Contrast-Enhanced MR Angiography of the Coronary Arteries

  • Qi Yang
  • Debiao Li


X-ray angiography is the current gold standard for the diagnosis of coronary artery disease (CAD). However, X-ray angiography is an invasive and costly procedure associated with a small but definite morbidity and mortality. There is a clear need for a noninvasive and more reliable method of directly detecting functionally significant CAD. Magnetic resonance imaging (MRI) overcomes a lot of the problems associated with X-ray angiography and has shown great advantages for the diagnosis of CAD. In addition to being noninvasive, radiation free, and cost-effective, it can provide functional, hemodynamic, and metabolic data as well as anatomical images in the same setting for a comprehensive exam of CAD.


Echo Planar Imaging Significant Coronary Artery Disease Free Breathing Gadobenate Dimeglumine Blood Pool Contrast Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wang Y, Vidan E, Bergman GW. Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology. 1999;213:751–758.PubMedGoogle Scholar
  2. 2.
    Li D, Kaushikkar S, Haacke E, et al. Coronary arteries: three-dimensional MR imaging with retrospective respiratory gating. Radiology. 1996;201:857–863.PubMedGoogle Scholar
  3. 3.
    Schar M, Kim WY, Stuber M, Boesiger P, Manning WJ, Botnar RM. The impact of spatial resolution and respiratory motion on MR imaging of atherosclerotic plaque. J Magn Reson Imaging. 2003;17:538–544.PubMedCrossRefGoogle Scholar
  4. 4.
    Edelman R, Manning W, Burstein D, Paulin S. Coronary arteries: breath-hold MR angiography. Radiology. 1991;181:641–643.PubMedGoogle Scholar
  5. 5.
    Li D, Paschal CB, Haacke EM, Adler LP. Coronary arteries: three-dimensional MR imaging with fat saturation and magnetization transfer contrast. Radiology. 1993;187:401–406.PubMedGoogle Scholar
  6. 6.
    Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ. Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation. 1999;99:3139–3148.PubMedGoogle Scholar
  7. 7.
    Brittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG. Coronary angiography with magnetization-prepared T2 contrast. Magn Reson Med. 1995;33:689–696.PubMedCrossRefGoogle Scholar
  8. 8.
    Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology. 2001;219:828–834.PubMedGoogle Scholar
  9. 9.
    Prince MR, Yucel EK, Kaufman JA, Harrison DC, Geller SC. Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging. 1993;3:877–881.PubMedCrossRefGoogle Scholar
  10. 10.
    Zheng J, Li D, Bae KT, Woodard P, Haacke EM. Three-dimensional gadolinium-enhanced coronary magnetic resonance angiography: initial experience. J Cardiovasc Magn Reson. 1999;1:33–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Anzai Y, Prince MR, Chenevert TL, et al. MR angiography with an ultrasmall superparamagnetic iron oxide blood pool agent. J Magn Reson Imaging. 1997;7:209–214.PubMedCrossRefGoogle Scholar
  12. 12.
    Huber ME, Paetsch I, Schnackenburg B, et al. Performance of a new gadolinium-based intravascular contrast agent in free-­breathing inversion-recovery 3D coronary MRA. Magn Reson Med. 2003;49:115–121.PubMedCrossRefGoogle Scholar
  13. 13.
    Foo TK, Saranathan M, Prince MR, Chenevert TL. Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. Radiology. 1997;203:275–280.PubMedGoogle Scholar
  14. 14.
    Wilman AH, Riederer SJ, King BF, Debbins JP, Rossman PJ, Ehman RL. Fluoroscopically triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: application to the renal arteries. Radiology. 1997;205:137–146.PubMedGoogle Scholar
  15. 15.
    Meyer CH, Hu BS, Nishimura DG, Macovski A. Fast spiral coronary artery imaging. Magn Reson Med. 1992;28:202–213.PubMedCrossRefGoogle Scholar
  16. 16.
    Stehning C, Bornert P, Nehrke K, Eggers H, Dossel O. Fast isotropic volumetric coronary MR angiography using free-breathing 3D radial balanced FFE acquisition. Magn Reson Med. 2004;52:197–203.PubMedCrossRefGoogle Scholar
  17. 17.
    Sakuma H, Ichikawa Y, Suzawa N, et al. Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology. 2005;237:316–321.PubMedCrossRefGoogle Scholar
  18. 18.
    Weber OM, Martin AJ, Higgins CB. Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med. 2003;50:1223–1228.PubMedCrossRefGoogle Scholar
  19. 19.
    Deshpande VS, Wielopolski PA, Shea SM, Carr JC, Zheng J, Li D. Coronary artery imaging using contrast-enhanced 3D segmented EPI. J Magn Reson Imaging. 2001;13:676–681.PubMedCrossRefGoogle Scholar
  20. 20.
    Bhat H, Zuehlsdorff S, Bi X, Li D. Whole-heart contrast-enhanced coronary magnetic resonance angiography using gradient echo interleaved EPI. Magn Reson Med. 2009;61:1388–1395.PubMedCrossRefGoogle Scholar
  21. 21.
    Deshpande VS, Shea SM, Li D. Artifact reduction in true-FISP imaging of the coronary arteries by adjusting imaging frequency. Magn Reson Med. 2003;49:803–809.PubMedCrossRefGoogle Scholar
  22. 22.
    Schar M, Kozerke S, Fischer SE, Boesiger P. Cardiac SSFP ­imaging at 3 Tesla. Magn Reson Med. 2004;51:799–806.PubMedCrossRefGoogle Scholar
  23. 23.
    Nezafat R, Stuber M, Ouwerkerk R, Gharib AM, Desai MY, Pettigrew RI. B1-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T. Magn Reson Med. 2006;55:858–864.PubMedCrossRefGoogle Scholar
  24. 24.
    van Elderen SG, Versluis MJ, Webb AG, et al. Initial results on in vivo human coronary MR angiography at 7 T. Magn Reson Med. 2009;62:1379–1384.PubMedCrossRefGoogle Scholar
  25. 25.
    Bi X, Carr JC, Li D. Whole-heart coronary magnetic resonance angiography at 3 Tesla in 5 minutes with slow infusion of Gd-BOPTA, a high-relaxivity clinical contrast agent. Magn Reson Med. 2007;58:1–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu X, Bi X, Huang J, Jerecic R, Carr J, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T: comparison with steady-state free precession technique at 1.5 T. Invest Radiol. 2008;43:663–668.PubMedCrossRefGoogle Scholar
  27. 27.
    Prompona M, Cyran C, Nikolaou K, Bauner K, Reiser M, Huber A. Contrast-enhanced whole-heart MR coronary angiography at 3.0 T using the intravascular contrast agent gadofosveset. Invest Radiol. 2009;44:369–374.PubMedCrossRefGoogle Scholar
  28. 28.
    Yang Q, Li K, Liu X, et al. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol. 2009;54:69–76.PubMedCrossRefGoogle Scholar
  29. 29.
    Sakuma H, Ichikawa Y, Chino S, Hirano T, Makino K, Takeda K. Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol. 2006;48:1946–1950.PubMedCrossRefGoogle Scholar
  30. 30.
    Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324–2336.PubMedCrossRefGoogle Scholar
  31. 31.
    Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M. Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med. 2010;152:167–177.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Qi Yang
    • 1
  • Debiao Li
    • 2
  1. 1.Department of Radiology, Xuanwu HospitalCapital Medical UniversityBeijingChina
  2. 2.Cedars-Sinai Medical CenterBiomedical Imaging Research InstituteLos AngelesUSA

Personalised recommendations