Metaheuristic Hybrids

  • Günther R. Raidl
  • Jakob Puchinger
  • Christian Blum
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 146)


Over the last years, so-called hybrid optimization approaches have become increasingly popular for addressing hard optimization problems. In fact, when looking at leading applications of metaheuristics for complex real-world scenarios, many if not most of them do not purely adhere to one specific classical metaheuristic model but rather combine different algorithmic techniques. Concepts from different metaheuristics are often hybridized with each other, but they are also often combined with other optimization techniques such as branch-and-bound and methods from the mathematical programming and constraint programming fields. Such combinations aim at exploiting the particular advantages of the individual components, and in fact well-designed hybrids often perform substantially better than their “pure” counterparts. Many very different ways of hybridizing metaheuristics are described in the literature, and unfortunately it is usually difficult to decide which approach(es) are most appropriate in a particular situation. This chapter gives an overview of this topic by starting with a classification of metaheuristic hybrids and then discussing several prominent design templates which are illustrated by concrete examples.


Local Search Tabu Search Mixed Integer Linear Programming Problem Column Generation Constraint Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Günther R. Raidl is supported by the Austrian Science Fund (FWF) under grant 811378 and by the Austrian Exchange Service (Acciones Integradas, grant 13/2006). NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence program. Christian Blum is supported by grants TIN2005-08818 (OPLINK) and TIN2007-66523 (FORMALISM) of the Spanish government, and by the EU project FRONTS (FP7-ICT-2007-1). He also acknowledges support from the Ramón y Cajal program of the Spanish Ministry of Science and Technology.


  1. 1.
    Aggarwal, C., Orlin, J., Tai, R.: Optimized crossover for the independent set problem. Oper. Res. 45, 226–234 (1997)CrossRefGoogle Scholar
  2. 2.
    Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Appl. Math. 123(1–3), 75–102 (2002)CrossRefGoogle Scholar
  3. 3.
    Ahuja, R.K., Orlin, J., Sharma, D.: Multi-exchange neighborhood search algorithms for the capacitated minimum spanning tree problem. Math. Programming 91(1), 71–97 (2001)Google Scholar
  4. 4.
    Ahuja, R., Orlin, J., Tiwari, A.: A greedy genetic algorithm for the quadratic assignment problem. Comput. Oper. Res. 27, 917–934 (2000)CrossRefGoogle Scholar
  5. 5.
    Al-Shihabi, S.: Ants for sampling in the nested partition algorithm. In: Blum et al. [22], pp. 11–18.Google Scholar
  6. 6.
    Alba, E. (ed.): Parallel Metaheuristics: A New Class of Algorithms. Wiley, (2005)Google Scholar
  7. 7.
    Almeida, F., Blesa Aguilera, M.J., Blum, C., Moreno Vega, J.M., Pérez Pérez, M., Roli, A., Sampels, M. (eds.) Proceedings of HM 2006 – Third International Workshop on Hybrid Metaheuristics, Lecture Notes in Computer Science, vol. 4030 Springer, Berlin (2006)Google Scholar
  8. 8.
    Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: On the solution of the traveling salesman problem. Documenta Mathematica, Extra Volume ICM III, 645–656 (1998)Google Scholar
  9. 9.
    Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2007)Google Scholar
  10. 10.
    Augerat, P., Belenguer, J.M., Benavent, E., Corberan, A., Naddef, D.: Separating capacity constraints in the CVRP using tabu search. Eur. J. Oper. Res. 106(2), 546–557 (1999)CrossRefGoogle Scholar
  11. 11.
    Barahona, F., Anbil, R.: The volume algorithm: Producing primal solutions with a subgradient method. Math. Programming, Series A, 87(3), 385–399 (2000)CrossRefGoogle Scholar
  12. 12.
    Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. Proceedings of HM 2007 – Fourth International Workshop on Hybrid Metaheuristics, Lecture Notes in Computer Science. vol. 4771 Springer, Berlin (2007)Google Scholar
  13. 13.
    Beck J. Christopher: Solution-guided multi-point constructive search for job shop scheduling. J. Artif. Intell. Res. 29, 49–77 (2007)Google Scholar
  14. 14.
    Binato, S., Hery, W.J., Loewenstern, D., Resende, M.G.C.: A GRASP for job shop scheduling. In: Ribeiro, C.C., Hansen, P., (eds.) Essays and Surveys on Metaheuristics, pp. 59–79. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  15. 15.
    Blesa Aguilera, M.J., Blum, C., Roli, A., Sampels, M., Proceedings of HM 2005 – Second International Workshop on Hybrid Metaheuristics. Lecture Notes in Computer Science. vol. 3636 Springer, Berlin (2005)Google Scholar
  16. 16.
    Blum, C.: Beam-ACO: Hybridizing ant colony optimization with beam search: An application to open shop scheduling. Comput. Oper. Res. 32(6):1565–1591, 2005.CrossRefGoogle Scholar
  17. 17.
    Blum, C.: A new hybrid evolutionary algorithm for the k-cardinality tree problem. In: Proceedings of the Genetic and Evolutionary Computation Conference 2006, pp. 515–522. ACM Press, New York, NY, July 8–12 (2006)Google Scholar
  18. 18.
    Blum, C.: Beam-ACO for simple assembly line balancing. INFORMS J. Comput. 20(4), 618–627 (2008)CrossRefGoogle Scholar
  19. 19.
    Blum, C., Blesa, M.: Combining ant colony optimization with dynamic programming for solving the k-cardinality tree problem. In: Proceedings of IWANN 2005 – 8th International Work-Conference on Artificial Neural Networks, Computational Intelligence and Bioinspired Systems, number 3512 in Lecture Notes in Computer Science, pp. 25–33, Springer, Berlin (2005)Google Scholar
  20. 20.
    Blum, C., Blesa Aguilera, M.J., Roli, A., Sampels, M.: (eds.) Hybrid Metaheuristics – An Emerging Approach to Optimization, volume 114 of Studies in Computational Intelligence. Springer, Berlin (2008)Google Scholar
  21. 21.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surveys 35(3), 268–308 (2003)CrossRefGoogle Scholar
  22. 22.
    Blum, C., Roli, A., Sampels, M. Proceedings of HM 2004 – First International Workshop on Hybrid Metaheuristics, Valencia, Spain (2004)Google Scholar
  23. 23.
    Büdenbender, K., Grünert, T., Sebastian, H.-J.: A hybrid tabu search/branch-and-bound algorithm for the direct flight network design problem. Transportation Sci., 34(4), 364–380 (2000)CrossRefGoogle Scholar
  24. 24.
    Chiarandini, M., Dumitrescu, I., Stützle, T.: Very large-scale neighborhood search: Overview and case studies on coloring problems. In: Blum et al. [20], pp. 117–150Google Scholar
  25. 25.
    Chu, P. C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. J. Heuristics 4, 63–86 (1998)CrossRefGoogle Scholar
  26. 26.
    Cohoon, J., Hegde, S., artin, W., Richards, D.: Punctuated equilibria: A parallel genetic algorithm. In: Grefenstette, J. (ed.) Proceedings of the Second International Conference on Genetic Algorithms, pp. 148–154. Lawrence Erlbaum Associates, Mahwah, NJ 1987Google Scholar
  27. 27.
    Congram, R.K.: Polynomially searchable exponential neighbourhoods for sequencing problems in combinatorial optimisation. PhD thesis, University of Southampton, Faculty of Mathematical Studies, UK (2000)Google Scholar
  28. 28.
    Congram, R.K., Potts, C.N., van de Velde, S.L.: An iterated Dynasearch algorithm for the single-machine total weighted tardiness scheduling problem. INFORMS J. Comput. 14(1), 52–67 (2002)CrossRefGoogle Scholar
  29. 29.
    Cotta, C.: A study of hybridisation techniques and their application to the design of evolutionary algorithms. AI Commun. 11(3–4), 223–224 (1998)Google Scholar
  30. 30.
    Cotta, C., Troya, J.M.: Embedding branch and bound within evolutionary algorithms. Appl. Intell. 18, 137–153 (2003)CrossRefGoogle Scholar
  31. 31.
    Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to improve MIP solutions. Math. Programming, Series A, 102, 71–90 (2005)CrossRefGoogle Scholar
  32. 32.
    Denzinger, J., Offermann, T.: On cooperation between evolutionary algorithms and other search paradigms. In: Porto, W. et al. (eds.) Proceedings of the 1999 Congress on Evolutionary Computation (CEC), vol. 3, pp. 2317–2324. IEEE Press, Piscataway, NJ (1999)CrossRefGoogle Scholar
  33. 33.
    Dooms, G., Van Hentenryck, P., Michel, L.: Model-driven visualizations of constraint-based local search. In: Bessiere, C. (ed.) Principles and Practice of Constraint Programming – CP 2007, 13th International Conference, Lecture Notes in Computer Science, vol. 4741, pp. 271–285. Springer, Berlin (2007)Google Scholar
  34. 34.
    Dowsland, K.A., Herbert, E.A., Kendall, G., Burke, E.: Using tree search bounds to enhance a genetic algorithm approach to two rectangle packing problems. Eur. J. Oper. Res. 168(2), 390–402 (2006)CrossRefGoogle Scholar
  35. 35.
    Duarte, A.R., Ribeiro, C.C., Urrutia, S.: A hybrid ILS heuristic to the referee assignment problem with an embedded MIP strategy. In: Bartz-Beielstein et al. [12], pp. 82–95Google Scholar
  36. 36.
    Dumitrescu, I., Stuetzle, T.: Combinations of local search and exact algorithms. In: Raidl, G.R. et al. (eds.) Applications of Evolutionary Computation, Lecture Notes in Computer Science, vol. 2611, pp. 211–223. Springer, Berlin (2003)Google Scholar
  37. 37.
    El-Abd, M., Kamel, M.: A taxonomy of cooperative search algorithms. In: Blesa Aguilera et al. [15], pp. 32–41Google Scholar
  38. 38.
    Eremeev, A.V.: On complexity of optimal recombination for binary representations of solutions. Evol. Comput. 16(1), 127–147 (2008)CrossRefGoogle Scholar
  39. 39.
    Ergun, Ö., Orlin, J.B.: A dynamic programming methodology in very large scale neighborhood search applied to the traveling salesman problem. Discrete Optimization, 3(1), 78–85 (2006)CrossRefGoogle Scholar
  40. 40.
    Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Global Optimization 6, 109–133 (1995)CrossRefGoogle Scholar
  41. 41.
    Filho, G.R., Lorena, L.A.N.: Constructive genetic algorithm and column generation: An application to graph coloring. In: Chuen, L.P. (ed.) Proceedings of APORS 2000, the Fifth Conference of the Association of Asian-Pacific Operations Research Societies Within IFORS, Singapore (2000)Google Scholar
  42. 42.
    Fischetti, M., Lodi, A.: Local branching. Math. Programming, Series B 98, 23–47 (2003)CrossRefGoogle Scholar
  43. 43.
    Fischetti, M., Polo, C., Scantamburlo, M.: Local branching heuristic for mixed-integer programs with 2-level variables, with an application to a telecommunication network design problem. Networks 44(2), 61–72 (2004)CrossRefGoogle Scholar
  44. 44.
    Fleurent, C., Glover, F.: Improved constructive multistart strategies for the quadratic assignment problem using adaptive memory. INFORMS J. Comput. 11, 198–204 (1999)CrossRefGoogle Scholar
  45. 45.
    Focacci, F., Laburthe, F., Lodi, A.: Local search and constraint programming: LS and CP illustrated on a transportation problem. In: Milano, M. (ed.) Constraint and Integer Programming. Towards a Unified Methodology, pp. 293–329. Kluwer Academic Publishers, 2004.Google Scholar
  46. 46.
    Galinier, P., Hertz, A., Paroz, S., Pesant, G.: Using local search to speed up filtering algorithms for some NP-hard constraints. In: Perron and Trick [74], p. 298–302Google Scholar
  47. 47.
    Gilmour, S., Dras, M.: Kernelization as heuristic structure for the vertex cover problem. In: Dorigo, M., et al., editors, Proceedings of ANTS 2006 – 5th International Workshop on Ant Colony Optimization and Swarm Intelligence. Lecture Notes in Computer Science, vol. 4150, pp. 452–459. Springer, Berlin (2006)Google Scholar
  48. 48.
    Glover, F.: Surrogate constraints. Operations Research 16(4), 741–749 (1968)CrossRefGoogle Scholar
  49. 49.
    Glover, F.: Parametric tabu-search for mixed integer programming. Computers and Operations Research, 33(9), 2449–2494 (2006)CrossRefGoogle Scholar
  50. 50.
    Glover, F., Laguna, M., Martí, R.: Fundamentals of scatter search and path relinking. Control and Cybernetics 39(3), 653–684 (2000)Google Scholar
  51. 51.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Learning. Addison-Wesley, Reading, MA (1989)Google Scholar
  52. 52.
    Gruber, M., Raidl, G.R.: (Meta-)heuristic separation of jump cuts for the bounded diameter minimum spanning tree problem. In: Hansen et al. [53].Google Scholar
  53. 53.
    Hansen, P., Maniezzo, V., Fischetti, M., Stuetzle, T. (eds.) Proceedings of Matheuristics 2008: Second International Workshop on Model Based Metaheuristics, Bertinoro, Italy (2008)Google Scholar
  54. 54.
    Hansen, P., Mladenovic, N., Perez-Britos, D.: Variable neighborhood decomposition search. J. Heuristics 7(4), 335–350 (2001)CrossRefGoogle Scholar
  55. 55.
    Hansen, P., Mladenović, N., Urosević, D.: Variable neighborhood search and local branching. Comput. Oper. Res. 33(10), 3034–3045 (2006)CrossRefGoogle Scholar
  56. 56.
    Haouari, M., Siala, J.C.: A hybrid Lagrangian genetic algorithm for the prize collecting Steiner tree problem. Comput. Oper. Res. 33(5), 1274–1288 (2006)CrossRefGoogle Scholar
  57. 57.
    Hu, B., Leitner, M., Raidl, G.R.: Combining variable neighborhood search with integer linear programming for the generalized minimum spanning tree problem. J. Heuristics 14(5), 473–479 (2008)CrossRefGoogle Scholar
  58. 58.
    Hu, B., Raidl. G.R.: Effective neighborhood structures for the generalized traveling salesman problem. In: van Hemert, J., Cotta, C. (eds.) Evolutionary Computation in Combinatorial Optimisation – EvoCOP 2008, Lecture Notes in Computer Science, vol. 4972 pp. 36–47. Springer, Berlin (2008)Google Scholar
  59. 59.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)Google Scholar
  60. 60.
    Klau, G.W., Lesh, N., Marks, J., Mitzenmacher, M.: Human-guided search: Survey and recent results. Journal of Heuristics (2007, submitted)Google Scholar
  61. 61.
    Lejeune, M.A.: A variable neighborhood decomposition search method for supply chain management planning problems. Eur. J. Oper. Res. 175(2), 959–976 (2006)CrossRefGoogle Scholar
  62. 62.
    Maniezzo, V.: Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS J. Comput. 11(4), 358–369 (1999)CrossRefGoogle Scholar
  63. 63.
    Maniezzo, V., Carbonaro, A.: An ANTS heuristic for the frequency assignment problem. Future Generation Comput. Syst. 16, 927–935 (2000)CrossRefGoogle Scholar
  64. 64.
    Maniezzo, V., Hansen, P., Voss, S. (eds.) Proceedings of Matheuristics 2006: First International Workshop on Mathematical Contributions to Metaheuristics, Bertinoro, Italy (2006)Google Scholar
  65. 65.
    Marriott, K., Stuckey, P.J.: Introduction to Constraint Logic Programming. MIT Press, Cambridge, MA, (1998)Google Scholar
  66. 66.
    Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the traveling salesman problem. Complex Systems 5, 299–326 (1991)Google Scholar
  67. 67.
    Meyer, B., Ernst, A.: Integrating ACO and constraint propagation. In: Dorigo, M., et al. (eds.) Proceedings of ANTS 2004 – Fourth International Workshop on Ant Colony Optimization and Swarm Intelligence, Lecture Notes in Computer Science, vol. 3172, pp. 166–177. Springer, Berlin (2004)Google Scholar
  68. 68.
    Michel, L., See, A., Van Hentenryck, P.: Distributed constraint-based local search. In: Benhamou, F. (ed.) Principles and Practice of Constraint Programming – CP 2006, 12th International Conference, Lecture Notes in Computer Science, vol. 4204, pp. 344–358. Springer, Berlin (2006)Google Scholar
  69. 69.
    Moscato, P.: Memetic algorithms: A short introduction. In: Corne, D., et al. (eds.) New Ideas in Optimization, p. 219–234. McGraw Hill, New York, NY (1999)Google Scholar
  70. 70.
    Nagar, A., Heragu, S.S., Haddock, J.: A meta-heuristic algorithm for a bi-criteria scheduling problem. Ann. Oper. Res. 63, 397–414 (1995)CrossRefGoogle Scholar
  71. 71.
    Neto, T., Pedroso, J.P.: GRASP for linear integer programming. In: Sousa, J.P., Resende, M.G.C. (eds.) Metaheuristics: Computer Decision Making, Combinatorial Optimization Book Series, pp. 545–574. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  72. 72.
    Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. Int. J. Prod. Res. 26, 297–307 (1988)CrossRefGoogle Scholar
  73. 73.
    Pedroso, J.P.: Tabu search for mixed integer programming. In: Rego, C., Alidaee, B. (eds.) Metaheuristic Optimization via Memory and Evolution, Operations Research/Computer Science Interfaces Series, vol. 30, pp. 247–261. Springer, Berlin (2005)CrossRefGoogle Scholar
  74. 74.
    Perron, L., Trick, M.A. (eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems – CPAIOR 2008, 5th International Conference, vol. 5015 Lecture Notes in Computer Science. Springer, Berlin (2008)Google Scholar
  75. 75.
    Pesant, G., Gendreau, M.: A constraint programming framework for local search methods. J. Heuristics 5(3), 255–279 (1999)CrossRefGoogle Scholar
  76. 76.
    Pirkwieser, S., Raidl, G.R., Puchinger, J.: Combining Lagrangian decomposition with an evolutionary algorithm for the knapsack constrained maximum spanning tree problem. In: Cotta, C., van Hemert, J. (eds.) Evolutionary Computation in Combinatorial Optimization – EvoCOP 2007, Lecture Notes in Computer Science, vol. 4446, pp. 176–187. Springer, Berlin (2007)Google Scholar
  77. 77.
    Pisinger, D.: Core problems in knapsack algorithms. Operations Research 47, 570–575 (1999)CrossRefGoogle Scholar
  78. 78.
    Plateau, A., Tachat, D., Tolla, P.: A hybrid search combining interior point methods and metaheuristics for 0–1 programming. Int. Trans. Oper. Res. 9, 731–746 (2002)CrossRefGoogle Scholar
  79. 79.
    Prandtstetter, M., Raidl, G.R.: An integer linear programming approach and a hybrid variable neighborhood search for the car sequencing problem. Eur. J. Oper. Res. 191(3), 1004–1022 (2008)CrossRefGoogle Scholar
  80. 80.
    Puchinger, J., Raidl, G.R.: An evolutionary algorithm for column generation in integer programming: An effective approach for 2D bin packing. In: Yao, X., et al. (eds.) Parallel Problem Solving from Nature – PPSN VIII, vol. 3242 Lecture Notes in Computer Science, pp. 642–651. Springer, Berlin (2004)CrossRefGoogle Scholar
  81. 81.
    Puchinger, J., Raidl, G.R.: Combining metaheuristics and exact algorithms in combinatorial optimization: A survey and classification. In: Proceedings of the First International Work-Conference on the Interplay Between Natural and Artificial Computation, Part II, Lecture Notes in Computer Science, vol. 3562, pp. 41–53. Springer, Berlin (2005)Google Scholar
  82. 82.
    Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional bin packing. Eur. J. Oper. Res. 183, 1304–1327 (2007)CrossRefGoogle Scholar
  83. 83.
    Puchinger, J., Raidl, G.R.: Bringing order into the neighborhoods: Relaxation guided variable neighborhood search. J. Heuristics 14(5), 457–472 (2008)CrossRefGoogle Scholar
  84. 84.
    Puchinger, J., Raidl, G.R., Koller, G.: Solving a real-world glass cutting problem. In: Gottlieb, J., Raidl, G.R. (eds.) Evolutionary Computation in Combinatorial Optimization – EvoCOP 2004, Lecture Notes in Computer Science, vol. 3004, pp. 162–173. Springer, Berlin (2004)Google Scholar
  85. 85.
    Puchinger, J., Raidl, G.R., Pferschy, U.: The core concept for the multidimensional knapsack problem. In: Gottlieb, J., Raidl, G.R. (eds.) Evolutionary Computation in Combinatorial Optimization – EvoCOP 2006, Lecture Notes in Computer Science, vol. 3906, pp. 195–208. Springer (2006)Google Scholar
  86. 86.
    Raidl, G.R.: An improved genetic algorithm for the multiconstrained 0–1 knapsack problem. In: Fogel, D.B., et al. (eds.) Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pp. 207–211. IEEE Press, Piscataway, NJ (1998)Google Scholar
  87. 87.
    Raidl, G.R.: A unified view on hybrid metaheuristics. In: Almeida et al. [7], pp. 1–12Google Scholar
  88. 88.
    Raidl, G.R., Puchinger, J.: Combining (integer) linear programming techniques and metaheuristics for combinatorial optimization. In: Blum et al. [20], pp. 31–62 (2008)Google Scholar
  89. 89.
    Rei, W., Cordeau, J.-F., Gendreau, M., Soriano, P.: Accelerating Benders decomposition by local branching. INFORMS J. Comput 21, 333–345 (2009)CrossRefGoogle Scholar
  90. 90.
    Richter, Y., Freund, A., Naveh, Y.: Generalizing AllDifferent: The SomeDifferent constraint. In: Benhamou, F. (ed.) Principles and Practice of Constraint Programming, 12th International Conference, CP 2006, volume 4204 of Lecture Notes in Computer Science, pp. 468–483. Springer, Berlin (2006)Google Scholar
  91. 91.
    Rothberg, E.: An evolutionary algorithm for polishing mixed integer programming solutions. INFORMS J. Comput. 19(4), 534–541 (2007)CrossRefGoogle Scholar
  92. 92.
    Shi, L., ólafsson, S.: Nested partitions method for global optimization. Oper. Res. 48(3), 390–407 (2000)CrossRefGoogle Scholar
  93. 93.
    Shi, L., ólafsson, S., Chen, Q.: An optimization framework for product design. Manage. Sci. 47(12), 1681–1692 (2001)CrossRefGoogle Scholar
  94. 94.
    Talbi, E.: A taxonomy of hybrid metaheuristics. J. Heuristics 8(5), 541–565 (2002)CrossRefGoogle Scholar
  95. 95.
    Talukdar, S., Baeretzen, L., Gove, A., de Souza, P.: Asynchronous teams: Cooperation schemes for autonomous agents. J. Heuristics 4, 295–321 (1998)CrossRefGoogle Scholar
  96. 96.
    Tamura, H., Hirahara, A., Hatono, I., Umano, M.: An approximate solution method for combinatorial optimisation. Trans. Soc. Instrum. Control Engineers 130, 329–336 (1994)Google Scholar
  97. 97.
    Urosevic, D., Brimberg, J., Mladenovic, N.: Variable neighborhood decomposition search for the edge weighted k-cardinality tree problem. Comput. Oper. Res. 31(8), 1205–1213 (2004)CrossRefGoogle Scholar
  98. 98.
    Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cambridge, MA (2005)Google Scholar
  99. 99.
    Vasquez, M., Hao, J.-K.: A hybrid approach for the 0–1 multidimensional knapsack problem. In: Nebel, B. (ed.) Proceedings of the 17th International Joint Conference on Artificial Intelligence, IJCAI 2001, pp. 328–333, Seattle, Washington (2001) Morgan KaufmanGoogle Scholar
  100. 100.
    Vasquez, M., Vimont, Y.: Improved results on the 0–1 multidimensional knapsack problem. Eur. J. Oper. Res. 165(1), 70–81 (2005)CrossRefGoogle Scholar
  101. 101.
    Walshaw, C.: Multilevel refinement for combinatorial optimisation: Boosting metaheuristic performance. In: Blum et al. [20], pp. 261–289 (2008)Google Scholar
  102. 102.
    Watson, J.-P., Beck, J.C.: A hybrid constraint programming/local search approach to the job-shop scheduling problem. In: Perron and Trick [74], pp. 263–277.Google Scholar
  103. 103.
    Watson, J.-P., Howe, A.E., Darrell Whitley, L.: Deconstructing Nowicki and Smutnicki’s i-TSAB tabu search algorithm for the job-shop scheduling problem. Comput. Oper. Res. 33(9), 2623–2644 (2006)CrossRefGoogle Scholar
  104. 104.
    Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRefGoogle Scholar
  105. 105.
    Wolsey, L.A.: Integer Programming. Wiley-Interscience, New York, NY 1998.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Computer Graphics and AlgorithmsVienna University of TechnologyViennaAustria
  2. 2.NICTA Victoria LaboratoryUniversity of MelbourneMelbourneAustralia
  3. 3.ALBCOM Research GroupUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations