angiography. AJNR Am J Neuroradiol. 2001;22:481–492.PubMedGoogle Scholar
  25. 25.
    Van de Moortele PF, Auerbach EJ, Olman C, Yacoub E, Uğurbil K, Moeller S. T1 weighted brain images at 7 Tesla unbiased for Proton Density, T2* contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization. Neuroimage. 2009;46:432–46.PubMedCrossRefGoogle Scholar
  26. 26.
    Rofsky NM, Lee VS, Laub G, et al. Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology. 1999;212:876–884.PubMedGoogle Scholar
  27. 27.
    Wetzel SG, Law M, Lee VS, Cha S, Johnson G, Nelson K. Imaging of the intracranial venous system with a contrast- enhanced volumetric interpolated examination. Eur Radiol. 2003;13:1010–1018.PubMedGoogle Scholar
  28. 28.
    Weinmann HJ, Bauer H, Griesinger C, et al. Early distribution dynamics of polymeric magnetic resonance imaging contrast agents in rats. Acad Radiol. 2002;Suppl 2:S412-S416. No abstract available.Google Scholar
  29. 29.
    Noebauer-Huhmann IM, Kraff O, Juras V, et al. MR contrast media at 7 Tesla: preliminary study on relaxivities. Proc Intl Soc Mag Reson Med. 2008;16:1457.Google Scholar
  30. 30.
    Allkemper T, Heindel W, Kooijman H, Ebert W, Tombach B. Effect of field strengths on magnetic resonance angiography: comparison of an ultrasmall superparamagnetic iron oxide blood-pool contrast agent and gadopentetate dimeglumine in rabbits at 1.5 and 3.0 Tesla. Invest Radiol. 2006;41:97–104.PubMedCrossRefGoogle Scholar
  31. 31.
    Reichenbach JR, Barth M, Haacke EM, Klarhöfer M, Kaiser WA, Moser E. High-resolution MR venography at 3.0 Tesla. J Comput Assist Tomogr. 2000;24:949–957.Google Scholar
  32. 32.
    Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004;52:612–618.PubMedCrossRefGoogle Scholar
  33. 33.
    Deistung A, Rauscher A, Sedlacik J, Stadler J, Witoszynskyj S, Reichenbach JR. Susceptibility weighted imaging at ultra high magnetic field strengths: theoretical considerations and experimental results. Magn Reson Med. 2008;60:1155–1168.PubMedCrossRefGoogle Scholar
  34. 34.
    Koopmans PJ, Manniesing R, Niessen WJ, Viergever MA, Barth M. MR venography of the human brain using susceptibility weighted imaging at very high field strength. MAGMA. 2008;21:149–158.PubMedCrossRefGoogle Scholar
  35. 35.
    Rauscher A, Barth M, Herrmann KH, Witoszynskyj S, Deistung A, Reichenbach JR. Improved elimination of phase effects from background field inhomogeneities for susceptibility weighted imaging at high magnetic field strengths. Magn Reson Imaging. 2008;26:1145–1151.PubMedCrossRefGoogle Scholar
  36. 36.
    Snyder CJ, DelaBarre L, Metzger GJ, et al. Initial results of cardiac imaging at 7 Tesla. Magn Reson Med. 2009;61:517–524.PubMedCrossRefGoogle Scholar
  37. 37.
    Vaughan JT, Snyder CJ, DelaBarre LJ, et al. Whole-body imaging at 7 T: Preliminary results. Magn Reson Med. 2009;61:244–248.PubMedCrossRefGoogle Scholar
  38. 38.
    Bitz A, Brote I, Orzada S, et al. An 8-channel add-on RF shimming system for wholebody 7 Tesla MRI including real-time SAR monitoring. Proceedings of the 17th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Honolulu, HI, 2009, Abstract 4767.Google Scholar
  39. 39.
    Orzada S, Quick HH, Ladd ME, et al. A flexible 8-channel transmit/receive body coil for 7 T human imaging. Proceedings of the 17th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Honolulu, HI, 2009, Abstract 2999.Google Scholar
  40. 40.
    Umutlu L, Lauenstein TC, Kraff O, Maderwald S, Orzada S, Kinner S, Heilmaier C, Antoch G, Ladd ME, Quick HH. Non-enhanced vs. contrast-enhanced MRA at 7Tesla: A feasibility and comparison trial. Proceedings of the 18th Annual Meeting of International Society for Magnetic Resonance in Medicine, Stockholm, Sweden 2010; Abstract 1421.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Medical Physics (IMP)Friedrich-Alexander-University Erlangen-NürnbergErlangenGermany
  2. 2.Erwin L. Hahn Institute for MRIUniversity Duisburg-EssenEssenGermany

Personalised recommendations