The Earth in Time

  • M. VázquezEmail author
  • E. Pallé
  • P. Montañés Rodríguez
Part of the Astronomy and Astrophysics Library book series (AAL)


The history of our planet is 4,500 million years old. During this time, it has undergone multiple changes that have clearly affected its global properties as seen from space. In this chapter, after an introduction on the present structure of the planet, we make a journey from the early days of the Earth to the present day, in its current state of global warming. Dissipation of the internal energy has configured a variable aspect of the surface. Together with the changes in the solar output, the varying concentration of greenhouse gases in the atmosphere has produced several climate changes with different periods and amplitudes. The activities of life, both in the past and in the present, have played an active role in the global evolution of the planet. At the end of the chapter, we stress the importance of the current age, the Anthropocene, in which humans are starting to influence the global environment.


Rayleigh Number Continental Crust Mantle Plume Plate Tectonic Benthic Foraminifera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott, D.H., Isley, A.E.: Extraterrestrial influences on mantle plume activity. Earth Planet. Sci. Lett. 205, 53–62 (2002)ADSGoogle Scholar
  2. Allègre, C.J., Manhès, G., Göpel, C.: The age of the Earth. Geochimica et Cosmochimica Acta 59, 1445–1456 (1995)ADSGoogle Scholar
  3. Allen, P.A., Etienne, J.L.: Sedimentary challenge to snowball Earth. Nat. Geosci. 1, 817–825 (2008)ADSGoogle Scholar
  4. Alvarez, L.W., Alvarez, W., Asaro, F., Michel, H.V.: Extraterrestrial cause for the cretaceous tertiary extinction. Science 208, 1095–1108 (1980)ADSGoogle Scholar
  5. Anguita, F.: Biografía de la Tierra: Historia de un planeta singular. Editorial Aguilar (2002)Google Scholar
  6. Araki, T., et al.: Experimental investigation of geologically produced antineutrinos with KamLAND. Nature 436, 499–468 (2005)ADSGoogle Scholar
  7. Arbab, A.I.: Evolution of angular momenta and energy of the Earth-Moon system. ArXiv Astrophysics e-prints (2003)Google Scholar
  8. Bains, S., Norris, S.D., Corfield, R.M., Faul, K.L.: Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407, 171–174 (2000)ADSGoogle Scholar
  9. Becker, L., Poreda, R.J., Basu, A.R., Pope, K.O., Harrison, T.M., Nicholson, C., Iasky, R.: Bedout: A possible end-permian impact crater offshore of Northwestern Australia. Science 304, 1469–1476 (2004)ADSGoogle Scholar
  10. Becker, L., Poreda, R.J., Hunt, A.G., Bunch, T.E., Rampino, M.: Impact event at the permian-triassic boundary: Evidence from extraterrestrial noble gases in fullerenes. Science 291, 1530–1534 (2001)ADSGoogle Scholar
  11. Benton, M.J.: Late triassic extinctions and the origin of dinosaurs. Science 260, 769–770 (1993)ADSGoogle Scholar
  12. Benton, M.J.: Diversification and extinction in the history of life. Science 268, 52–58 (1995)ADSGoogle Scholar
  13. Benton, M.J.: When life nearly died. Thames and Hudson, London (2003)Google Scholar
  14. Berger, A., Loutre, M.F.: CLIMATE: An exceptionally long interglacial ahead? Sci. 297, 1287–1288 (2002)Google Scholar
  15. Berner, R.: The phanerozoic carbon cycle: CO2 and O2. Oxford University Press, Oxford (2004)Google Scholar
  16. Berner, R.A.: Examination of hyphotheses for the permo-triassic boundary extinction by carbon cycle modeling. Proc. Natl. Acad. Sci. 99, 4172–4173 (2002)ADSGoogle Scholar
  17. Berner, R.A., Kothavala, Z.: GEOCARBIII: A revised model of atmospheric CO2 over phanerozoic time. Am. J. Sci. 301, 182–204 (2001)Google Scholar
  18. Berner, R.A., Lasaga, A.C., Garrels, R.M.: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983)Google Scholar
  19. Betts, R.A.: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000)ADSGoogle Scholar
  20. Bolfan-Casanova, N.: Water in the Earth’s mantle. Mineral. Mag. 69, 229–257 (2005)Google Scholar
  21. Bounama, C.: Thermische Evolution und Habitabilität erdähnlicher Exoplaneten. Thesis, Potsdam University (2007)Google Scholar
  22. Brocks, J.J., Buick, R., Logan, G.A., Summons, R.E.: Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim. Cosmochim. Acta 67, 4289–4319 (2003)ADSGoogle Scholar
  23. Brownlee, D., Ward, P.D.: Rare Earth: Why complex life is uncommon in the Universe. Springer, Heidelberg (2000)Google Scholar
  24. Brownlee, D., Ward, P.D.: The life and death of planet earth. Owl Books (2004)Google Scholar
  25. Budyko, M.I.: Te effect of solar radiation variations on the climate of the Earth. Tellus 21, 611–619 (1969)ADSGoogle Scholar
  26. Burchfield, J.D.: Lord Kelvin and the age of the Earth. University of Chicago Press, Chicago (1990)Google Scholar
  27. Burroughs, W.J.: Climate change in prehistory. Cambridge University Press, London (2005)Google Scholar
  28. Caldeira, K., Kasting, J.F.: The life span of the biosphere revisited. Nature 360, 721–723 (1992)ADSGoogle Scholar
  29. Came, R.E., Eiler, J.M., Veizer, J., Azmy, K., Brand, U., Weidman, C.R.: Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era. Nature 449, 198–201 (2007)ADSGoogle Scholar
  30. Canfield, D.E.: The early history of atmospheric oxygen: Homage to Robert M. Garrels. An. Rev. Earth Planet. Sci. 33, 1–36 (2005)ADSGoogle Scholar
  31. Canup, R.M.: Dynamics of lunar formation. An. Rev. Astron. Astrophys. 42, 441–475 (2004)ADSGoogle Scholar
  32. Canup, R.M., Asphaug, E.: Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).ADSGoogle Scholar
  33. Canup, R.M., Righter, K., et al.: Origin of the earth and moon. University of Arizona Press, AZ (2000)Google Scholar
  34. Canuto, V.M., Levine, J.S., Augustsson, T.R., Imhoff, C.L.: UV radiation from the young sun and oxygen and ozone levels in the prebiological palaeoatmosphere. Nature 296, 816–820 (1982)ADSGoogle Scholar
  35. Canuto, V.M., Levine, J.S., Augustsson, T.R., Imhoff, C.L., Giampapa, M.S.: The young sun and the atmosphere and photochemistry of the early earth. Nature 305, 281–286 (1983)ADSGoogle Scholar
  36. Carver, J.H., Vardavas, I.M.: Precambrian glaciations and the evolution of the atmosphere. Ann. Geophys. 12, 674–682 (1994)ADSGoogle Scholar
  37. Cess, R.D., Zhang, M.H., Ingram, W.J., Potter, G.L., Alekseev, V., Barker, H.W., Cohen-Solal, E., Colman, R.A., Dazlich, D.A., Del Genio, A.D., Dix, M.R., Esch, M., Fowler, L.D., Fraser, J.R., Galin, V., Gates, W.L., Hack, J.J., Kiehl, J.T., Le Treut, H., Lo, K.K.W., McAvaney, B.J., Meleshko, V.P., Morcrette, J.J., Randall, D.A., Roeckner, E., Royer, J.F., Schlesinger, M.E., Sporyshev, P.V., Timbal, B., Volodin, E.M., Taylor, K.E., Wang, W., Wetherald, R.T.: Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res. 101, 12,791–12,794 (1996)ADSGoogle Scholar
  38. Chamberlain, J.W.: Theory of planetary atmospheres. Academic, NY (1987)Google Scholar
  39. Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley Jr., J.A., Hansen, J.E., Hofmann, D.J.: Climate forcing by anthropogenic aerosols. Science 255, 423–430 (1992)ADSGoogle Scholar
  40. Claire, M.W., Catling, D.C., Zahnle, K.J.: Biochemical modelling of the rise in atmospheric oxygen. Geobiology 4, 239–269 (2006)Google Scholar
  41. Cleaves, H.J., Chalmers, J.H., Lazcano, A., Miller, S.L., Bada, J.L.: A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Origins of Life and Evolution of the Biosphere 38, 105–115 (2008)ADSGoogle Scholar
  42. Cockell, C.S.: The ultraviolet history of the terrestrial planets – implications for biological evolution. Planet. Space Sci. 48, 203–214 (2000)ADSGoogle Scholar
  43. Condie, K.C.: Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet. Sci. Lett. 163, 97–108 (1998)ADSGoogle Scholar
  44. Condie, K.C.: Mantle plumes and their record in earth history. Cambridge University Press, London (2001)Google Scholar
  45. Condie, K.C.: Continental growth during a 1.9-Ga superplume event. J. Geodyn. 34, 249–264 (2002)Google Scholar
  46. Condie, K.C.: Earth as an evolving planetary system. Academic, NY (2004a)Google Scholar
  47. Condie, K.C.: Supercontinents and superplume events: distinguishing signals in the geologic record. Phys. Earth Planet. In. 146, 319–332 (2004b)ADSGoogle Scholar
  48. Courtillot, V.: Evolutionary catastrophes. Cambridge University Press, London (1999)Google Scholar
  49. Courtillot, V., Olson, P.: Mantle plumes link magnetic superchrons to phanerozoic mass depletion events. Earth Planet. Sci. Lett. 260, 495–504 (2007)ADSGoogle Scholar
  50. Crowley, T.J., Hyde, W.T.: Transient nature of late Pleistocene climate variability. Nature 456, 226–230 (2008)ADSGoogle Scholar
  51. Crutzen, P.J.: The anthropocene. J. Phys. 12, 1–5 (2002a)Google Scholar
  52. Crutzen, P.J.: Geology of mankind. Nature 415, 23 (2002b)Google Scholar
  53. Crutzen, P.J., Stoermer, E.F.: The anthropocene. Global Change Newslett. 41, 12–13 (2000)Google Scholar
  54. Darling, D.: Life everywhere. Basic Books, London (2002)Google Scholar
  55. Dauphas, N., Cates, N.L., Mojzsis, S.J., Busigny, V.: Identification of chemical sedimentary protoliths using iron isotopes in the > 3750 Ma Nuvvuagittuq supracrustal belt, Canada. Earth Planet. Sci. Lett. 254, 358–376 (2007)ADSGoogle Scholar
  56. de Jager, C.: Solar Energy Sources. In: ASSL Vol. 29: The sun. Part 1 of solar-terrestrial physics/1970, pp. 1–8. D. Reidel, Dordrecht (1972)Google Scholar
  57. De Laubenfels, M.W.: Dinosaur extinction: One more hypothesis. J. Paleontology 30, 207–218 (1956)Google Scholar
  58. de Pater, I., Lissauer, J.J.: Planetary sciences. Cambridge University Press, London (2001)Google Scholar
  59. De Wit, M.J., Hart, R.A.: Earth’s earliest continental litosphere, hydrothermal flux and crustal recycling. Lithos 30, 309–335 (1993)ADSGoogle Scholar
  60. Delaye, L., Lazcano, A.: Prebiological evolution and the physics of the origin of life. Phys. Life Rev. 2, 47–64 (2005)ADSGoogle Scholar
  61. Dickey, J.O., Bender, P.L., Faller, J.E., Newhall, X.X., Ricklefs, R.L., Ries, J.G., Shelus, P.J., Veillet, C., Whipple, A.L., Wiant, J.R., Williams, J.G., Yoder, C.F.: Lunar laser ranging – a continuing legacy of the apollo program. Science 265, 482–490 (1994)ADSGoogle Scholar
  62. Diziewonski, A.M., Anderson, D.L.: Preliminary Earth reference model. Phys. Earth Plan. In. 25, 297–356 (1981)ADSGoogle Scholar
  63. Ebelmen, J.J.: Sur les produits de la decomposition des especes minérales de la famile des silicates. Annu. Rev. Moines 12, 627–654 (1845)Google Scholar
  64. Ervin, D.H.: The permo-triassic extinction. Nature 367, 231–236 (1994)ADSGoogle Scholar
  65. Erwin, D.H.: Extinction: How life on Earth nealy ended 251 million years ago. Princeton University Press, NJ (2006)Google Scholar
  66. Fletcher, B.J., Brentnall, S.J., Anderson, C.W., Berner, R.A., Beerling, D.J.: Atmopsheric carbon dioxide linked with Mesozoic and early Cenozoic climate change. Nat. Geosci. 1, 43–48 (2008)ADSGoogle Scholar
  67. Fourier, J.: Remarques Générales Sur les Temperatures Du Globe Terrestre et des Espaces Planétaires. Annales de Chemie et de Physique 27, 136–167 (1824)Google Scholar
  68. Franck, S.: Evolution of the global mean heat flow over 4.6 Gyr. Tectonophysics 291, 9–18 (1998)ADSGoogle Scholar
  69. Franck, S., Block, A., von Bloh, W., Bounama, C., Schellnhuber, H.J., Svirezhev, Y.: Habitable zone for Earth-like planets in the solar system. Planet. Space Sci. 48, 1099–1105 (2000)ADSGoogle Scholar
  70. Franck, S., Bounama, C.: Continental growth and volatile exchange during Earth’s evolution. Phys. Earth Planet. In. 100, 189–196 (1997)ADSGoogle Scholar
  71. Franck, S., Bounama, C., von Bloh, W.: Causes and timing of future biosphere extinction. Biogeosciences Discussions 2, 1665–1679 (2005)ADSGoogle Scholar
  72. Franck, S., Kossacki, K.J., von Bloh, W., Bounama, C.: Long-term evolution of the global carbon cycle: historic minimum of global surface temperature at present. Tellus B Chem. Phys. Meteorol. 54, 325 (2002)ADSGoogle Scholar
  73. Garcia-Pichel, F.: Solar ultraviolet and the evolutionary history of cyanobacteria. Origins of Life and Evolution of the Biosphere 28, 321–347 (1998)ADSGoogle Scholar
  74. Gehrels, T., Matthews, M.S., Schumann, A.M. (eds.): Hazards due to comets and asteroids. University of Arizona Press, AZ (1994)Google Scholar
  75. Glatzmaier, G.A., Coe, R.S., Hongre, L., Roberts, P.H.: The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature 401, 885–890 (1999)ADSGoogle Scholar
  76. Glatzmaier, G.A., Roberts, P.H.: Rotation and magnetism of Earth’s inner core. Science 274, 1887–1891 (1996)ADSGoogle Scholar
  77. Goldblatt, C., Lenton, T.M., Watson, A.J.: Bistability of atmospheric oxygen and the great oxydation. Nature 443, 683–686 (2006)ADSGoogle Scholar
  78. Gough, D.O.: Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981)ADSGoogle Scholar
  79. Graham, J.B., Dudley, R., Aguilar, N.M., Gaub, C.: Implications of the late Paleozoic oxygen pulse for physiology and evolution. Nature 375, 117–120 (1995)ADSGoogle Scholar
  80. Güdel, M.: The Sun in time: Activity and environment. Living Rev. Sol. Phys. 4, 3 (2007)ADSGoogle Scholar
  81. Hallan, A., Wignall, P.B.: Mass extinctions and their aftermath. Oxford University Press, Oxford (1997)Google Scholar
  82. Hanslmeier, A.: Habitability and cosmic catastrophes. Springer, Heidelberg (2008)Google Scholar
  83. Harries, J.E.: The greenhouse Earth: A view from space. Q. J. Meteorol. Soc. 122, 799–818 (1996)ADSGoogle Scholar
  84. Hartmann, W.K., Davis, D.R.: Satellite-sized planetesimals and lunar origin. Icarus 24, 504–514 (1975)ADSGoogle Scholar
  85. Hedges, S.B., Blair, J.M., Venturi, M., Shoe, J.L.: A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4 (2004)Google Scholar
  86. Herndon, J.M.: Sub-structure of the inner core of the Earth. Proc. Natl. Acad. Sci. 93, 646–648 (1996)ADSGoogle Scholar
  87. Hess, H.: History of Ocean Basins. In: A.E. Engel, H.L. James, B.F. Leonard (eds.) Petrologic Studies, pp. 599–620. Geological Society of America, Co (1962)Google Scholar
  88. Hilburn, I.A., Kirschvink, J.L., Tajika, E., Tada, R., Hamano, Y., Yamamoto, S.: A negative fold test on the Lorrain formation of the huronian supergroup: Uncertainty on the paleolatitude of the Paleoproterozoic Gowganda glaciation and implications for the great oxygenation event. Earth Planet. Sci. Lett. 232, 315–332 (2005)ADSGoogle Scholar
  89. Hillebrand, A.R., Pemfield, G., Kring, D.A., Pilkington, M., Camargo, A., Jacobsen, S.B., Boynton, W.V.: Chicxulub crater: a possible cretaceous/tertiary boundary impact crater on the Yucatan peninsula, Mexico. Geology 19, 867–871 (1991)ADSGoogle Scholar
  90. Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, D.P.: A Neoproterozoic Snowball Earth. Science 281, 1342–1346 (1998)ADSGoogle Scholar
  91. Hoffman, P.F., Schrag, D.P.: The snowball Earth hypothesis: Testing the limits of global change. Terra Nova 14, 129–155 (2002)Google Scholar
  92. Holland, H.D.: Volcanic gases, black smokers, and the great oxidation event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002)ADSGoogle Scholar
  93. Hopkins, M., Harrison, T.M., Manning, C.E.: Low heat flow inferred from > 4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456, 493–496 (2008)ADSGoogle Scholar
  94. Houghton, J.: The physics of atmospheres, 3rd edn. Cambridge University Press, London (2002)Google Scholar
  95. Houghton, J.: Global warming. Rep. Progr. Phys. 68, 1343–1403 (2005)ADSGoogle Scholar
  96. Houghton, J.T.: Global warming: The complete briefing. Cambridge University Press, London (1997)Google Scholar
  97. Houghton, J.T., Meiro Filho, L.G., Callander, B.A., Harris, N., Kattenburg, A., Maskell, K.: Climate change 1995: The science of climate change. Cambridge University Press, Cambridge, UK (1996)Google Scholar
  98. Hoyle, F., Wickramasinghe, C.: Comets, ice ages, and ecological catastrophes. Astrophys. Space Sci. 53, 523–526 (1978)ADSGoogle Scholar
  99. Hyde, W.T., Crowley, T.J., Baum, S.K., Peltier, W.R.: Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature 405, 425–429 (2000)ADSGoogle Scholar
  100. IPCC: Climate change 2007 – The physical science basis. Cambridge University Press, London (2007)Google Scholar
  101. Isley, A.E., Abbott, D.H.: Plume-related mafic volcanism and the deposition of banded iron formation. J. Geophys. Res. 104, 15,461–15,477 (1999)ADSGoogle Scholar
  102. Johnson, A.P., Cleaves, H.J., Dworkin, J.P., Glavin, D.P., Lazcano, A., Bada, J.L.: The miller volcanic spark discharge experiment. Science 322, 404 (2008)ADSGoogle Scholar
  103. Kasting, J.: Comments on the BLAG model: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 284, 1175–1182 (1984)Google Scholar
  104. Kasting, J.F.: Peter Ward and Donald Brownlee’s rare Earth. Perspect. Biol. Med. 44, 117–131 (2000)Google Scholar
  105. Kasting, J.F., Catling, D.: Evolution of a habitable planet. Ann. Rev. Astron. Astrophys. 41, 429–463 (2003)ADSGoogle Scholar
  106. Kasting, J.F., Donahue, T.M.: The evolution of atmospheric ozone. J. Geophys. Res. 85, 3255–3263 (1980)ADSGoogle Scholar
  107. Kasting, J.F., Ono, S.: Paleoclimates: The first two billion years. Phil. Trans. Roy. Soc. B 361, 917–929 (2006)Google Scholar
  108. Kasting, J.F., Siefert, J.L.: Life and the evolution of Earth’s atmosphere. Science 296, 1066–1068 (2002)ADSGoogle Scholar
  109. Kasting, J.F., Toon, O.B.: Climate evolution on the terrestrial planets, pp. 423–449. University of Arizona Press, AZ (1989)Google Scholar
  110. Katz, M.E., Cramer, B.S., Mountain, G.S., Katz, S., Miller, K.G.: Uncorking the bottle: What trigered the Paleocene/Eocene thermal maximum methane release? Paleoceanography 16, 549–562 (2001)ADSGoogle Scholar
  111. Kelvin, W.T.: On the secular cooling of the earth. Trans. Roy. Soc. Edinb. 23, 157–170 (1863)Google Scholar
  112. Kennedy, M., Mrofka, D., Von der Borch, C.: Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature 453, 642–645 (2008)ADSGoogle Scholar
  113. Kirschvink, J.L.: Late Proterozoic low latitude glaciation: The snowball Earth. In: Schopf, J.W., Klein, C. (eds.) The Proterozoic Biosphere: A Multidisciplinary Study, pp. 51–52. Cambridge University Press, London (1992)Google Scholar
  114. Kirschvink, J.L., Ripperdan, R., Evans, D.: Evidence for a large-scale reorganization of early cambrian continental masses by inertial interchange true polar wander. Science 277, 541–545 (1997)Google Scholar
  115. Kleine, T., Münker, C., Mezger, K., Palme, H.: Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418, 952–955 (2002)ADSGoogle Scholar
  116. Knauth, L.P., Lowe, D.R.: High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. GSA Bull. 115, 566–580 (2003)Google Scholar
  117. Knoll, A.: The early evolution of eukaryotes: A geological perspective. Science 256, 622–627 (1992)ADSGoogle Scholar
  118. Knoll, A.H.: A geological consequences of evolution. Geobiology 1, 3–14 (2003)ADSGoogle Scholar
  119. Kopp, R.E., Kirschvink, J.L., Hilburn, I.A., Nash, C.: The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. 102, 11,131–11,136 (2005)Google Scholar
  120. Korenaga, J.: Urey ratio and the structure and evolution of Earth’s mantle. Rev. Geophys. 46, G2007 (2008)ADSGoogle Scholar
  121. Kump, L.R.: The rise of atmospheric oxygen. Nature 451, 277–278 (2008)ADSGoogle Scholar
  122. Kump, L.R., Barley, M.E.: Increased subaerial volcanisms and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007)ADSGoogle Scholar
  123. Kump, L.R., Kasting, J.F., Crane, R.: The Earth system, 2nd edn. Pearson, Prentice-Hall (2004)Google Scholar
  124. Kusky, T.M., Li, J.H., Tucker, R.D.: The Archean Dongwanzi Ophiolite Complex, North China Craton: 2.505-billion-year-old oceanic crust and mantle. Science 292, 1142–1145 (2001)ADSGoogle Scholar
  125. Kyte, F.T.: A meteorite from the cretaceous/tertiary boundary. Nature 361, 608–615 (1998)ADSGoogle Scholar
  126. Lambeck, K.: The Earth’s variable rotation. Cambridge University Press, London (2005)Google Scholar
  127. Lane, N.: Oxygen, the molecule that made the world. Oxford University Press, London (2002)Google Scholar
  128. Lee, K.K.M., Jeanloz, R.: High-pressure alloying of potassium and iron: Radioactivity in the Earth’s core? Geophys. Res. Lett. 30(23), 230000–1 (2003)Google Scholar
  129. Lenton, T.M., von Bloh, W.: Biotic feedback extends the life span of the biosphere. Geophys. Res. Lett. 28, 1715–1718 (2001)ADSGoogle Scholar
  130. Levrard, B., Laskar, J.: Climate friction and the Earth’s obliquity. Geophys. J. Int. 154, 970–990 (2003)ADSGoogle Scholar
  131. Lindsay, J.F., Brasier, M.D.: Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian basins. Precambrian Res. 114, 1–34 (2002)Google Scholar
  132. Liou, K.N.: An introduction to atmospheric physics. In: International Geophysics Series, vol. 84, 2nd edn. Academic, NY (2002)Google Scholar
  133. Lisiecki, L., Raymo, M.E.: A Pliocene-Pleiostocene stack of 57 globally distributed benthic 180 records. Paleoceanography 20 (2005)Google Scholar
  134. Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J.M., Raynaud, D., Stocker, T.F., Chapellaz, J.: Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, 383–386 (2008)ADSGoogle Scholar
  135. Lovelock, J.: Gaia: A new look at life on Earth. Oxford University Press, London (1979)Google Scholar
  136. Lovelock, J.E., Margulis, L.M.: Atmospheric homeostasis by and for the biosphere: The Gaia hypothesis. Tellus 26, 2–10 (1974)ADSGoogle Scholar
  137. Lovelock, J.E., Whitfield, M.: Life span of the biosphere. Nature 296, 561–563 (1982)ADSGoogle Scholar
  138. Lunine, J.I.: Earth: Evolution of a habitable world. Cambridge University Press, London (1999)Google Scholar
  139. Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., Stocker, T.F.: High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453, 379–382 (2008)ADSGoogle Scholar
  140. Marshall, C.R.: Explaining the Cambrian explosion of animals. Ann. Rev. Earth Planet. Sci. 34, 355–384 (2006)ADSGoogle Scholar
  141. Martin, P., van Hunen, J., Parman, S., Davidson, J.: Why does plate tectonics occur only on Earth? Phys. Educ. 43, 144–150 (2008)ADSGoogle Scholar
  142. Mc Ghee, G.R.: The late devonian mass extinction. Columbia University Press, NY (1996)Google Scholar
  143. Mc Neill, J.R.: Something new under the Sun. W.W. Norton Co., New York (2000)Google Scholar
  144. McDonough, W.F.: Compositional model for the Earth’s core. Treatise on Geochemistry 2, 547–568 (2003)ADSGoogle Scholar
  145. McMenamin, M.: The Garden of Ediacara: Discovering the first complex life. Columbia University Press, New York (1998)Google Scholar
  146. Messina, S., Guinan, E.F.: Magnetic activity of six young solar analogues I. Starspot cycles from long-term photometry. Astron. Astrophys. 393, 225–237 (2002)ADSGoogle Scholar
  147. Miller, S.: A production of aminoacids under possible primitive Earth conditions. Science 117, 528–529 (1953)ADSGoogle Scholar
  148. Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P., Friend, C.R.L.: Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59 (1996)ADSGoogle Scholar
  149. Morbidelli, A., Chambers, J., Lunine, J.I., Petit, J.M., Robert, F., Valsecchi, G.B., Cyr, K.E.: Source regions and time scales for the delivery of water to Earth. Meteoritics Planet. Sci. 35, 1309–1320 (2000)ADSGoogle Scholar
  150. Morgan, W.J.: Convection plumes in the lower mantle. Nature 230, 42–43 (1971)ADSGoogle Scholar
  151. Mullally, F., Winget, D.E., Degennaro, S., Jeffery, E., Thompson, S.E., Chandler, D., Kepler, S.O.: Limits on planets around pulsating white dwarf stars. Astrophys. J. 676, 573–583 (2008)ADSGoogle Scholar
  152. Name, A.N.: Impact eject layer from the mid-Devonian: possible connection to global mass extinctions. Science 300, 1734–1737 (2003)Google Scholar
  153. Neukum, G., Ivanov, B.A., Hartmann, W.K.: Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev. 96, 55–86 (2001)ADSGoogle Scholar
  154. Newman, M.J., Rood, R.T.: Implications of solar evolution for the earth’s early atmosphere. Science 198, 1035–1037 (1977)ADSGoogle Scholar
  155. Nield, T.: Supercontinent: Ten billion years in the life of our planet. Harvard University Press, MA (2007)Google Scholar
  156. North, G.R., Cahalan, R.F., Coakley Jr., J.A.: Energy balance climate models. Rev. Geophys. Space Phys. 19, 91–121 (1981)ADSGoogle Scholar
  157. Oldham, R.D.: The constitution of the interior of the Earth as revealed by Earth quakes. Q. J. Geol. Soc. Lond. 62, 456–472 (1906)Google Scholar
  158. Olsen, P.E., et al.: Ascent of dinosaurs linked to iridium anomaly in the Triassic-Jurassic boundary. Science 296, 1305–1307 (2002)ADSGoogle Scholar
  159. Oró, J., Lazcano, A., Ehrenfreund, P.: Comets and the origin and evolution of life. In: McKay, C.P. (ed.) Comets and the Origin and Evolution of Life, pp. 1–28 2nd edn. Advances in Astrobiology and Biogeophysics. Springer, Heidelberg (2006)Google Scholar
  160. Orth, C.J., Gilmore, J.S., Knight, J.D., Pillmore, C., Tschudy, R., Fasset, J.E.: An iridium abundance anomaly at the palynological cretaceous-tertiary boundary in northern New Mexico. Science 214, 1341–1343 (1981)ADSGoogle Scholar
  161. Palme, H., O’Neill, H.S.C.: Cosmochemical estimates of mantle composition. Treatise on Geochemistry 2, 1–38 (2003)ADSGoogle Scholar
  162. Palmer, T.: Controversy: Catastrophism and evolution: The ongoing debate. Kluwer, Dordecht (1997)Google Scholar
  163. Patterson, C.: Age of meteorites and the earth. Geochim. Cosmochim. Acta 10, 230–237 (1956)ADSGoogle Scholar
  164. Pavlov, A.A., Brown, L.L., Kasting, J.F.: UV shielding of NH3 and O 2 by organic hazes in the Archean atmosphere. J. Geophys. Res. 106, 23,267–23,288 (2001)ADSGoogle Scholar
  165. Pavlov, A.A., Kasting, J., Brown, L., Rages, K.A., Freedmsan, R.: Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res. 105, 11,981–11,990 (2000)ADSGoogle Scholar
  166. Pavlov, A.A., Kasting, J.F.: Mass-independent fractionation of sulfur isotopes in archean sediments: Strong evidence for an anoxic archean atmosphere. Astrobiology 2, 27–41 (2002)ADSGoogle Scholar
  167. Peltier, W.R., Liu, Y., Crowley, J.W.: Snowball Earth prevention by dissolved organic carbon remineralization. Nature 450, 813–818 (2007)ADSGoogle Scholar
  168. Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J., Basile, I., Bender, M., Chapellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., Stievenard, M.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)Google Scholar
  169. Pinti, D.L.: The Origin and evolution of the oceans. In: Lectures in Astrobiology, vol. 1, pp. 83–112. Springer, Heidelberg (2005)Google Scholar
  170. Poirier, J.P.: Introduction to the physics of the Earth’s interior. Cambridge University Press, London (1991)Google Scholar
  171. Pollack, H.N., Hurter, S.J., Johnson, J.: Heat flow from the Earth’s interior: analysis of the global data set. Rev. Geophys. 31, 267–280 (1993)ADSGoogle Scholar
  172. Rahmstorf, S., Cazenave, A., Church, J.A., Hansen, J.E., Keeling, R.F., Parker, D.E., Somerville, R.C.J.: Recent climate observations compared to projections. Science 316, 709 (2007)ADSGoogle Scholar
  173. Ramanathan, V., Cess, R.D., Harrison, E.F., Minnis, P., Barkstrom, B.R., Ahmad, E., Hartmann, D.: Cloud-radiative forcing and climate: Results from the Earth radiation budget experiment. Science 243, 57–63 (1989)ADSGoogle Scholar
  174. Rampino, M.R., Stothers, R.B.: Flood basalt volcanism during the past 250 million years. Science 241, 663–667 (1998)ADSGoogle Scholar
  175. Randall, D.A., Cess, R.D., Blanchet, J.P., Chalita, S., Colman, R., Dazlich, D.A., Del Genio, A.D., Keup, E., Lacis, A., Le Treut, H., Liang, X.Z., McAvaney, B.J., Mahfouf, J.F., Meleshko, V.P., Morcrette, J.J., Norris, P.M., Potter, G.L., Rikus, L., Roeckner, E., Royer, J.F., Schlese, U., Sheinin, D.A., Sokolov, A.P., Taylor, K.E., Wetherald, R.T., Yagai, I., Zhang, M.H.: Analysis of snow feedbacks in 14 general circulation models. J. Geophys. Res. 99, 20,757–20,772 (1994)ADSGoogle Scholar
  176. Rasio, F.A., Tout, C.A., Lubow, S.H., Livio, M.: Tidal decay of close planetary orbits. Astrophys. J. 470, 1187–1191 (1996)ADSGoogle Scholar
  177. Raup, D.M.: Extinctions: Bad genes or bad luck. W.W. Norton, NY (1992)Google Scholar
  178. Raval, A., Ramanathan, V.: Observational determination of the greenhouse effect. Nature 342, 758–761 (1989)ADSGoogle Scholar
  179. Raymond, S.N., Quinn, T., Lunine, J.I.: Making other earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168, 1–17 (2004)ADSGoogle Scholar
  180. Retter, A., Marom, A.: A model of an expanding giant that swallowed planets for the eruption of V838 Monocerotis. Mon. Not. Roy. Astron. Soc. 345, L25–L28 (2003)ADSGoogle Scholar
  181. Ribas, I., Guinan, E.F., Güdel, M., Audard, M.: Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1-1700 Å). Astrophys. J. 622, 680–694 (2005)ADSGoogle Scholar
  182. Richter, F.M.: Kelvin and the age of the Earth. J. Geology 94, 395–401 (1986)ADSGoogle Scholar
  183. Rogers, J.W., Santosh, M.: Continents and supercontinents. Oxford University Press, London (2004)Google Scholar
  184. Royer, D.L., Berner, R.A., Park, J.: Climate sensitivity constarined by CO2 concentrations over the past 420 million years. Nature 446, 530–532 (2007)ADSGoogle Scholar
  185. Ruddiman, W.F.: Plows, plagues and petroleum. Princeton University Press, NJ (2005)Google Scholar
  186. Rudwick, M.: Georges cuvier, fossil bones, and geological catastrophes. The University of Chicago Press, Chicago (1997)Google Scholar
  187. Russell, M.J., Hall, A.J., Cairns-Smith, A.G., Braterman, P.: Submarine hot springs and the origin of life. Nature 336, 117 (1988)ADSGoogle Scholar
  188. Rybicki, K.R., Denis, C.: On the final destiny of the Earth and the solar system. Icarus 151, 130–137 (2001)ADSGoogle Scholar
  189. Ryder, G.: Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. J. Geophys. Res. (Planets) 107, 5022 (2002)ADSGoogle Scholar
  190. Ryder, G.: Bombardment of the hadean Earth: Wholesome or deleterious? Astrobiology 3, 3–6 (2003)ADSGoogle Scholar
  191. Rye, R., Holland, H.D.: Life associated with a 2.76 Ga ephemeral pond? Evidence from Mount Roe 2 paleosol. Geology 28, 483–486 (2000)ADSGoogle Scholar
  192. Rye, R., Kuo, P.H., Holland, H.D.: Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature 378, 603–605 (1995)ADSGoogle Scholar
  193. Sackmann, I.J., Boothroyd, A.I.: Our Sun. V. A bright young sun consistent with helioseismology and warm temperatures on ancient Earth and Mars. Astrophys. J. 583, 1024–1039 (2003)Google Scholar
  194. Sackmann, I.J., Boothroyd, A.I., Kraemer, K.E.: Our Sun. III. Present and Future. Astrophys. J. 418, 457–468 (1993)ADSGoogle Scholar
  195. Sankaran, A.V.: When did plate tectonics begin? Curr. Sci. 90, 1596–1597 (2006)Google Scholar
  196. Schellnhuber, H.J.: Earth system analysis and the second Copernican revolution. Nature 402, C19–C23 (1999)Google Scholar
  197. Schopf, J.: Earth’s earliest biosphere, its origin and evolution. Princeton University Press, NJ (1983)Google Scholar
  198. Schröder, K.P., Connon Smith, R.: Distant future of the Sun and Earth revisited. Mon. Not. Roy. Astron. Soc. 386, 155–163 (2008)ADSGoogle Scholar
  199. Schroder, P., Smith, R., Apps, K.: Solar evolution and the distant future of Earth. Astron. Geophys. 42, 26–29 (2001)Google Scholar
  200. Schubert, G., Turcotte, D.L., Olson, P.: Mantle convection in the Earth and planets. Cambridge University Press, London (2001)Google Scholar
  201. Schwartzman, D.: Temperature and the evolution of the Earth’s biosphere. In: Shostak, G.S. (ed.) ASP Conf. Ser. 74: Progress in the Search for Extraterrestrial Life, pp. 153–164 (1995)Google Scholar
  202. Schwartzman, D., Caldeira, K., Pavlov, A.: Cyanobacterial emergence at 2.8 Gya and greenhouse feedbacks. Astrobiology 8, 187–203 (2008)ADSGoogle Scholar
  203. Schwartzman, D., Middendorf, G.: Biospheric cooling and the emergence of intelligence. In: Lemarchand, G., Meech, K. (eds.) ASP Conf. Ser. 213: Bioastronomy 99, pp. 425–430 (2000)Google Scholar
  204. Schwartzman, D.W., Volk, T.: Biotic enhancement of weathering and the habitability of Earth. Nature 340, 457–460 (1989)ADSGoogle Scholar
  205. Scott, A., Glasspool, I.J.: The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc. Acad. Natl. Sci. USA 103, 10,861–10,865 (2006)Google Scholar
  206. Scott, C., Lyons, T.W., Bekker, A., Shen, Y., Poulton, S.W., Chu, X., Ambar, A.D.: Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 456–459 (2008)ADSGoogle Scholar
  207. Sheehan, P.M.: The late ordovician mass extinction. Annu. Rev. Earth Planet. Sci. 29, 331–364 (2001)ADSGoogle Scholar
  208. Shields, G.A., Veizer, J.: The Precambrian marine carbonate isotope database: Version 1.1. Geochem. Geophys. Geosyst. 3, 1031 (2002)Google Scholar
  209. Shoemaker, E.M.: Asteroid and comet bombardment of the earth. Annu. Rev. Earth Planet. Sci. 11, 461–494 (1983)ADSGoogle Scholar
  210. Silver, P.G., Behn, M.D.: Intermittent plate tectonics? Science 319, 85–88 (2008)ADSGoogle Scholar
  211. Silvotti, R., Schuh, S., Janulis, R., Solheim, J.E., Bernabei, S., Østensen, R., Oswalt, T.D., Bruni, I., Gualandi, R., Bonanno, A., Vauclair, G., Reed, M., Chen, C.W., Leibowitz, E., Paparo, M., Baran, A., Charpinet, S., Dolez, N., Kawaler, S., Kurtz, D., Moskalik, P., Riddle, R., Zola, S.: A giant planet orbiting the extreme horizontal branch star V391 Pegasi. Nature 449, 189–191 (2007)ADSGoogle Scholar
  212. Skumanich, A.: Time scales for CA II emission decay, rotational braking, and lithium depletion. Astrophys. J. 171, 565–567 (1972)ADSGoogle Scholar
  213. Sleep, N.H.: Evolution of the mode of convection within terrestrial planets. J. Geophys. Res. 105, 17,563–17,578 (2000)ADSGoogle Scholar
  214. Sleep, N.H.: Evolution of the continental lithosphere. Ann. Rev. Earth Planet. Sci. 33, 369–393 (2005)ADSGoogle Scholar
  215. Sonett, C.P., Kvale, E.P., Zakharian, A., Chan, M.A., Demko, T.M.: Late proterozoic and paleozoic tides, retreat of the moon, and rotation of the Earth. Science 273, 100–104 (1996)ADSGoogle Scholar
  216. Stanley, S.M.: Exploring the Earth through time. W.H. Freeman, CA (1992)Google Scholar
  217. Stanley, S.M.: Earth system history. W.H. Freeman, CA (1999)Google Scholar
  218. Steffen, W., Sanderson, A., Tyson, P., Jäger, J., Matson, P., Moore, B., Oldfield, F., Richardson, K., Schellnhuber, H., Turner, B., Wasson, R.J.: Global change and the Earth system: A planet under pressure. Springer, Heidelberg (2005)Google Scholar
  219. Stern, N.: The economics of climate change: The stern review. Cambridge University Press. (2006)Google Scholar
  220. Stern, R.J.: Subduction zones. Rev. Geophys. 40, 1012 (2002)ADSGoogle Scholar
  221. Stern, R.J.: Evidence from ophiolites, blueschists, and ultra-high pressure metamorphic terranes that the modern episode of subduction tectonics began in neoproterozoic time. Geology 33, 557–560 (2005)ADSGoogle Scholar
  222. Stevenson, D.J.: Origin of the moon – The collision hypothesis. Ann. Rev. Earth Planet. Sci. 15, 271–315 (1987)ADSGoogle Scholar
  223. Strom, R.G., Malhotra, R., Ito, T., Yoshida, F., Kring, D.A.: The origin of planetary impactors in the inner solar system. Science 309, 1847–1850 (2005)ADSGoogle Scholar
  224. Taylor, F.W.: The Stratosphere. Phil. Trans. Roy. Soc. Lond. 361, 11–22 (2003)ADSGoogle Scholar
  225. Tera, F., Papanastassiou, D.A., Wasserburg, G.J.: Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22, 1–21 (1974)ADSGoogle Scholar
  226. Thomas, C.D.: Extinction risk from climate change. Nature 427, 145–148 (2004)ADSGoogle Scholar
  227. Tice, M.M., Lowe, D.R.: Photosynthetic microbial mats in the 3,416-Myr-old oecan. Nature 431, 549–552 (2004)ADSGoogle Scholar
  228. Torsvik, T.H., Rehnströhm, E.F.: Cambrian paleomagnetic data from Baltica:Implications for true polar wander and Cambrian paleogeography. J. Geol. Soc. Lond. 158, 321–329 (2001)Google Scholar
  229. Touboul, M., Kleine, T., Bourdon, B., Palme, H., Wieler, R.: Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450, 1206–1209 (2007)ADSGoogle Scholar
  230. Touma, J., Wisdom, J.: Resonances in the early evolution of the Earth-Moon system. Astron. J. 115, 1653–1663 (1998)ADSGoogle Scholar
  231. Trainer, M.G., Pavlov, A.A., Curtis, D.B., McKay, C.P., Worsnop, D.R., Delia, A.E., Toohey, D.W., Toon, O.B., Tolbert, M.A.: Haze aerosols in the atmosphere of Early Earth: Manna from heaven. Astrobiology 4, 409–419 (2004)ADSGoogle Scholar
  232. Tyndall, J.: On the relation of radiant heat to aqueous vapor. Phil. Mag. 4 26, 30–54 (1863)Google Scholar
  233. Urey, H.C.: The planets: Their origin and development. Yale University Press, New Haven (1952)Google Scholar
  234. Urey, H.C.: Cometary collisions and geological periods. Nature 242, 32–33 (1973)ADSGoogle Scholar
  235. Valley, J.W., Peck, W.H., King, E.M., Wilde, S.A.: A cool early Earth. Geology 30, 351–354 (2002)ADSGoogle Scholar
  236. Veizer, J., Godderis, Y., François, L.M.: Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408, 698–701 (2000)ADSGoogle Scholar
  237. Villaver, E., Livio, M.: Can planets survive stellar evolution? Astrophys. J. 661, 1192–1201 (2007)ADSGoogle Scholar
  238. Vitousek, P.M., D’Antonio, C., Loope, L., Westbrooks, R.: Biological invasions as global environmental change. Am. Sci. 84, 468–478 (1996)ADSGoogle Scholar
  239. Volk, T.: Feedbacks between weathering and atmospheric CO2 over the last 100 million years. Am. J. Sci. 287, 763–779 (1987)Google Scholar
  240. Volk, T.: Gaia’s body: Towards a physiology of Earth. MIT, MA (2003)Google Scholar
  241. Walker, J.C.G., Hays, P.B., Kasting, J.F.: A negative feedback mechanism for the long-term stabilization of the earth’s surface temperature. J. Geophys. Res. 86, 9776–9782 (1981)ADSGoogle Scholar
  242. Wang, K., Orth, C.J., Attrep, M., Chatterton, B.D., Hou, H., Geldsetzer, H.H.: Geochemical evidence for a catastrophic biotic event at the Frasnian/Famennian boundary in South China. Geology 19, 776–779 (1991)ADSGoogle Scholar
  243. Ward, P.D.: Life as we do not know it. Viking Penguin, NY (2005)Google Scholar
  244. Ward, P.D., et al.: Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science 292, 1148–1151 (2001)ADSGoogle Scholar
  245. Watson, A.: Implications of an anthropic model of evolution for the emergence of complex life and intelligence. Astrobiology 8, 175–185 (2008)ADSGoogle Scholar
  246. Wilde, S., Valley, J., Peck, W., Graham, C.: Evidence from detrital zircons for the existence of continental crust and oceans on the Earth at 4.4 Gyr ago. Nature 409, 175–178 (2001)ADSGoogle Scholar
  247. Wilhelms, D.E., McCauley, J.F., Trask, N.J.: The geologic history of the moon. USGS Professional Paper 1348 : For sale by the Books and Open-file Reports Section, US Geological Survey (1987)Google Scholar
  248. Williams, D.M., Kasting, J.F., Frakes, L.A.: Low-latitude glaciation and rapid changes in the Earth’s obliquity explained by obliquity-oblateness feedback. Nature 396, 453–455 (1998)ADSGoogle Scholar
  249. Williams, G.D.: Tidal rhyhmites: Key to the history of the Earth’s rotation and the lunar orbit. J. Phys. Earth 38, 475–491 (1990)Google Scholar
  250. Williams, G.E.: Precambrian length of day and the validity of tidal rhythmite paleotidal values. Geophys. Res. Lett. 24, 421–424 (1997)ADSGoogle Scholar
  251. Williams, G.E.: Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit. Rev. Geophys. 38, 37–60 (2000)ADSGoogle Scholar
  252. Wilson, J.T.: Did the Atlantic close and then re-open? Nature 211, 676–681 (1966)ADSGoogle Scholar
  253. Wilson, T.J.: A possible origin of the Hawaiian islands. Can. J. Phys. 41, 863–868 (1963)ADSGoogle Scholar
  254. Wise, R.R., Hoober, J.K. (eds.): The structure and function of plastids, advances in photosynthesis and respiration, vol. 23. Springer, Heidelberg (1994)Google Scholar
  255. Woese, C.R., Kandler, O., Wheeler, M.L.: Towards a natural system of organisms: Proposal for the domains archaea, bacteria and eucarya. Proc. Natl. Acad. Sci. 87, 4576 (1990)ADSGoogle Scholar
  256. Wolszczan, A., Frail, D.A.: A planetary system around the millisecond pulsar PSR1257 + 12. Nature 355, 145–147 (1992)ADSGoogle Scholar
  257. Wood, B.E., Müller, H.R., Zank, G.P., Linsky, J.L., Redfield, S.: New mass-loss measurements from astrospheric Lyα absorption. Astrophys. J. 628, L143–L146 (2005)ADSGoogle Scholar
  258. Wood, B.J., Walter, M.J., Wade, J.: Accretion of the Earth and segregation of its core. Nature 441, 825–833 (2006)ADSGoogle Scholar
  259. Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)ADSGoogle Scholar
  260. Zahnle, K., Claire, M., Catling, D.: The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4, 271–283 (2006)Google Scholar
  261. Zahnle, K., Arndt, N., Cockell, C., Halliday, A., Nisbet, E., Selsis, F., Sleep, N.H.: Emergence of a Habitable Planet. Space Sci. Rev. 129, 35–78 (2007)ADSGoogle Scholar
  262. Zalasiewicz, J., et al.: Are now living in the Anthropocene? GSA Today 18, 4–8 (2008)Google Scholar
  263. Zeebe, R.E., Caldeira, K.: Close mass balance of long-term carbon fluxes from ice-core CO2 and ocean chemistry records. Nat. Geosci. 1, 312–315 (2008)ADSGoogle Scholar
  264. Zhang, Y.: The age and accretion of the Earth. Earth Sci. Rev. 59, 235–263 (2002)ADSGoogle Scholar
  265. Zharkov, V.: Interior structure of the Earth & planets. Harwood Academic Publishers, Switzerland (1986)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. Vázquez
    • 1
    Email author
  • E. Pallé
    • 1
  • P. Montañés Rodríguez
    • 1
  1. 1.Instituto de Astrofísica de CanariasTenerifeSpain

Personalised recommendations