SuperMEN1 pp 17-26 | Cite as

Genetic Background of MEN1: From Genetic Homogeneity to Functional Diversity

  • Patrick Gaudray
  • Günther Weber
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 668)


Multiple Endocrine Neoplasia Type 1 corresponds to a monogenic predisposition syndrome inherited as a dominant trait that affects a variety of endocrine tissues, in particular parathyroids, endocrine pancreas and anterior pituitary. It is caused by mutations in the MEN1 tumor suppressor gene that inactivate menin, the MEN1 encoded protein. Menin is involved in cell cycle control and apoptosis through its participation in functional dynamics of chromatin and regulation of transcription. In addition, genetic investigations have implicated menin in the maintenance of genomic integrity. However, the role of menin does not — by far—end here. It plays (too) many roles in the control of cell life and normality, far beyond endocrine oncogenesis, making it unlikely that the function of menin can be deciphered only by genetic investigation. In this context, writing a chapter on the genetic background ofMEN1appears at the same time as a challenge and a paradox. A challenge as everything has been either already written on the topic or included in the present book. A paradox since genetics is simultaneously at the background and at the forefront of MEN1. Our attempts are thus more investigating new—as well as already open issues than delivering a catalog of MEN1 gene mutations.


Multiple Endocrine Neoplasia Type Parathyroid Adenoma Parathyroid Carcinoma Pancreatic Endocrine Tumor Parathyroid Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wermer P. Genetic aspects of adenomatosis of endocrine glands. Am J Med 1954; 16(3):363–371.CrossRefPubMedGoogle Scholar
  2. 2.
    Larsson C, Skogseid B, Oberg K et al. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 1988; 332(6159):85–87.CrossRefPubMedGoogle Scholar
  3. 3.
    Chandrasekharappa SC, Guru SC, Manickam P et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997; 276(5311):404–407.CrossRefPubMedGoogle Scholar
  4. 4.
    Lemmens I, Van de Yen WJ et al. Identification of the multiple endocrine neoplasia type 1 (MEN1) gene. The European Consortium on MEN1. Hum Mol Genet 1997; 6(7): 1177–1183.CrossRefPubMedGoogle Scholar
  5. 5.
    Busygina V, Suphapeetiporn K, Marek LR et al. Hypermutability in a Drosophila model for multiple endocrine neoplasia type 1. Hum Mol Genet 2004; 13(20):2399–2408.CrossRefPubMedGoogle Scholar
  6. 6.
    Bertolino P, Radovanovic I, Casse H et al. Genetic ablation of the tumor suppressor menin causes lethality at mid-gestation with defects in multiple organs. Mech Dev 2003; 120(5):549–560.CrossRefPubMedGoogle Scholar
  7. 7.
    Crabtree JS, Scacheri PC, Ward JM et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci USA 2001; 98(3):1118–1123.CrossRefPubMedGoogle Scholar
  8. 8.
    Brandi ML, Weber G, Svensson A et al. Homozygotes for the autosomal dominant neoplasia syndrome (MEN1). AmJ Hum Genet 1993; 53(6):1167–1172.Google Scholar
  9. 9.
    Ferrigno O, Virolle T, Djabari Z et al. Transposable B2 SINE elements can provide mobile RNA polymerase II promoters. Nat Genet 2001; 28(1):77–81.CrossRefPubMedGoogle Scholar
  10. 10.
    Shephard EA, Chandan P, Stevanovic-Walker M et al. Alternative promoters and repetitive DNA elements define the species-dependent tissue-specific expression of the FMO1 genes of human and mouse. Biochem J 2007; 406(3):491–499.CrossRefPubMedGoogle Scholar
  11. 11.
    Eller CD, Regelson M, Merriman B et al. Repetitive sequence environment distinguishes housekeeping genes. Gene 2007; 390(1–2):153–165.CrossRefPubMedGoogle Scholar
  12. 12.
    Polak P, Domany E. Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC Genomics 2006; 7:133.CrossRefPubMedGoogle Scholar
  13. 13.
    Khodaei-O’Brien S, Zablewska B, Fromaget M et al. Heterogeneity at the 5′-end of MEN1 transcripts. Biochem Biophys Res Commun 2000; 276(2):508–514.CrossRefPubMedGoogle Scholar
  14. 14.
    van der Velden AW, Thomas AA. The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 1999; 31(1):87–106.CrossRefPubMedGoogle Scholar
  15. 15.
    Stewart C, Parente F, Piehl F et al. Characterization of the mouse Men1 gene and its expression during development. Oncogene 1998; 17(19):2485–2493.CrossRefPubMedGoogle Scholar
  16. 16.
    Forsberg L, Villablanca A, Valimaki S et al. Homozygous inactivation of the MEN1 gene as a specific somatic event in a case of secondary hyperparathyroidism. Eur J Endocrinol 2001; 145(4):415–420.CrossRefPubMedGoogle Scholar
  17. 17.
    Payne SR, Kemp CJ. Tumor suppressor genetics. Carcinogenesis 2005; 26(12):2031–2045.CrossRefPubMedGoogle Scholar
  18. 18.
    Fromaget M, Vercherat C, Zhang CX et al. Functional characterization of a promoter region in the human MEN1 tumor suppressor gene. J Mol Biol 2003; 333(1):87–102.CrossRefPubMedGoogle Scholar
  19. 19.
    Zablewska B, Bylund L, Mandie SA et al. Transcription regulation of the multiple endocrine neoplasia type 1 gene in human and mouse. J Clin Endocrinol Metab 2003; 88(8):3845–3851.CrossRefPubMedGoogle Scholar
  20. 20.
    Farnebo F, Teh BT, Kytola S et al. Alterations of the MEN1 gene in sporadic parathyroid tumors. J Clin Endocrinol Metab 1998; 83(8):2627–2630.CrossRefPubMedGoogle Scholar
  21. 21.
    Wautot V, Khodaei S, Frappart L et al. Expression analysis of endogenous menin, the product of the multiple endocrine neoplasia type 1 gene, in cell lines and human tissues. Int J Cancer 2000; 85(6):877–881.CrossRefPubMedGoogle Scholar
  22. 22.
    Chan AO, Kim SG, Bedeir A et al. CpG island methylation in carcinoid and pancreatic endocrine tumors. Oncogene 2003; 22(6):924–934.CrossRefPubMedGoogle Scholar
  23. 23.
    Arnold CN, Sosnowski A, Schmitt-Graff A et al. Analysis of molecular pathways in sporadic neuroendocrine tumors of the gasrro-enrero-pancreatic system. Int J Cancer 2007; 120(10):2157–2164.CrossRefPubMedGoogle Scholar
  24. 24.
    Wautot V, Vercherat C, Lespinasse J et al. Germline mutation profile of MEN1 in multiple endocrine neoplasia type 1: search for correlation between phenotype and the functional domains of the MEN1 protein. Hum Murat 2002; 20(1):35–47.CrossRefGoogle Scholar
  25. 25.
    Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reponed in the first decade following identification of the gene. Hum Murat 2008; 29(1):22–32.CrossRefGoogle Scholar
  26. 26.
    Tham E, Grandell U, Lindgren E et al. Clinical testing for mutations in the MEN1 gene in Sweden: a report on 200 unrelated cases. J Clin Endocrinol Metab 2007; 92(9):3389–3395.CrossRefPubMedGoogle Scholar
  27. 27.
    Bassett JH, Forbes SA, Pannett AA et al. Characterization of mutations in patients with multiple endocrine neoplasia type 1. Am J Hum Genet 1998; 62(2):232–244.CrossRefPubMedGoogle Scholar
  28. 28.
    Pannett AA, Thakker RV. Multiple endocrine neoplasia type 1. Endocr Relat Cancer 1999; 6(4):449–473.CrossRefPubMedGoogle Scholar
  29. 29.
    Carling T, Correa P, Hessman O et al. Parathyroid MEN1 gene mutations in relation to clinical-characteristics of nonfamilial primary hyperparathyroidism. J Clin Endocrinol Metab 1998; 83(8):2960–2963.CrossRefPubMedGoogle Scholar
  30. 30.
    Cetani F, Pardi E, Vignali E et al. MEN1 gene alterations do not correlate with the phenotype of sporadic primary hyperparathyroidism. J Endocrinol Invest 2002; 25(6):508–512.PubMedGoogle Scholar
  31. 31.
    Perren A, Komminoth P, Heitz PU. Molecular genetics of gastroenteropancreatic endocrine tumors. Ann N Y Acad Sci 2004; 1014:199–208.CrossRefPubMedGoogle Scholar
  32. 32.
    Guo SS, Wu AY, Sawicki MP. Deletion of chromosome 1, but not mutation of MEN-1, predicts prognosis in sporadic pancreatic endocrine tumors. World J Surg 2002; 26(7):843–847.CrossRefPubMedGoogle Scholar
  33. 33.
    Hessman O, Skogseid B, Westin G et al. Multiple allelic deletions and intratumoral genetic heterogeneity in menl pancreatic tumors. J Clin Endocrinol Metab 2001; 86(3):1355–1361.CrossRefPubMedGoogle Scholar
  34. 34.
    Rigaud G, Missiaglia E, Moore PS et al. High resolution allelotype of nonfunctional pancreatic endocrine tumors: identification of two molecular subgroups with clinical implications. Cancer Res 2001; 61(1):285–292.PubMedGoogle Scholar
  35. 35.
    Anlauf M, Perren A, Henopp T et al. Allelic deletion of the MEN1 gene in duodenal gastrin and somatostatin cell neoplasms and their precursor lesions. Gut 2007; 56(5):637–644.CrossRefPubMedGoogle Scholar
  36. 36.
    Farnebo F, Kytola S, Teh BT et al. Alternative genetic pathways in parathyroid tumorigenesis. J Clin Endocrinol Metab 1999; 84(10):3775–3780.CrossRefGoogle Scholar
  37. 37.
    Haven CJ, Howell VM, Eilers PH et al. Gene expression of parathyroid tumors: molecular subclassification and identification of the potential malignant phenotype. Cancer Res 2004; 64(20):7405–7411.CrossRefPubMedGoogle Scholar
  38. 38.
    Lubensky IA, Debelenko LV, Zhuang Z et al. Allelic deletions on chromosome l1q13 in multiple tumors from individual MEN1 patients. Cancer Res 1996; 56(22):5272–5278.PubMedGoogle Scholar
  39. 39.
    Ellard S, Hattersley AT, Brewer CM et al. Detection of an MEN1 gene mutation depends on clinical features and supports current referral criteria for diagnostic molecular genetic testing. Clin Endocrinol (Oxf) 2005; 62(2):169–175.CrossRefGoogle Scholar
  40. 40.
    Hai N, Aoki N, Matsuda A et al. Germline MEN1 mutations in sixteen Japanese families with multiple endocrine neoplasia type 1 (MEN1). Eur J Endocrinol 1999; 141(5):475–480.CrossRefPubMedGoogle Scholar
  41. 41.
    Hai N, Aoki N, Shimatsu A et al. Clinical features of multiple endocrine neoplasia type 1 (MEN1) phenocopy without germline MEN1 gene mutations: analysis of 20 Japanese sporadic cases with MEN1. Clin Endocrinol (Oxf) 2000; 52(4):509–518.CrossRefGoogle Scholar
  42. 42.
    Klein RD, Salih S, Bessoni J et al. Clinical testing for multiple endocrine neoplasia type 1 in a DNA diagnostic laboratory. Genet Med 2005; 7(2):131–138.CrossRefPubMedGoogle Scholar
  43. 43.
    Ozawa A, Agarwal SK, Mateo CM et al. The parathyroid/pituitary variant of multiple endocrine neoplasia type 1 usually has causes other than p27Kip1 mutations. J Clin Endocrinol Metab 2007; 92(5):1948–1951.CrossRefPubMedGoogle Scholar
  44. 44.
    Pellegata NS, Quintanilla-Martinez L, Siggelkow H et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 2006; 103(42): 15558–15563.CrossRefPubMedGoogle Scholar
  45. 45.
    Polyak K. The p27Kip1 tumor suppressor gene: Still a suspect or proven guilty? Cancer Cell 2006; 10(5):352–354.CrossRefPubMedGoogle Scholar
  46. 46.
    Huang HJ, Yee JK, Shew JY et al. Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 1988; 242(4885):1563–1566.CrossRefPubMedGoogle Scholar
  47. 47.
    Wang W Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 2007; 8(10):735–748.CrossRefPubMedGoogle Scholar
  48. 48.
    Mayhew CN, Carter SL, Fox SR et al. RB loss abrogates cell cycle control and genome integrity to promote liver tumorigenesis. Gastroenterology 2007; 133(3):976–984.CrossRefPubMedGoogle Scholar
  49. 49.
    Yoshida K, Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription and cell cycle in response to DNA damage. Cancer Sci 2004; 95(11):866–871.CrossRefPubMedGoogle Scholar
  50. 50.
    Ratineau C, Bernard C, Poncet G et al. Reduction of menin expression enhances cell proliferation and is tumorigenic in intestinal epithelial cells. J Biol Chem 2004; 279(23):24477–24484.CrossRefPubMedGoogle Scholar
  51. 51.
    Hussein N, Casse H, Fontaniere S et al. Reconstituted expression of menin in Menl-deficient mouse Leydig tumour cells induces cell cycle arrest and apoptosis. Eur J Cancer 2007; 43(2):402–414.CrossRefPubMedGoogle Scholar
  52. 52.
    Gustavson KH, Jansson R, Oberg K. Chromosomal breakage in multiple endocrine adenomatosis (types I and II). Clin Genet 1983; 23(2):143–149.CrossRefPubMedGoogle Scholar
  53. 53.
    Itakura Y, Sakurai A, Katai M et al. Enhanced sensitivity to alkylating agent in lymphocytes from patients with multiple endocrine neoplasia type 1. Biomed Pharmacother 2000; 54 Suppl 1:187s–190s.CrossRefPubMedGoogle Scholar
  54. 54.
    Scappaticci S, Maraschio P, del Ciotto N et al. Chromosome abnormalities in lymphocytes and fibroblasts of subjects with multiple endocrine neoplasia type 1. Cancer Genet Cytogenet 1991; 52(1):85–92.CrossRefPubMedGoogle Scholar
  55. 55.
    Tomassetti P, Cometa G, Del Vecchio E et al. Chromosomal instability in multiple endocrine neoplasia type 1. Cytogenetic evaluation with DEB test. Cancer Genet Cytogenet 1995; 79(2):123–126.CrossRefPubMedGoogle Scholar
  56. 56.
    Hecht F, Hecht BK. Unstable chromosomes in heritable tumor syndromes. Multiple endocrine neoplasia type 1 (MEN1). Cancer Genet Cytogenet 1991; 52(1):131–134.CrossRefPubMedGoogle Scholar
  57. 57.
    Sakurai A, Katai M, Itakura Y et al. Premature centromere division in patients with multiple endocrine neoplasia type 1. Cancer Genet Cytogenet 1999; 109(2):138–140.CrossRefPubMedGoogle Scholar
  58. 58.
    Teh BT. Thymic carcinoids in multiple endocrine neoplasia type 1. J Intern Med 1998; 243(6):501–504.CrossRefPubMedGoogle Scholar
  59. 59.
    Teh BT, Zedenius J, Kytola S et al. Thymic carcinoids in multiple endocrine neoplasia type 1. Ann Surg 1998; 228(1):99–105.CrossRefPubMedGoogle Scholar
  60. 60.
    Busygina V, Kottemann MC, Scott KL et al. Multiple endocrine neoplasia type 1 interacts with forkhead transcription factor CHES1 in DNA damage response. Cancer Res 2006; 66(17):8397–8403.CrossRefPubMedGoogle Scholar
  61. 61.
    Jin S, Mao H, Schnepp RW et al menin associates with FANCD2, a protein involved in repair of DNA damage. Cancer Res 2003; 63(14):4204–4210.PubMedGoogle Scholar
  62. 62.
    Yokoyama A, Somervaille TC, Smith KS et al. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 2005; 123(2):207–218.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Patrick Gaudray
    • 2
    • 3
  • Günther Weber
    • 2
    • 1
  1. 1.CNRS UMR 6239 Faculté des Sciences et TechniquesToursFrance
  2. 2.Génétique, Immunothérapie, Chimie et Cancer (GICC)Université François RabelaisToursFrance
  3. 3.Faculte des Sciences et TechniquesPare de GrandmontToursFrance

Personalised recommendations