Scatter Search and Path-Relinking: Fundamentals, Advances, and Applications

  • Mauricio G.C. Resende
  • Celso C. Ribeiro
  • Fred Glover
  • Rafael Martí
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 146)

Abstract

Scatter search is an evolutionary metaheuristic that explores solution spaces by evolving a set of reference points, operating on a small set of solutions while making only limited use of randomization. We give a comprehensive description of the elements and methods that make up its template, including the most recent elements incorporated in successful applications in both global and combinatorial optimization. Path-relinking is an intensification strategy to explore trajectories connecting elite solutions obtained by heuristic methods such as scatter search, tabu search, and GRASP. We describe its mechanics, implementation issues, randomization, the use of pools of high-quality solutions to hybridize path-relinking with other heuristic methods, and evolutionary path-relinking. We also describe the hybridization of path-relinking with genetic algorithms to implement a progressive crossover operator. Some successful applications of scatter search and of path-relinking are also reported.

References

  1. 1.
    Aiex, R.M., Pardalos, P.M., Resende, M.G.C., Toraldo., G.: GRASP with path-relinking for three-index assignment. INFORMS J. Comput., 17:224–247 (2005)CrossRefGoogle Scholar
  2. 2.
    Egea, J., Martí, R., Banga, J.: An evolutionary method for complex-process optimization. Comput. Oper. Res. (2009). doi:10.1016/j.cor.2009.05.003.Google Scholar
  3. 3.
    Faria, H., Jr., Binato, S., Resende, M.G.C., Falcão., D.J.: Transmission network design by a greedy randomized adaptive path relinking approach. IEEE Trans. Power Syst., 20:43–49 (2005)CrossRefGoogle Scholar
  4. 4.
    Festa, P., Pardalos, P.M., Pitsoulis, L.S., Resende., M.G.C.: GRASP with path-relinking for the weighted MAXSAT problem. ACM J. Exp. Algorithmics, 11:1–16 (2006)Google Scholar
  5. 5.
    Glover., F.: Heuristics for integer programming using surrogate constraints. Decis. Sci., 8:156–166 (1977)CrossRefGoogle Scholar
  6. 6.
    Glover., F.: Tabu search and adaptive memory programing – Advances, applications and challenges. In: Barr, R.S., Helgason, R.V., Kennington, J.L. (eds.) Interfaces in Computer Science and Operations Research, 1–75. Kluwer, Boston, MA, USA (1996)Google Scholar
  7. 7.
    Glover., F.: A template for scatter search and path relinking. In Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) Artificial Evolution, Third European Conference, AE97, Lecture Notes in Computer Science, vol. 1363 pp. 13–54. Springer, Nimes, France (1998)Google Scholar
  8. 8.
    Glover., F.: Multi-start and strategic oscillation methods – principles to exploit adaptive memory. In: Laguna, M., Gonzáles-Velarde, J.L. (eds.), Computing Tools for Modeling, Optimization and Simulation: Interfaces in Computer Science and Operations Research, pp. 1–24. Kluwer, Boston, MA, USA (2000)CrossRefGoogle Scholar
  9. 9.
    Glover, F., Laguna., M.: Tabu Search. Kluwer, Boston, MA, USA (1997)CrossRefGoogle Scholar
  10. 10.
    Glover, F., Laguna, M., Martí., R.: Fundamentals of scatter search and path relinking. Cont. Cybern., 39:653–684 (2000)Google Scholar
  11. 11.
    Glover, F., Laguna, M., Martí., R.: Scatter search and path relinking: foundations and advanced designs. In: Godfrey, C. O., Babu, B.V. (eds.), New Optimization Techniques in Engineering, Studies in Fuzziness and Soft Computing vol. 141, pp. 87–100. Springer, Berlin, Germany (2004)Google Scholar
  12. 12.
    Laguna M., Martí., R.: GRASP and path relinking for 2-layer straight line crossing minimization. INFORMS J. Comput., 11:44–52 (1999)CrossRefGoogle Scholar
  13. 13.
    Laguna, M., Martí., R.: Scatter search: methodology and implementations in C. Operations Research/Computer Science Interfaces Series. Kluwer, Boston (2003)Google Scholar
  14. 14.
    Martí, R. (ed.).: Feature cluster on scatter search methods for optimization. European J. Oper. Res., 169(2):351–698 (2006)Google Scholar
  15. 15.
    Oliveira, C.A., Pardalos, P.M., Resende., M.G.C.: GRASP with path-relinking for the quadratic assignment problem. In: Ribeiro, C.C., Martins, S.L. (eds.), Proceedings of III Workshop on Efficient and Experimental Algorithms, vol. 3059, pp. 356–368. Springer (2004)Google Scholar
  16. 16.
    Martí, R., Duarte, A., Laguna., M.: Advanced scatter search for the max-cut problem. INFORMS J. Comput., 21:26–38 (2009)CrossRefGoogle Scholar
  17. 17.
    Ranjbar, M., Kianfar, F., Shadrokh., S.: Solving the resource availability cost problem in project scheduling by path relinking and genetic algorithm. Appl. Math. Comput., 196:879–888 (2008)CrossRefGoogle Scholar
  18. 18.
    Resende, M.G.C., Martí, R., Gallego, M., Duarte., A.: GRASP and path relinking for the max-min diversity problem. Comput. Oper. Res. (2008) Published online 28 May 2008, doi: 10.1016/j.cor.2008.05.011.Google Scholar
  19. 19.
    Resende, M.G.C., Ribeiro., C.C.: GRASP with path-relinking: Recent advances and applications. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers, pp. 29–63. Springer (2005)Google Scholar
  20. 20.
    Resende, M.G.C., Werneck., R.F.: A hybrid heuristic for the p-median problem. J. Heuristics, 10:59–88 (2004)CrossRefGoogle Scholar
  21. 21.
    Ribeiro, C.C., Rosseti., I.: A parallel GRASP heuristic for the 2-path network design problem. In: Proceedings of Euro-Par 2002, Lecture Notes in Computer Science vol. 2400, pp. 922–926. Springer, Paderborn (2002)Google Scholar
  22. 22.
    Ribeiro, C.C., Vianna., D.S.: A genetic algorithm for the phylogeny problem using an optimized crossover strategy based on path-relinking. In: Anais do II Workshop Brasileiro de Bioinformatica, pp. 97–102, Macaé (2003)Google Scholar
  23. 23.
    Ribeiro, C.C., Vianna., D.S.: A hybrid genetic algorithm for the phylogeny problem using path-relinking as a progressive crossover strategy. Int. Trans. Oper. Res., 16(5):641–657 (2009)CrossRefGoogle Scholar
  24. 24.
    Vallada, E., Ruiz., R.: New genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem. Omega, 38:57–67 (2010) doi:10.1016/j.omega.2009.04.002.CrossRefGoogle Scholar
  25. 25.
    Zhang, G.Q., Lai., K.K.: Combining path relinking and genetic algorithms for the multiple-level warehouse layout problem. Eur. J. Oper. Res., 169:413–425 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mauricio G.C. Resende
    • 1
  • Celso C. Ribeiro
    • 2
  • Fred Glover
    • 3
  • Rafael Martí
    • 4
  1. 1.Algorithms and Optimization Research DepartmentAT&T Labs ResearchFlorham ParkUSA
  2. 2.Computer Science DepartmentUniversidade Federal FluminenseNiteróiBrazil
  3. 3.University of Colorado and OptTek Systems, Inc.BoulderUSA
  4. 4.Departamento de Estadística e Investigación OperativaUniversidad de ValenciaValenciaSpain

Personalised recommendations