Skip to main content
Book cover

SuperMEN1 pp 37–50Cite as

Cellular Functions of Menin

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 668))

Abstract

Since its discovery as a novel protein some 10 years ago, many cellular functions of menin have been identified. However, which ones of these relate specifically to menin’s role as a tumor suppressor and which ones not remains unclear. Menin is predominantly nuclear and acts as a scaffold protein to regulate gene transcription by coordinating chromatin remodeling. It is implicated in both histone deacetylase and histone methyltransferase activity and, via the latter, regulates the expression of cell cycle kinase inhibitor and homeobox domain genes. TGF-B family members are key cytostatic molecules and menin is a facilitator of the transcriptional activity of their signaling molecules, the Smads, thereby ensuring appropriate control of cell proliferation and differentiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guru SC, Goldsmith PK, Burns AL et al. Menin, the product of the MEN1 gene, is a nuclear protein. Proc Natl Acad Sci USA 1998; 95:1630–4.

    Article  CAS  PubMed  Google Scholar 

  2. Kaji H, Canaff L, Goltzman D et al. Cell cycle regulation of menin expression. Cancer Res 1999; 59:5097–101.

    CAS  PubMed  Google Scholar 

  3. Huang SC, Zhuang Z, Weil R J et al. Nuclear/cytoplasmic localization of the multiple endocrine neoplasia type 1 gene product, menin. Lab Invest 1999; 79:301–10.

    CAS  PubMed  Google Scholar 

  4. Obungu VH, Burns AL, Agarwal SK et al. Menin, a tumor suppressor, associates with nonmuscle myosin II-A heavy chain. Oncogene 2003; 22:6347–58.

    Article  CAS  PubMed  Google Scholar 

  5. Lopez-Egido J, Cunningham J, Berg M et al. Menin’s interactions with glial fibrillary acidic protein and vimentin suggests a role for the intermediate filament network in regulating menin activity. Exp Cell Res 2002; 278: 175–83.

    Article  CAS  PubMed  Google Scholar 

  6. Ikeo Y, Sakurai A, Suziki R et al. Proliferation-associated expression of the MEN1 gene as revealed by in situ hybridization: possible role of the menin as a negative regulator of cell proliferation under DNA damage. Lab Investig 2000; 80:797–804.

    CAS  PubMed  Google Scholar 

  7. Lofller KA, Biondi CA, Gartside G et al. Lack of augmentation of tumor spectrum or severity in dual heterozygous Men1 and RbI knockout mice. Oncogene 2007; 26:4009–17.

    Article  Google Scholar 

  8. Nitikin AY, Juarez-Perez MI, Li S et al. RB-mediated suppression of spontaneous multiple neuroendocrine neoplasia and lung metastases in Rb+/-mice. Proc Natl Acad Sci USA 1999; 96:3916–21.

    Article  Google Scholar 

  9. Crabtree JS, Scacheri PC, Ward JM et al. A mouse model of multiple endocrine neoplasia type 1, develops multiple endocrine tumors. Proc Nat Acad Sci USA 2001; 98:1118–23.

    Article  CAS  PubMed  Google Scholar 

  10. Bertolino P, Tong WM, Galendo D et al. Heterozygous men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1. Mol Endocrinol 2003; 17:1880–92.

    Article  CAS  PubMed  Google Scholar 

  11. Harvey M, Vogel H, Lee EYH et al. Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Cancer Res 1995; 55:1146–51.

    CAS  PubMed  Google Scholar 

  12. Franklin DS, Godfrey VL, Lee H et al. CDK inhibitors p18INK4c and p27 Kip1 mediate two separate pathways to collaboratively suppress tumorigenesis. Genes Develop 1998; 12:2899–911.

    Article  CAS  PubMed  Google Scholar 

  13. Franklin DS, Godfrey VL, O’Brien DA et al. Functional collaboration between different cyclin-dependent kinase inhibitors suppress tumor growth with distinct tissue specificity. Mol Cell Biol 2000; 20:6147–58.

    Article  CAS  PubMed  Google Scholar 

  14. Milne TA, Hughes CM, Lloyd R et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc Natl Acad Sci USA 2005; 102:749–54.

    Article  CAS  PubMed  Google Scholar 

  15. Karnik SK, Hughes CM, Gu X et al. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc Natl Acad Sci USA 2005; 102:14659–64.

    Article  CAS  PubMed  Google Scholar 

  16. Schnepp RW, Chen YX, Wang H et al. Mutation of tumor suppressor men1 acutely enhances proliferation of pancreatic islet cells. Cancer Res 2006; 66:5707–15.

    Article  CAS  PubMed  Google Scholar 

  17. Hussein N, Casse H, Fontaniere S et al. Reconstituted expression of menin in men1-deficient mouse leydig tumour cells induces cell cycle arrest and apoptosis. Eur J Cancer 2007; 43:402–14.

    Article  CAS  PubMed  Google Scholar 

  18. Engleka KA, Wu M, Zhang M et al. Menin is required in cranial neural crest for palatogenesis and perinatal viability. Dev Biol 2007; 311:524–37.

    Article  CAS  PubMed  Google Scholar 

  19. Kim YS, Burns AL, Goldsmith PK et al. Stable overexpression of MEN1 suppresses tumorigenicity of RAS. Oncogene 1999; 18:5936–42.

    Article  CAS  PubMed  Google Scholar 

  20. Kimura N, Shimada N, Ishijima Y et al. Nucleoside diphosphate kinases in mammalian signal transduction systems: recent development and perspective. J Bioenerg Biomembr 2003; 35:41–7.

    Article  CAS  PubMed  Google Scholar 

  21. Ohkura N, Kuhi M, Tsukada T et al. Menin, a gene product responsible for multiple endocrine neoplasia type 1, interacts with the putative tumor metastasis suppressor nm23. Biochem Biophys Res Commun 2001; 282:1206–10.

    Article  CAS  PubMed  Google Scholar 

  22. Yaguchi H, Ohkura N, Tsukada T et al. Menin, the multiple endocrine neoplasia type 1, gene product, exhibits GTP-hydrolysing activity in the presence of the tumor metastasis suppressor nm23. J Biol Chem 2002; 277:38197–204.

    Article  CAS  PubMed  Google Scholar 

  23. Pfarr CM, Mechta F, Spyrou G et al. Mouse JunD negatively regulates fibroblast growth and antagonizes transformation by ras. Cell 1994; 76:747–60.

    Article  CAS  PubMed  Google Scholar 

  24. Agarwal SK, Guru SC, Heppner C et al. Menin interacts with the AP 1 transcription factor JunD and represses JunD-activated transcription. Cell 1999; 96: 143–52.

    Article  CAS  PubMed  Google Scholar 

  25. Gobl AE, Berg M, Lopez-Egido LR et al. Menin represses JunD-activated transcription by a histone deacetylase-dependent mechanism. Biochim Biophys Acta 1999; 1447:51–6.

    CAS  PubMed  Google Scholar 

  26. Kim H, Lee JE, Cho EJ et al. Menin, a tumor suppressor, represses JunD-mediated transcriptional activity by association with an mSin3A-histone deacetylase complex. Cancer Res 2003; 63:6135–9.

    CAS  PubMed  Google Scholar 

  27. Yazgan O, Pfarr CM. Differential binding of the menin tumor suppressor protein to JunD isoforms. Cancer Res 2001; 61:916–20.

    CAS  PubMed  Google Scholar 

  28. Agarwal SK, Novotny EA, Crabtree JS et al. Transcriptional factor JunD, deprived of menin, switches from growth suppressor to growth promoter. Proc Natl Acad Sci USA 2003; 100:10770–5.

    Article  CAS  PubMed  Google Scholar 

  29. Naito J, Kaji H, Sowa H et al. Menin suppresses osteoblast differentiation by antagonizing the AP-l factor, JunD. J Biol Chem 2005; 280:4785–91.

    Article  CAS  PubMed  Google Scholar 

  30. Schnepp RW, Hou Z, Wang H et al. Functional interaction between tumor suppressor menin and activator of S-phase kinase. Cancer Res 2004; 64:6791–6.

    Article  CAS  PubMed  Google Scholar 

  31. Sato N, Sato M, Nakayama M et al. Cell cycle regulation of chromatin binding and nuclear localization of human Cdc7-ASK kinase complex. Gene Cell 2003; 8:451–63.

    Article  CAS  Google Scholar 

  32. Hendy GN, Kaji H, Sowa H et al. Menin and TGF-β superfamily member signaling via the Smad pathway in pituitary, parathyroid and osteoblast. Horm Metab Res 2005; 37:375–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kaji H, Canaff L, Lebrun JJ et al. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor rype-f signaling. Proc Natl Acad Sci USA 2001; 98:3837–42.

    Article  CAS  PubMed  Google Scholar 

  34. Lacerte A, Lee EH, Reynaud R et al. Activin inhibits pituitary prolactin expression and cell growth through Smads, pit-l and menin. Mol Endocrinol 2004; 18:1558–1569.

    Article  CAS  PubMed  Google Scholar 

  35. Sowa H, Kaji H, Kitazawa R et al. Menin inactivation leads to loss of transforming growth factor-f inhibition of parathyroid cell proliferation and parathyroid hormone secretion. Cancer Res 2004; 64:2222–8.

    Article  CAS  PubMed  Google Scholar 

  36. Naito J, Kaji H, Sowa H et al. Expression and functional analysis of menin in a multiple endocrine neoplasia type 1 (MEN1) patient with somatic loss of heterozygosity in chromosome l1q13 and unidentified germline mutation of the MEN1 gene. Endocr 2006; 29:485–90.

    Article  CAS  Google Scholar 

  37. Ratineau C, Bernard C, Poncet G et al. Reduction of menin expression enhances cell proliferation and is tumorigenic in intestinal epithelial cells. J Biol Chem 2004; 279:24477–84.

    Article  CAS  PubMed  Google Scholar 

  38. Sowa H, Kaji H, Canaff L et al. Inactivation of menin, the product of the multiple endocrine neoplasia type 1 gene, inhibits the commitment of multipotential mesenchymal stem cells into the osteoblast lineage. J Biol Chem 2003; 278:21058–69.

    Article  CAS  PubMed  Google Scholar 

  39. Sowa H, Kaji H, Hendy GN et al. Menin is required for bone morphogenetic protein 2-and transforming growth factor β-regulated osteoblastic differentiation through interaction with Smads and Runx2. J Biol Chem 2004; 279:40267–75.

    Article  CAS  PubMed  Google Scholar 

  40. Hussein N, Lu JL, Casse H et al. Deregulation of anti-Mullerian hormone/BMP and transforming growth factor-B pathways in leydig cell lesions developed in male heterozygous multiple endocrine neoplasia type 1 mutant mice. Endocrine-Related Cancer 2008; 15:217–27.

    Article  CAS  PubMed  Google Scholar 

  41. Ji Y, Prasad NB, Novotny EA et al. Mouse embryo fibroblasts lacking the tumor suppressor menin show altered expression of extracellular matrix protein genes. Mol Cancer Res 2007; 5:1041–51.

    Article  CAS  PubMed  Google Scholar 

  42. Scappaticci S, Maraschio P, del Ciotto N et al. Chromosome abnormalities in lymphocytes and fibroblasts of subjects with multiple endocrine neoplasia type 1. Cancer Genet Cytogenet 1991; 52:85–92.

    Article  CAS  PubMed  Google Scholar 

  43. Tomassetti P, Cometa G, Del Vecchio E et al. Chromosomal instability in multiple endocrine neoplasia type 1. Cytogenetic evaluation with DEB test. Cancer Genet Cytogenet 1995; 79:123–6.

    Article  CAS  PubMed  Google Scholar 

  44. Sakurai A, Katai M, Itakura Y et al. Premature centromere division in patients with multiple endocrine neoplasia type 1. Cancer Genet Cytogenet 1999; 109:138–40.

    Article  CAS  PubMed  Google Scholar 

  45. Itakura Y, Sakurai A, Katai M et al. Enhanced sensitivity to alkylating agent in lymphocytes from patients with multiple endocrine neoplasia type 1. Biomed Pharmacother 2000; 54(Suppl 1):187s–90s.

    Article  PubMed  Google Scholar 

  46. Busygina V, Suphapeetiporn K, Marek LR et al. Hypermutability in a drosophila model for multiple endocrine neoplasia type 1. Hum Mol Genet 2004; 13:2399–408.

    Article  CAS  PubMed  Google Scholar 

  47. Hessman O, Skogseid B, Westin G et al. Multiple allelic deletions and intratumoral genetic heterogeneity in MEN1 pancreatic tumors. J Clin Endocrinol Metab 2001; 86:1355–61.

    Article  CAS  PubMed  Google Scholar 

  48. Scacheri PC, Kennedy AL, Chin K et al. Pancreatic insulinomas in multiple endocrine neoplasia, type I knockout mice can develop in the absence of chromosome instability or microsatellite instability. Cancer Res 2004; 64:7039–44.

    Article  CAS  PubMed  Google Scholar 

  49. Farley SM, Chen G, Guo S et al. Menin localizes to chromatin through an ATR-CHK1 mediated pathway after UV-induced DNA damage. J Surg Res 2006; 133:29–37.

    Article  CAS  PubMed  Google Scholar 

  50. Paull TT, Cortez D, Bowers B et al. Direct DNA binding by brca1. Proc Natl Acad Sci USA 2001; 98:6086–91.

    Article  CAS  PubMed  Google Scholar 

  51. La P, Silva AC, Hou Z et al. Direct binding of DNA by tumor suppressor menin. J Biol Chem 2004; 279:49045–54.

    Article  CAS  PubMed  Google Scholar 

  52. Jin S, Mao H, Schnepp RW et al. Menin associates with FANCD2, a protein involved in repair of DNA damage. Cancer Res 2003; 63:4204–10.

    CAS  PubMed  Google Scholar 

  53. Marek LR, Kottemann MC, Glazer PM et al. MEN1 and FANCD2 mediate distinct mechanisms of DNA crosslink repair. DNA Repair (Arnst) 2008; 7:476–86.

    Article  CAS  Google Scholar 

  54. Sukhodolets KE, Hickman AB, Agarwal SK et al. The 32-kilodalton subunit of replication protein A interacts with menin, the product of the MEN1 tumor suppressor gene. Mol Cell Biol 2003; 23:493–509.

    Article  CAS  PubMed  Google Scholar 

  55. Busygina V, Kottemann MC, Scott KL et al. Multiple endocrine neoplasia type 1 interacts with forkhead transcription factor CHES1 in DNA damage response. Cancer Res 2006; 66:8397–403.

    Article  CAS  PubMed  Google Scholar 

  56. Hughes CM, Rozenblatt-Rosen O, Milne TA et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 2004; 13:587–97.

    Article  CAS  PubMed  Google Scholar 

  57. Yokoyama A, Wang Z, Wysocka J et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate hox gene expression. Mol Cell Biol 2004; 24:5639–49.

    Article  CAS  PubMed  Google Scholar 

  58. Yokoyama A, Somervaille TC, Smith KS et al. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 2005; 123:207–18.

    Article  CAS  PubMed  Google Scholar 

  59. Chen YX, Yan J, Keeshan K et al. The tumor suppressor regulates hematopoiesis and myeloid transformation by influencing hox gene expression. Proc Natl Acad Sci USA 2006; 103:1018–23.

    Article  CAS  PubMed  Google Scholar 

  60. Caslini C, Yang Z, El-Osta M et al. Interaction of MLL amino terminal sequences with menin is required for transformation. Cancer Res 2007; 67:7275–83.

    Article  CAS  PubMed  Google Scholar 

  61. Scacheri PC, Davis S, Odom DT et al. Genome-wide analysis of menin binding provides insights into MEN1 tumorigenesis. PloS 2006; 2:e51.

    Article  Google Scholar 

  62. Shen H-CJ, Rosen JE, Yang LM et al. Parathyroid tumor development involves deregulation of homeobox genes. Endocrine-Related Cancer 2008; 15:267–75.

    Article  CAS  PubMed  Google Scholar 

  63. Agarwal SK, Impey S, McWeeney S et al. Distribution of menin-occupied regions in chromatin specifies a broad role of menin in transcriptional regulation. Neoplasia 2007; 9:101–7.

    Article  CAS  PubMed  Google Scholar 

  64. Karnik SK, Chen H, McLean GW et al. Menin controls growth of pancreatic β-cells in pregnant mice and promotes gestational diabetes mellitus. Science 2007; 318:806–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Hendy, G.N., Kaji, H., Canaff, L. (2009). Cellular Functions of Menin. In: Balogh, K., Patocs, A. (eds) SuperMEN1. Advances in Experimental Medicine and Biology, vol 668. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1664-8_4

Download citation

Publish with us

Policies and ethics