SuperMEN1 pp 27-36 | Cite as

Menin: The Protein Behind the MEN1 Syndrome

  • Maria Papaconstantinou
  • Bart M. Maslikowski
  • Alicia N. Pepper
  • Pierre-André Bédard
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 668)


The cloning of the MEN1 gene in 1997 led to the characterization of menin, the protein behind the multiple endocrine neoplasia Type 1 syndrome. Menin, a novel nuclear protein with no homologyto other gene products, is expressed ubiquitously. MEN1 missense mutations are dispersed along the coding region of the gene but are more common in the most conserved regions. Likewise, domains of protein interaction often correspond to the more conserved segments of menin. These protein interactions are generally facilitated by multiple domains or encompass a large portion of menin. The exception to this rule is a small stretch of amino acids mediating the interaction of menin with the mSin3A corepressor and histone deacetylase complexes. The C-terminal region of menin harbors several nuclear localization signals that play redundant functions in the localization of menin to the nuclear compartment. The nuclear localization signals are also important for the interaction of menin with the nuclear matrix. Menin is the target of several kinases and a candidate substrate of the ATM/ATR kinases, implying a role for this tumor suppressor in the DNA damage response. Menin is highly conserved from Drosophila to human but is absent in the nematode and in yeast.


Nuclear Localization Nuclear Localization Signal Multiple Endocrine Neoplasia Type Mouse Embryo Fibroblast H3K4 Trimethylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chandrasekharappa SC, Guru SC, Manickam P et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997; 276(5311):404–407.CrossRefPubMedGoogle Scholar
  2. 2.
    Lemmens I, Van de Ven WJ, Kas K et al. Identification of the multiple endocrine neoplasia type 1 (MEN1) gene. The european consortium on MEN1. Hum Mol Genet 1997; 6(7): 1177–1183.CrossRefPubMedGoogle Scholar
  3. 3.
    Wautot V, Khodaei S, Frappart L et al. Expression analysis of endogenous menin, the product of the multiple endocrine neoplasia type 1 gene, in cell lines and human tissues. Int J Cancer 2000; 85(6):877–881.CrossRefPubMedGoogle Scholar
  4. 4.
    Chandrasekharappa SC, Teh BT. Functional studies of the MEN1 gene. J Intern Med 2003; 253(6):606–615.CrossRefPubMedGoogle Scholar
  5. 5.
    Stewart C, Parente F, Piehl F et al. Characterization of the mouse Men1 gene and its expression during development. Oncogene 1998; 17(19):2485–2493.CrossRefPubMedGoogle Scholar
  6. 6.
    Khodaei-O’Brien S, Zablewska B, Fromaget M et al. Heterogeneity at the 5′-end of MEN1 transcripts. Biochem Biophys Res Commun 2000; 276(2):508–514.CrossRefPubMedGoogle Scholar
  7. 7.
    Guru SC, Goldsmith PK, Burns AL et al. Menin, the product of the MEN1 gene, is a nuclear protein. Proc Natl Acad Sci USA. 1998; 95(4):1630–1634.CrossRefPubMedGoogle Scholar
  8. 8.
    La P, Schnepp RW, C DP et al. Tumor suppressor menin regulates expression of insulin-like growth factor binding protein 2. Endocrinology 004; 145(7):3443–3450.CrossRefGoogle Scholar
  9. 9.
    La P, Desmond A, Hou Z et al. Tumor suppressor menin: The essential role of nuclear localization signal domains in coordinating gene expression. Oncogene 2006; 25(25):3537–3546.CrossRefPubMedGoogle Scholar
  10. 10.
    Agarwal SK, Kennedy PA, Scacheri PC et al. Menin molecular interactions: insights into normal functions and tumorigenesis. Horm Metab Res 2005; 37(6):369–374.CrossRefPubMedGoogle Scholar
  11. 11.
    La P, Silva AC, Hou Z et al. Direct binding of DNA by tumor suppressor menin. J Biol Chem 2004; 279(47):49045–49054.CrossRefPubMedGoogle Scholar
  12. 12.
    Jin S, Mao H, Schnepp RW et al. Menin associates with FANCD2, a protein involved in repair of DNA damage. Cancer Res 2003; 63(14):4204–4210.PubMedGoogle Scholar
  13. 13.
    La P, Yang Y, Karnik SK et al. Menin-mediated caspase 8 expression in suppressing multiple endocrine neoplasia type 1. J Biol Chem 2007; 282(43):31332–31340.CrossRefPubMedGoogle Scholar
  14. 14.
    Agarwal SK, Impey S, McWeeney S et al. Distribution of menin-occupied regions in chromatin specifies a broad role of menin in transcriptional regulation. Neoplasia 2007; 9(2):101–107.CrossRefPubMedGoogle Scholar
  15. 15.
    Scacheri PC, Davis S, Odorn DT et al. Genome-wide analysis of menin binding provides insights into MEN1 tumorigenesis. PLoS Genet 2006; 2(4):e51.CrossRefGoogle Scholar
  16. 16.
    Hughes CM, Rozenblatt-Rosen O, Milne TA et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 2004; 13(4):587–597.CrossRefPubMedGoogle Scholar
  17. 17.
    Marx SJ. Molecular genetics of multiple endocrine neoplasia types 1 and 2. Nat Rev Cancer 2005; 5(5):367–375.CrossRefPubMedGoogle Scholar
  18. 18.
    Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): Analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Murat 2008; 29(1):22–32.CrossRefGoogle Scholar
  19. 19.
    Suphapeetiporn K, Greally JM, Walpita D et al. MEN1 tumor-suppressor protein localizes to telomeres during meiosis. Genes Chromosomes Cancer 2002; 35(1):81–85.CrossRefPubMedGoogle Scholar
  20. 20.
    Kim H, Lee JE, Cho EJ et al. Menin, a tumor suppressor, represses JunD-mediated transcriptional activity by association with an mSin3A-histone deacetylase complex. Cancer Res 2003; 63(19):6135–6139.PubMedGoogle Scholar
  21. 21.
    Yochum GS, Ayer DE. Pfl, a novel PHD zinc finger protein that links the TLE corepressor to the mSin3A-histone deacetylase complex. Mol Cell Biol 2001; 21(13):4110–4118.CrossRefPubMedGoogle Scholar
  22. 22.
    Eilers AL, Billin AN, Liu J et al. A 13-amino acid amphipathic alpha-helix is required for the functional interaction between the transcriptional repressor Mad1 and mSin3A. J Biol Chem 1999; 274(46): 32750–32756.CrossRefPubMedGoogle Scholar
  23. 23.
    Dreijerink KM, Mulder KW, Winkler GS et al. Menin links estrogen receptor activation to histone H3K4 trimethylation. Cancer Res 2006; 66(9):4929–4935.CrossRefPubMedGoogle Scholar
  24. 24.
    Agarwal SK, Guru SC, Heppner C et al. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell 1999; 96(1):143–152.CrossRefPubMedGoogle Scholar
  25. 25.
    Ohkura N, Kishi M, Tsukada T et al. Menin, a gene product responsible for multiple endocrine neoplasia type 1, interacts with the putative tumor metastasis suppressor nm23. Biochem Biophys Res Commun 2001; 282(5):1206–1210.CrossRefPubMedGoogle Scholar
  26. 26.
    Yaguchi H, Ohkura N, Tsukada T et al. Menin, the multiple endocrine neoplasia type 1 gene product, exhibits GTP-hydrolyzing activity in the presence of the tumor metastasis suppressor nm23. J Biol Chem 2002; 277(41):38197–38204.CrossRefPubMedGoogle Scholar
  27. 27.
    Busygina V, Kottemann MC, Scott KL et al. Multiple endocrine neoplasia type 1 interacts with forkhead transcription factor CHESI in DNA Damage Response. Cancer Res 2006; 66(17):8397–8403.CrossRefPubMedGoogle Scholar
  28. 28.
    Matsuoka S, Ballif BA, Smogorzewska A et al. ATM and ATR substrate analysis revealsextensiveprotein networks responsive to DNA damage. Science 2007; 316(5828):1160–1166.CrossRefPubMedGoogle Scholar
  29. 29.
    Stokes MP, Rush J, Macneill J et al. Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci USA. 2007; 104(50):19855–19860.CrossRefPubMedGoogle Scholar
  30. 30.
    MacConaill LE, Hughes CM, Rozenblatt-Rosen O et al. Phosphorylation of the menin tumor suppressor protein on serine 543 and serine 583. Mol Cancer Res 2006; 4(10):793–801.CrossRefPubMedGoogle Scholar
  31. 31.
    Farley SM, Chen G, Guo S et al. Menin localizes to chromatin through an ATR-CHK1 mediated pathway after UV-induced DNA damage. J Surg Res 2006; 133(1):29–37.CrossRefPubMedGoogle Scholar
  32. 32.
    Karges W, Maier S, Wissmann A et al. Primary structure, gene expression and chromosomal mapping of rodent homologs of the MEN1 tumor suppressor gene. Biochim Biophys Acta 1999; 1446(3):286–294.PubMedGoogle Scholar
  33. 33.
    Maruyama K, Tsukada T, Hosono T et al. Structure and distribution of rat menin mRNA. Mol Cell Endocrinol 1999; 156(1–2):25–33.CrossRefPubMedGoogle Scholar
  34. 34.
    Guru SC, Prasad NB, Shin EJ et al. Characterization of a MEN1 ortholog from Drosophila melanogaster. Gene 2001; 263(1–2):31–38.CrossRefPubMedGoogle Scholar
  35. 35.
    Maruyama K, Tsukada T, Honda M et al. Complementary DNA structure and genomic organization of drosophila menin. Mol Cell Endocrinol 2000; 168(1–2):135–140.CrossRefPubMedGoogle Scholar
  36. 36.
    Cerrato A, Parisi M, Anna SS et al. Genetic interactions between Drosophila melanogaster menin and Jun/Fos. Dev Biol 2006; 298(1): 59–70.CrossRefPubMedGoogle Scholar
  37. 37.
    Papaconstantinou M, Wu Y, Pretorius HN et al. Menin is a regulator of the stress response in drosophila melanogaster. Mol Cell Biol 2005; 25(22):9960–9972.CrossRefPubMedGoogle Scholar
  38. 38.
    Linding R, Russell RB, Neduva V et al. GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res 2003; 31(13):3701–3708.CrossRefPubMedGoogle Scholar
  39. 39.
    Crabtree JS, Scacheri PC, Ward JM et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci USA 2001; 98(3):1118–1123.CrossRefPubMedGoogle Scholar
  40. 40.
    Bertolino P, Radovanovic I, Casse H et al. Genetic ablation of the tumor suppressor menin causes lethality at mid-gestation with defects in multiple organs. Mech Dev 2003; 120(5):549–560.CrossRefPubMedGoogle Scholar
  41. 41.
    Busygina V, Suphapeetiporn K, Marek LR et al. Hypermutability in a Drosophila model for multiple endocrine neoplasia type 1. Hum Mol Genet 2004; 13(20):2399–2408.CrossRefPubMedGoogle Scholar
  42. 42.
    Smith ST, Petruk S, Sedkov Y et al. Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex. Nat Cell Biol 2004; 6(2):162–167.CrossRefPubMedGoogle Scholar
  43. 43.
    Yokoyama A, Wang Z, Wysocka J et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone merhyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 2004; 24(13):5639–5649.CrossRefPubMedGoogle Scholar
  44. 44.
    Yokoyama A, Somervaille TC, Smith KS et al. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 2005; 123(2):207–218.CrossRefPubMedGoogle Scholar
  45. 45.
    Agarwal SK, Guru SC, Heppner C et al. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription [In Process Citation]. Cell 1999; 96(1):143–152.CrossRefPubMedGoogle Scholar
  46. 46.
    Heppner C, Bilimoria KY, Agarwal SK et al. The tumor suppressor protein menin interacts with NF-kappaB proteins and inhibits NF-kappaB-mediated transactivation. Oncogene 2001; 20(36):4917–4925.CrossRefPubMedGoogle Scholar
  47. 47.
    Canaff LaH, G.N. Menin interacts directly with the TGFβ signaling molecule Smad3 and MEN1 missense mutations within the interacting region have impaired TGF-β transcriptional activity. In: Stratatis CAaM SJ, ed. Ninth International workshop on multiple endocrine neoplasia. Bethesda: Blackwell Publishing, 2004; 255:721–722.Google Scholar
  48. 48.
    Lemmens IH, Forsberg L, Pannett AA et al. Menin interacts directly with the homeobox-containing protein Pem. Biochem Biophys Res Commun 2001; 286(2):426–431.CrossRefPubMedGoogle Scholar
  49. 49.
    Sukhodolets KE, Hickman AB, Agarwal SK et al. The 32-kilodalton subunit of replication protein A interacts with menin, the product of the MEN1 tumor suppressor gene. Mol Cell Biol 2003; 23(2):493–509.CrossRefPubMedGoogle Scholar
  50. 50.
    Schnepp RW, Hou Z, Wang H et al. Functional interaction between tumor suppressor menin and activator of S-phase kinase. Cancer Res 2004; 64(18):6791–6796.CrossRefPubMedGoogle Scholar
  51. 51.
    Wootton JC. Non-globular domains in protein sequences: Automated segmentation using complexity measures. Comput Chem 1994; 18(3):269–285.CrossRefPubMedGoogle Scholar
  52. 52.
    Obungu VH, Lee Burns A, Agarwal SK et al. Menin, a tumor suppressor, associates with nonmuscle myosin II-A heavy chain. Oncogene 2003; 22(41):6347–6358.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Maria Papaconstantinou
    • 1
  • Bart M. Maslikowski
    • 1
  • Alicia N. Pepper
    • 1
  • Pierre-André Bédard
    • 1
  1. 1.Departrnent of BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations