Pain Imaging

  • Magdalena R. Naylor
  • David A. Seminowicz
  • Tamara J. Somers
  • Francis J. Keefe


Pain is an inseparable aspect of life experience and contains both sensory and emotional dimensions. Sensory qualities associated with pain are usually unpleasant and are accompanied by the pain-related emotional response often referred to as “suffering.” However, emotions do not simply occur in parallel with pain, but rather there is an overlap between pain and emotion-related neurophysiological processes. Novel brain imaging methods combined with psychophysical methods have clearly shown that pain with its sensory, cognitive and affective dimensions can be modified by attention, emotions and environmental factors. Over the past decade, developments in brain imaging methods have enabled us not only to understand changes in brain function associated with persistent pain but also changes in brain structure. The purpose of this chapter is to provide a review of research on neuroimaging of pain. The chapter is divided into four sections: (1) an overview of imaging methods (PET, MEG, EEG, and MRI); (2) imaging studies that examine pain and its modulation by emotional and cognitive factors, (3) imaging studies of clinical pain states, and (4) future directions for research on this topic. Each section reviews with detail the above listed subjects and its pertinent literature.


Cognitive Behavioral Therapy Anterior Cingulate Cortex Romantic Partner Noxious Stimulus Arterial Spin Label 


  1. Abrahamsen, R., Dietz, M., Lodahl, S., Roepstorff, A., Zachariae, R., Østergaard, L., & Svensson, P. (2010). Effect of hypnotic pain modulation on brain activity in patients with temporomandibular disorder pain. Pain, 151(3), 825–833.PubMedCrossRefGoogle Scholar
  2. Apkarian, A., Bushnell, M., Treede, R., & Zubieta, J. (2005). Human brain mechanisms of pain perception and regulation in health and disease. European Journal of Pain, 9, 463–484.PubMedCrossRefGoogle Scholar
  3. Apkarian, A., Sosa, Y., Sonty, S., Levy, R., Harden, R., Parrish, T., & Gitelman, D. (2004). Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. The Journal of Neuroscience, 24, 10410–10415.PubMedCrossRefGoogle Scholar
  4. Apkarian, A. V., Thomas, P. S., Krauss, B. R., & Szeverenyi, N. M. (2001). Prefrontal cortical hyperactivity in patients with sympathetically mediated chronic pain. Neuroscience Letters, 311, 193–197.PubMedCrossRefGoogle Scholar
  5. Ashburner, J., & Friston, K. (2000). Voxel-based morphometry – The methods. NeuroImage, 11, 805–821.PubMedCrossRefGoogle Scholar
  6. Babiloni, C., Brancucci, A., Babiloni, F., Capotosto, P., Carducci, F., Cincotti, F., Arendt-Nielsen, L., Chen, A. C., & Rossini, P. M. (2003). Anticipatory cortical responses during the expectancy of a predictable painful stimulation. A high-resolution electroencephalography study. The European Journal of Neuroscience, 18, 1692–1700.PubMedCrossRefGoogle Scholar
  7. Babiloni, C., Capotosto, P., Brancucci, A., Del Percio, C., Petrini, L., Buttiglione, M., Cibelli, G., Romani, G. L., Rossini, P. M., & Arendt-Nielsen, L. (2008). Cortical alpha rhythms are related to the anticipation of sensorimotor interaction between painful stimuli and movements: A high-resolution EEG study. The Journal of Pain, 9, 902–911.PubMedCrossRefGoogle Scholar
  8. Baliki, M. N., Geha, P. Y., & Apkarian, A. V. (2009). Parsing pain perception between nociceptive representation and magnitude estimation. Journal of Neurophysiology, 101, 875–887.PubMedCrossRefGoogle Scholar
  9. Baliki, M., Geha, P., Apkarian, A., & Chialvo, D. (2008). Beyond feeling: Chronic pain hurts the brain, disrupting the default-mode network dynamics. The Journal of Neuroscience, 28, 1398–1403.PubMedCrossRefGoogle Scholar
  10. Baliki, M. N., Geha, P. Y., Fields, H. L., & Apkarian, A. V. (2010). Predicting value of pain and analgesia: Nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron, 66, 149–160.PubMedCrossRefGoogle Scholar
  11. Baliki, M., Katz, J., Chialvo, D. R., & Apkarian, A. V. (2005). Single subject pharmacological-MRI (phMRI) study: Modulation of brain activity of psoriatic arthritis pain by cyclooxygenase-2 inhibitor. Molecular Pain, 1, 32.PubMedCrossRefGoogle Scholar
  12. Barber, J. E. (1996). Hypnosis and suggestion in the treatment of pain: A clinical guide. New York, NY: WW Norton.Google Scholar
  13. Bencherif, B., Fuchs, P. N., Sheth, R., Dannals, R. F., Campbell, J. N., & Frost, J. J. (2002). Pain activation of human supraspinal opioid pathways as demonstrated by [11C]-carfentanil and positron emission tomography (PET). Pain, 99, 589–598.PubMedCrossRefGoogle Scholar
  14. Bingel, U., Glascher, J., Weiller, C., & Buchel, C. (2004). Somatotopic representation of nociceptive information in the putamen: An event-related fMRI study. Cerebral Cortex, 14, 1340–1345.PubMedCrossRefGoogle Scholar
  15. Bingel, U., Lorenz, J., Schoell, E., Weiller, C., & Büchel, C. (2006). Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain, 120, 8–15.PubMedCrossRefGoogle Scholar
  16. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537–541.PubMedCrossRefGoogle Scholar
  17. Boord, P. R., Rennie, C. J., & Williams, L. M. (2007). Integrating “brain” and “body” measures: Correlations between EEG and metabolic changes over the human lifespan. Journal of Integrative Neuroscience, 6, 205–218.PubMedCrossRefGoogle Scholar
  18. Bornhovd, K., Quante, M., Glauche, V., Bromm, B., Weiller, C., & Buchel, C. (2002). Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: A single-trial fMRI study. Brain, 125, 1326–1336.PubMedCrossRefGoogle Scholar
  19. Brooks, J., Zambeanu, L., Godinez, A., Craig, A., & Tracey, I. (2005). Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. NeuroImage, 27, 201–209.PubMedCrossRefGoogle Scholar
  20. Brown, C. A., & Jones, A. K. (2010). Meditation experience predicts less negative appraisal of pain: Electrophysiological evidence for the involvement of anticipatory neural responses. Pain, 150, 428–438.PubMedCrossRefGoogle Scholar
  21. Buchgreitz, L., Egsgaard, L. L., Jensen, R., Arendt-Nielsen, L., & Bendtsen, L. (2008). Abnormal pain processing in chronic tension-type headache: A high-density EEG brain mapping study. Brain, 131, 3232–3238.PubMedCrossRefGoogle Scholar
  22. Bushnell, M., Duncan, G., Hofbauer, R., Ha, B., Chen, J.-I., & Carrier, B. (1999). Pain perception: Is there a role for primary somatosensory cortex? Proceedings of the National Academy of Sciences of the United States of America, 96, 7705–7709.PubMedCrossRefGoogle Scholar
  23. Cauda, F., D’Agata, F., Sacco, K., Duca, S., Cocito, D., Paolasso, I., Isoardo, G., & Geminiani, G. (2010). Altered resting state attentional networks in diabetic neuropathic pain. Journal of Neurology, Neurosurgery, and Psychiatry, 81, 806–811.PubMedCrossRefGoogle Scholar
  24. Cauda, F., Sacco, K., D’Agata, F., Duca, S., Cocito, D., Geminiani, G., Migliorati, F., & Isoardo, G. (2009). Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in diabetic neuropathic pain. BMC Neuroscience, 10, 138.PubMedCrossRefGoogle Scholar
  25. Christensen, J., & Fatchett, D. (2002). Promoting parental use of distraction and relaxation in pediatric oncology patients during invasive procedures. Journal of Pediatric Oncology Nursing, 19, 127.PubMedCrossRefGoogle Scholar
  26. Coghill, R., McHaffie, J., & Yen, Y. (2003). Neural correlates of interindividual differences in the subjective experience of pain. Proceedings of the National Academy of Sciences of the United States of America, 100, 8538–8542.PubMedCrossRefGoogle Scholar
  27. Coghill, R., Sang, C., Maisog, J., & Iadarola, M. (1999). Pain intensity processing within the human brain: A bilateral, distributed mechanism. Journal of Neurophysiology, 82, 1934–1943.PubMedGoogle Scholar
  28. Craig, A. D. (2003). Pain mechanisms: Labeled lines versus convergence in central processing. Annual Review of Neuroscience, 26, 1–30.PubMedCrossRefGoogle Scholar
  29. Craig, A. D. (2009). How do you feel – Now? The anterior insula and human awareness. Nature Reviews. Neuroscience, 10, 59–70.PubMedCrossRefGoogle Scholar
  30. Crawford, H. J., Gur, R. C., Skolnick, B., Gur, R. E., & Benson, D. M. (1993). Effects of hypnosis on regional cerebral blood flow during ischemic pain with and without suggested hypnotic analgesia. International Journal of Psychophysiology, 15, 181–195.PubMedCrossRefGoogle Scholar
  31. Crombez, G., Vlaeyen, J. W. S., Heuts, P. H. T. G., & Lysens, R. (1999). Pain-related fear is more disabling than pain itself: Evidence on the role of pain-related fear in chronic back pain disability. Pain, 80, 329–339.PubMedCrossRefGoogle Scholar
  32. Danziger, N., Faillenot, I., & Peyron, R. (2009). Can we share a pain we never felt? Neural correlates of empathy in patients with congenital insensitivity to pain. Neuron, 61, 203–212.PubMedCrossRefGoogle Scholar
  33. Davis, K. D., Pope, G., Chen, J., Kwan, C. L., Crawley, A. P., & Diamant, N. E. (2008). Cortical thinning in IBS: Implications for homeostatic, attention and pain processing. Neurology, 70, 153–154.PubMedCrossRefGoogle Scholar
  34. Davis, K. D., Pope, G. E., Crawley, A. P., & Mikulis, D. J. (2002). Neural correlates of prickle sensation: A percept-related fMRI study. Nature Neuroscience, 5, 1121–1122.PubMedCrossRefGoogle Scholar
  35. Davis, K. D., Pope, G. E., Crawley, A. P., & Mikulis, D. J. (2004). Perceptual illusion of “paradoxical heat” engages the insular cortex. Journal of Neurophysiology, 92, 1248–1251.PubMedCrossRefGoogle Scholar
  36. Davis, K., Taylor, S., Crawley, A., Wood, M., & David, J. (1997). Functional MRI of pain- and attention-related activations in the human cingulate cortex. Journal of Neurophysiology, 77, 3370–3380.PubMedGoogle Scholar
  37. Davis, K., Wood, M., Crawley, A., & Mikulis, D. (1995). fMRI of human somatosensory and cingulate cortex during painful electrical nerve stimulation. Neuroreport, 7, 321–325.PubMedGoogle Scholar
  38. de Carvalho, M. R., Rozenthal, M., & Nardi, A. E. (2010). The fear circuitry in panic disorder and its modulation by cognitive-behaviour therapy interventions. The World Journal of Biological Psychiatry, 11, 188–198.PubMedCrossRefGoogle Scholar
  39. De Luca, M., Smith, S., De, S. N., Federico, A., & Matthews, P. M. (2005). Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Experimental Brain Research, 167, 587–594.CrossRefGoogle Scholar
  40. Del Percio, C., Le Pera, D., Arendt-Nielsen, L., Babiloni, C., Brancucci, A., Chen, A. C., De Armas, L., Miliucci, R., Restuccia, D., Valeriani, M., & Rossini, P. M. (2006). Distraction affects frontal alpha rhythms related to expectancy of pain: An EEG study. NeuroImage, 31, 1268–1277.PubMedCrossRefGoogle Scholar
  41. Derbyshire, S. W. G., Whalley, M. G., Stenger, V. A., & Oakley, D. A. (2004). Cerebral activation during hypnotically induced and imagined pain. NeuroImage, 23, 392–401.PubMedCrossRefGoogle Scholar
  42. Diers, M., Koeppe, C., Diesch, E., Stolle, A. M., Holzl, R., Schiltenwolf, M., van Ackern, K., & Flor, H. (2007). Central processing of acute muscle pain in chronic low back pain patients: An EEG mapping study. Journal of Clinical Neurophysiology, 24, 76–83.PubMedCrossRefGoogle Scholar
  43. Dinges, D. F., Whitehouse, W. G., Orne, E. C., Bloom, P. B., Carlin, M. M., Bauer, N. K., Gillen, K. A., Shapiro, B. S., Ohene-Frempong, K., & Dampier, C. (1997). Self-hypnosis training as an adjunctive treatment in the management of pain associated with sickle cell disease. The International Journal of Clinical and Experimental Hypnosis, 45, 417–432.PubMedCrossRefGoogle Scholar
  44. Donovan, K. A., Thompson, L. M. A., & Jacobsen, P. B. (2011). Pain, depression and anxiety in cancer. In R. J. Moore (Ed.), Handbook of pain and palliative care. New York, NY: Springer.Google Scholar
  45. Dougherty, D. D., Kong, J., Webb, M., Bonab, A. A., Fischman, A. J., & Gollub, R. L. (2008). A combined [11C]diprenorphine PET study and fMRI study of acupuncture analgesia. Behavioural Brain Research, 193, 63–68.PubMedCrossRefGoogle Scholar
  46. Dowman, R., Rissacher, D., & Schuckers, S. (2008). EEG indices of tonic pain-related activity in the somatosensory cortices. Clinical Neurophysiology, 119, 1201–1212.PubMedCrossRefGoogle Scholar
  47. Downar, J., Mikulis, D. J., & Davis, K. D. (2003). Neural correlates of the prolonged salience of painful stimulation. NeuroImage, 20, 1540–1551.PubMedCrossRefGoogle Scholar
  48. Eickhoff, S. B., Amunts, K., Mohlberg, H., & Zilles, K. (2006a). The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cerebral Cortex, 16, 268–279.PubMedCrossRefGoogle Scholar
  49. Eickhoff, S. B., Schleicher, A., Zilles, K., & Amunts, K. (2006b). The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cerebral Cortex, 16, 254–267.PubMedCrossRefGoogle Scholar
  50. Eippert, F., Finterbusch, B., Bingel, U., & Buchel, C. (2009). Direct evidence for spinal cord involvement in placebo analgesia. Science, 326, 404.PubMedCrossRefGoogle Scholar
  51. Elkins, G., Marcus, J., Palamara, L., & Stearns, V. (2004). Can hypnosis reduce hot flashes in breast cancer survivors? A literature review. The American Journal of Clinical Hypnosis, 47, 29.PubMedCrossRefGoogle Scholar
  52. Farrell, M. J., Laird, A. R., & Egan, G. F. (2005). Brain activity associated with painfully hot stimuli applied to the upper limb: A meta-analysis. Human Brain Mapping, 25, 129–139.PubMedCrossRefGoogle Scholar
  53. Fishbain, D. A. (2002). The pain-depression relationship. Psychosomatics, 43, 341.PubMedCrossRefGoogle Scholar
  54. Fishbain, D., Cutler, R., Rosomoff, H., & Rosomoff, R. (1997). Chronic pain-associated depression: Antecedent or consequence of chronic pain? A review. The Clinical Journal of Pain, 13, 116–137.PubMedCrossRefGoogle Scholar
  55. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102, 9673–9678.PubMedCrossRefGoogle Scholar
  56. Garcia-Larrea, L., Frot, M., & Valeriani, M. (2003). Brain generators of laser-evoked potentials: From dipoles to functional significance. Neurophysiologie Clinique, 33, 279–292.PubMedCrossRefGoogle Scholar
  57. Garcia-Larrea, L., Perchet, C., Creac’h, C., Convers, P., Peyron, R., Laurent, B., Mauguiere, F., & Magnin, M. (2010). Operculo-insular pain (parasylvian pain): A distinct central pain syndrome. Brain, 133, 2528–2539.PubMedCrossRefGoogle Scholar
  58. Gay, M. C., Philippot, P., & Luminet, O. (2002). Differential effectiveness of psychological interventions for reducing osteoarthritis pain: A comparison of Erickson hypnosis and Jacobson relaxation. European Journal of Pain, 6, 1–16.PubMedCrossRefGoogle Scholar
  59. Geha, P., Baliki, M., Harden, R., Bauer, W., Parrish, T., & Apkarian, A. (2008). The brain in chronic CRPS pain: Abnormal gray-white matter interactions in emotional and autonomic regions. Neuron, 60, 570–581.PubMedCrossRefGoogle Scholar
  60. Giesecke, T., Gracely, R. H., Grant, M. A., Nachemson, A., Petzke, F., Williams, D. A., & Clauw, D. J. (2004). Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis and Rheumatism, 50, 613–623.PubMedCrossRefGoogle Scholar
  61. Giesecke, T., Gracely, R. H., Williams, D. A., Geisser, M. E., Petzke, F. W., & Clauw, D. J. (2005). The relationship between depression, clinical pain, and experimental pain in a chronic pain cohort. Arthritis and Rheumatism, 52, 1577–1584.PubMedCrossRefGoogle Scholar
  62. Gracely, R., Geisser, M., Giesecke, T., Grant, M., Petzke, F., Williams, D., & Clauw, D. (2004). Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain: A Journal of Neurology, 127, 835–843.CrossRefGoogle Scholar
  63. Gracely, R., Petzke, F., Wolf, J., & Clauw, D. (2002). Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis and Rheumatism, 46, 1333–1343.PubMedCrossRefGoogle Scholar
  64. Grachev, I. D., Fredrickson, B. E., & Apkarian, A. V. (2000). Abnormal brain chemistry in chronic back pain: An in vivo proton magnetic resonance spectroscopy study. Pain, 89, 7–18.PubMedCrossRefGoogle Scholar
  65. Greenspan, J. D., Lee, R. R., & Lenz, F. A. (1999). Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain, 81, 273–282.PubMedCrossRefGoogle Scholar
  66. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 253–258.PubMedCrossRefGoogle Scholar
  67. Gustin, S. M., Wrigley, P. J., Gandevia, S. C., Middleton, J. W., Henderson, L. A., & Siddall, P. J. (2008). Movement imagery increases pain in people with neuropathic pain following complete thoracic spinal cord injury. Pain, 137, 237–244.PubMedCrossRefGoogle Scholar
  68. Gustin, S. M., Wrigley, P. J., Henderson, L. A., & Siddall, P. J. (2010). Brain circuitry underlying pain in response to imagined movement in people with spinal cord injury. Pain, 148, 438–445.PubMedCrossRefGoogle Scholar
  69. Gwilym, S. E., Fillipini, N., Douaud, G., Carr, A. J., & Tracey, I. (2010). Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after arthroplasty: A longitudinal voxel-based-morphometric study. Arthritis and Rheumatism, 62(10), 2930–2940.PubMedCrossRefGoogle Scholar
  70. Hadjipavlou, G., Dunckley, P., Behrens, T. E., & Tracey, I. (2006). Determining anatomical connectivities between cortical and brainstem pain processing regions in humans: A diffusion tensor imaging study in healthy controls. Pain, 123, 169–178.PubMedCrossRefGoogle Scholar
  71. Harris, R. E., Sundgren, P. C., Craig, A. D., Kirshenbaum, E., Sen, A., Napadow, V., & Clauw, D. J. (2009). Elevated insular glutamate in fibromyalgia is associated with experimental pain. Arthritis and Rheumatism, 60, 3146–3152.PubMedCrossRefGoogle Scholar
  72. Hauck, M., Lorenz, J., Zimmermann, R., Debener, S., Scharein, E., & Engel, A. K. (2007). Duration of the cue-to-pain delay increases pain intensity: A combined EEG and MEG study. Experimental Brain Research, 180, 205–215.CrossRefGoogle Scholar
  73. Henderson, L. A., Gandevia, S. C., & Macefield, V. G. (2007). Somatotopic organization of the processing of muscle and cutaneous pain in the left and right insula cortex: A single-trial fMRI study. Pain, 128, 20–30.PubMedCrossRefGoogle Scholar
  74. Henderson, L. A., Rubin, T. K., & Macefield, V. G. (2011). Within-limb somatotopic representation of acute muscle pain in the human contralateral dorsal posterior insula. Human Brain Mapping, 32(10), 1592–1601.PubMedCrossRefGoogle Scholar
  75. Hess, A., Axmann, R., Rech, J., Finzel, S., Heindl, C., Kreitz, S., Sergeeva, M., Saake, M., Garcia, M., Kollias, G., Straub, R. H., Sporns, O., Doerfler, A., Brune, K., & Schett, G. (2011). Blockade of TNF-alpha rapidly inhibits pain responses in the central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 108, 3731–3736.PubMedCrossRefGoogle Scholar
  76. Hoffman, H. G., Richards, T. L., Van Oostrom, T., Coda, B. A., Jensen, M. P., Blough, D. K., & Sharar, S. R. (2007). The analgesic effects of opioids and immersive virtual reality distraction: Evidence from subjective and functional brain imaging assessments. Anesthesia and Analgesia, 105, 1776.PubMedCrossRefGoogle Scholar
  77. Hsieh, J. C., Belfrage, M., Stone-Elander, S., Hansson, P., & Ingvar, M. (1995). Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain, 63, 225–236.PubMedCrossRefGoogle Scholar
  78. Iannetti, G. D., Hughes, N. P., Lee, M. C., & Mouraux, A. (2008). Determinants of laser-evoked EEG responses: Pain perception or stimulus saliency? Journal of Neurophysiology, 100, 815–828.PubMedCrossRefGoogle Scholar
  79. Isnard, J., Guenot, M., Sindou, M., & Mauguiere, F. (2004). Clinical manifestations of insular lobe seizures: A stereo-electroencephalographic study. Epilepsia, 45, 1079–1090.PubMedCrossRefGoogle Scholar
  80. Jensen, M. P., Hanley, M. A., Engel, J. M., Romano, J. M., Barber, J., Cardenas, D. D., Kraft, G. H., Hoffman, A. J., & Patterson, D. R. (2005). Hypnotic analgesia for chronic pain in persons with disabilities: A case series abstract. The International Journal of Clinical and Experimental Hypnosis, 53, 198–228.PubMedCrossRefGoogle Scholar
  81. Johansen-Berg, H., & Behrens, T. E. (2006). Just pretty pictures? What diffusion tractography can add in clinical neuroscience. Current Opinion in Neurology, 19, 379–385.PubMedCrossRefGoogle Scholar
  82. Johansen-Berg, H., & Rushworth, M. F. (2009). Using diffusion imaging to study human connectional anatomy. Annual Review of Neuroscience, 32, 75–94.PubMedCrossRefGoogle Scholar
  83. Jones, A. K., Watabe, H., Cunningham, V. J., & Jones, T. (2004). Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. European Journal of Pain, 8, 479–485.PubMedCrossRefGoogle Scholar
  84. Kakigi, R., Inui, K., & Tamura, Y. (2005). Electrophysiological studies on human pain perception. Clinical Neurophysiology, 116, 743–763.PubMedCrossRefGoogle Scholar
  85. Keefe, F. J., Abernethy, A. P., Wheeler, J. L., & Somers, T. J. (2010). Psychological interventions for cancer pain. In E. Bruera, R. K. Portenoy, & E. Corporation (Eds.), Cancer pain: Assessment and management. New York, NY: Cambridge University Press.Google Scholar
  86. Kishima, H., Saitoh, Y., Oshino, S., Hosomi, K., Ali, M., Maruo, T., Hirata, M., Goto, T., Yanagisawa, T., Sumitani, M., Osaki, Y., Hatazawa, J., & Yoshimine, T. (2010). Modulation of neuronal activity after spinal cord stimulation for neuropathic pain; H(2)15O PET study. NeuroImage, 49, 2564–2569.PubMedCrossRefGoogle Scholar
  87. Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53, 63–88.PubMedCrossRefGoogle Scholar
  88. Kulkarni, B., Bentley, D. E., Elliott, R., Julyan, P. J., Boger, E., Watson, A., Boyle, Y., El-Deredy, W., & Jones, A. K. (2007). Arthritic pain is processed in brain areas concerned with emotions and fear. Arthritis and Rheumatism, 56, 1345–1354.PubMedCrossRefGoogle Scholar
  89. Kulkarni, B., Bentley, D. E., Elliott, R., Youell, P., Watson, A., Derbyshire, S. W. G., Frackowiak, R. S. J., Friston, K. J., & Jones, A. K. P. (2005). Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems. The European Journal of Neuroscience, 21, 3133–3142.PubMedCrossRefGoogle Scholar
  90. Kupers, R., Frokjaer, V. G., Erritzoe, D., Naert, A., Budtz-Joergensen, E., Nielsen, F. A., Kehlet, H., & Knudsen, G. M. (2010). Serotonin transporter binding in the hypothalamus correlates negatively with tonic heat pain ratings in healthy subjects: A [11C]DASB PET study. NeuroImage, 54, 1336–1343.PubMedCrossRefGoogle Scholar
  91. Kupers, R., Frokjaer, V. G., Naert, A., Christensen, R., Budtz-Joergensen, E., Kehlet, H., & Knudsen, G. M. (2009). A PET [18F]altanserin study of 5-HT2A receptor binding in the human brain and responses to painful heat stimulation. NeuroImage, 44, 1001–1007.PubMedCrossRefGoogle Scholar
  92. Lackner, J., Coad, M., Mertz, H., Wack, D., Katz, L., Krasner, S., Firth, R., Mahl, T., & Lockwood, A. (2006). Cognitive therapy for irritable bowel syndrome is associated with reduced limbic activity, GI symptoms, and anxiety. Behaviour Research and Therapy, 44, 621–638.PubMedCrossRefGoogle Scholar
  93. Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54(3), 2492–2502.PubMedCrossRefGoogle Scholar
  94. Lang, P., Bradley, M., & Cuthbert, B. (1998). Emotion and motivation: Measuring affective perception. Journal of Clinical Neurophysiology, 15, 397–408.PubMedCrossRefGoogle Scholar
  95. Leibovici, V., Magora, F., Cohen, S., & Ingber, A. (2009). Effects of virtual reality immersion and audiovisual distraction techniques for patients with pruritus. Pain Research & Management: The Journal of the Canadian Pain Society, 14, 283.Google Scholar
  96. Lu, H. C., Hsieh, J. C., Lu, C. L., Niddam, D. M., Wu, Y. T., & Yeh, T. C. (2010). Neuronal correlates in the modulation of placebo analgesia in experimentally-induced esophageal pain: A 3T-fMRI study. Pain, 148, 75–83.PubMedCrossRefGoogle Scholar
  97. Lutz, J., Jager, L., de, Q. D., Krauseneck, T., Padberg, F., Wichnalek, M., Beyer, A., Stahl, R., Zirngibl, B., Morhard, D., Reiser, M., & Schelling, G. (2008). White and gray matter abnormalities in the brain of patients with fibromyalgia: A diffusion-tensor and volumetric imaging study. Arthritis and Rheumatism, 58, 3960–3969.PubMedCrossRefGoogle Scholar
  98. Magis, D., Bruno, M. A., Fumal, A., Gerardy, P. Y., Hustinx, R., Laureys, S., & Schoenen, J. (2011). Central modulation in cluster headache patients treated with occipital nerve stimulation: An FDG-PET study. BMC Neurology, 11, 25.PubMedCrossRefGoogle Scholar
  99. Malinen, S., Vartiainen, N., Hlushchuk, Y., Koskinen, M., Ramkumar, P., Forss, N., Kalso, E., & Hari, R. (2010). Aberrant temporal and spatial brain activity during rest in patients with chronic pain. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6493–6497.PubMedCrossRefGoogle Scholar
  100. Malloy, K. M., & Milling, L. S. (2010). The effectiveness of virtual reality distraction for pain reduction: A systematic review. Clinical Psychology Review, 30(8), 1011–1018.PubMedCrossRefGoogle Scholar
  101. Mantini, D., Caulo, M., Ferretti, A., Romani, G. L., & Tartaro, A. (2009). Noxious somatosensory stimulation affects the default mode of brain function: Evidence from functional MR imaging. Radiology, 253(3), 797–804.PubMedCrossRefGoogle Scholar
  102. May, A. (2008). Chronic pain may change the structure of the brain. Pain, 137, 7–15.PubMedCrossRefGoogle Scholar
  103. Mazzola, L., Isnard, J., & Mauguiere, F. (2006). Somatosensory and pain responses to stimulation of the second somatosensory area (SII) in humans. A comparison with SI and insular responses. Cerebral Cortex, 16, 960–968.PubMedCrossRefGoogle Scholar
  104. Mazzola, L., Isnard, J., Peyron, R., Guenot, M., & Mauguiere, F. (2009). Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain, 146, 99–104.PubMedCrossRefGoogle Scholar
  105. McGeoch, P. D., Williams, L. E., Song, T., Lee, R. R., Huang, M., & Ramachandran, V. S. (2009). Post-stroke tactile allodynia and its modulation by vestibular stimulation: A MEG case study. Acta Neurologica Scandinavica, 119, 404–409.PubMedCrossRefGoogle Scholar
  106. Mee, S., Bunney, B. G., Reist, C., Potkin, S. G., & Bunney, W. E. (2006). Psychological pain: A review of evidence. Journal of Psychiatric Research, 40, 680–690.PubMedCrossRefGoogle Scholar
  107. Melzack, R. (2001). Pain and the neuromatrix in the brain. Journal of Dental Education, 65, 1378–1382.PubMedGoogle Scholar
  108. Melzack, R., & Casey, K. L. (1968). Sensory, motivational, and central control determinants of pain: A new conceptual model. In D. R. Kenshalo (Ed.), The skin senses (pp. 423–439). Springfield, IL: Chas C. Thomas.Google Scholar
  109. Moulton, E. A., Becerra, L., Maleki, N., Pendse, G., Tully, S., Hargreaves, R., Burstein, R., & Borsook, D. (2011). Painful heat reveals hyperexcitability of the temporal pole in interictal and ictal migraine states. Cerebral Cortex, 21(2), 435–448.PubMedCrossRefGoogle Scholar
  110. Mouraux, A., Diukova, A., Lee, M. C., Wise, R. G., & Iannetti, G. D. (2011). A multisensory investigation of the functional significance of the “pain matrix”. NeuroImage, 54(3), 2237–2249.PubMedCrossRefGoogle Scholar
  111. Mueller, C., Klega, A., Buchholz, H. G., Rolke, R., Magerl, W., Schirrmacher, R., Schirrmacher, E., Birklein, F., Treede, R. D., & Schreckenberger, M. (2010). Basal opioid receptor binding is associated with differences in sensory perception in healthy human subjects: A [18F]diprenorphine PET study. NeuroImage, 49, 731–737.PubMedCrossRefGoogle Scholar
  112. Napadow, V., LaCount, L., Park, K., As-Sanie, S., Clauw, D. J., & Harris, R. E. (2010). Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis and Rheumatism, 62, 2545–2555.PubMedCrossRefGoogle Scholar
  113. Naylor, M. R., Krauthamer, G. M., Dumas, J. A., Mantegna, J., Filippi, C., Newhouse, P.A. Functional MRI treatment effects of cognitive behavioral therapy in chronic pain. Submitted for publication.PubMedCrossRefGoogle Scholar
  114. Naylor, M. R., Shpaner, M., Krauthamer, G. M., Mantegna, J., Keaser, M. L., Seminowicz, D. A. Prefrontal anatomical changes after cognitive behavioral therapy in chronic musculoskeletal pain. Submitted for publication.PubMedCrossRefGoogle Scholar
  115. Ostrowsky, K., Magnin, M., Ryvlin, P., Isnard, J., Guenot, M., & Mauguiere, F. (2002). Representation of pain and somatic sensation in the human insula: A study of responses to direct electrical cortical stimulation. Cerebral Cortex, 12, 376–385.PubMedCrossRefGoogle Scholar
  116. Owen, D. G., Bureau, Y., Thomas, A. W., Prato, F. S., & St Lawrence, K. S. (2008). Quantification of pain-induced changes in cerebral blood flow by perfusion MRI. Pain, 136, 85–96.PubMedCrossRefGoogle Scholar
  117. Owen, D. G., Clarke, C. F., Ganapathy, S., Prato, F. S., & St Lawrence, K. S. (2010). Using perfusion MRI to measure the dynamic changes in neural activation associated with tonic muscular pain. Pain, 148, 375–386.PubMedCrossRefGoogle Scholar
  118. Palomero-Gallagher, N., Mohlberg, H., Zilles, K., & Vogt, B. (2008). Cytology and receptor architecture of human anterior cingulate cortex. The Journal of Comparative Neurology, 508, 906–926.PubMedCrossRefGoogle Scholar
  119. Palomero-Gallagher, N., Vogt, B. A., Schleicher, A., Mayberg, H. S., & Zilles, K. (2009). Receptor architecture of human cingulate cortex: Evaluation of the four-region neurobiological model. Human Brain Mapping, 30, 2336–2355.PubMedCrossRefGoogle Scholar
  120. Perl, E. R. (2007). Ideas about pain, a historical view. Nature Reviews. Neuroscience, 8, 71–80.PubMedCrossRefGoogle Scholar
  121. Petrovic, P., Kalso, E., Petersson, K. M., Andersson, J., Fransson, P., & Ingvar, M. (2010). A prefrontal non-opioid mechanism in placebo analgesia. Pain, 150, 59–65.PubMedCrossRefGoogle Scholar
  122. Peyron, R., Faillenot, I., Mertens, P., Laurent, B., & Garcia-Larrea, L. (2007). Motor cortex stimulation in neuropathic pain. Correlations between analgesic effect and hemodynamic changes in the brain. A PET study. NeuroImage, 34, 310–321.PubMedCrossRefGoogle Scholar
  123. Peyron, R., Frot, M., Schneider, F., Garcia-Larrea, L., Mertens, P., Barral, F. G., Sindou, M., Laurent, B., & Mauguiere, F. (2002). Role of operculoinsular cortices in human pain processing: Converging evidence from PET, fMRI, dipole modeling, and intracerebral recordings of evoked potentials. NeuroImage, 17, 1336–1346.PubMedCrossRefGoogle Scholar
  124. Peyron, R., Laurent, B., & Garcia-Larrea, L. (2000). Functional imaging of brain responses to pain. A review and meta-analysis. Clinical Neurophysiology, 30, 263–288.PubMedCrossRefGoogle Scholar
  125. Ploghaus, A., Nairain, C., Beckmann, C., Clare, S., Bantick, S., Wise, R., Matthews, P., Rawlins, N., & Tracey, I. (2001). Exacerbation of pain by anxiety is associated with activity in a hippocampal network. The Journal of Neuroscience, 21, 9896–9903.PubMedGoogle Scholar
  126. Pollo, A., & Benedetti, F. (2011). Pain and the placebo/nocebo effect. In R. J. Moore (Ed.), Handbook of pain and palliative care. New York, NY: Springer.Google Scholar
  127. Price, D. D. (2002). Central neural mechanisms that interrelate sensory and affective dimensions of pain. Molecular Interventions, 2, 392–403.PubMedCrossRefGoogle Scholar
  128. Price, D., & Bushnell, M. (2004). Psychological methods of pain control: Basic science and clinical perspectives (308 pp). Seattle, WA: IASP Press.Google Scholar
  129. Quante, M., Hille, S., Schofer, M. D., Lorenz, J., & Hauck, M. (2008). Noxious counterirritation in patients with advanced osteoarthritis of the knee reduces MCC but not SII pain generators: A combined use of MEG and EEG. Journal of Pain Research, 1, 1–8.PubMedGoogle Scholar
  130. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682.PubMedCrossRefGoogle Scholar
  131. Ray, N. J., Jenkinson, N., Kringelbach, M. L., Hansen, P. C., Pereira, E. A., Brittain, J. S., Holland, P., Holliday, I. E., Owen, S., Stein, J., & Aziz, T. (2009). Abnormal thalamocortical dynamics may be altered by deep brain stimulation: Using magnetoencephalography to study phantom limb pain. Journal of Clinical Neuroscience, 16, 32–36.PubMedCrossRefGoogle Scholar
  132. Richter, M., Eck, J., Straube, T., Miltner, W. H. R., & Weiss, T. (2010). Do words hurt? Brain activation during the processing of pain-related words. Pain, 148, 198–205.PubMedCrossRefGoogle Scholar
  133. Rodriguez-Raecke, R., Niemeier, A., Ihle, K., Ruether, W., & May, A. (2009). Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. The Journal of Neuroscience, 29, 13746–13750.PubMedCrossRefGoogle Scholar
  134. Rossini, P. M., Babiloni, C., Babiloni, F., Ambrosini, A., Onorati, P., Carducci, F., & Urbano, A. (1999). “Gating” of human short-latency somatosensory evoked cortical responses during execution of movement. A high resolution electroencephalography study. Brain Research, 843, 161–170.PubMedCrossRefGoogle Scholar
  135. Roy, M., Piché, M., Chen, J. I., Peretz, I., & Rainville, P. (2009). Cerebral and spinal modulation of pain by emotions. Proceedings of the National Academy of Sciences of the United States of America, 106, 20900.PubMedCrossRefGoogle Scholar
  136. Ruben, J., Schwiemann, J., Deuchert, M., Meyer, R., Krause, T., Curio, G., Villringer, K., Kurth, R., & Villringer, A. (2001). Somatotopic organization of human secondary somatosensory cortex. Cerebral Cortex, 11, 463–473.PubMedCrossRefGoogle Scholar
  137. Sarnthein, J., Stern, J., Aufenberg, C., Rousson, V., & Jeanmonod, D. (2006). Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain, 129, 55–64.PubMedCrossRefGoogle Scholar
  138. Schmahmann, J. D., & Leifer, D. (1992). Parietal pseudothalamic pain syndrome. Clinical features and anatomic ­correlates. Archives of Neurology, 49, 1032–1037.PubMedCrossRefGoogle Scholar
  139. Schroeder, C. E., Wilson, D. A., Radman, T., Scharfman, H., & Lakatos, P. (2010). Dynamics of active sensing and perceptual selection. Current Opinion in Neurobiology, 20, 172–176.PubMedCrossRefGoogle Scholar
  140. Schupp, C. J., Berbaum, K., Berbaum, M., & Lang, E. V. (2005). Pain and anxiety during interventional radiologic procedures: Effect of patients’ state anxiety at baseline and modulation by nonpharmacologic analgesia adjuncts. Journal of Vascular and Interventional Radiology, 16, 1585–1592.PubMedCrossRefGoogle Scholar
  141. Schweinhardt, P., Kuchinad, A., Pukall, C. F., & Bushnell, M. C. (2008). Increased gray matter density in young women with chronic vulvar pain. Pain, 140, 411–419.PubMedCrossRefGoogle Scholar
  142. Scott, D. J., Heitzeg, M. M., Koeppe, R. A., Stohler, C. S., & Zubieta, J. K. (2006). Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. The Journal of Neuroscience, 26, 10789–10795.PubMedCrossRefGoogle Scholar
  143. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27, 2349–2356.PubMedCrossRefGoogle Scholar
  144. Seghier, M. L., Lazeyras, F., Vuilleumier, P., Schnider, A., & Carota, A. (2005). Functional magnetic resonance imaging and diffusion tensor imaging in a case of central poststroke pain. The Journal of Pain, 6, 208–212.PubMedCrossRefGoogle Scholar
  145. Seminowicz, D., & Davis, K. (2006). Cortical responses to pain in healthy individuals depends on pain catastrophizing. Pain, 120, 297–306.PubMedCrossRefGoogle Scholar
  146. Seminowicz, D., & Davis, K. (2007). Pain enhances functional connectivity of a brain network evoked by performance of a cognitive task. Journal of Neurophysiology, 97, 3651–3659.PubMedCrossRefGoogle Scholar
  147. Seminowicz, D. A., Laferriere, A. L., Millecamps, M., Yu, J. S. C., Coderre, T. J., & Bushnell, M. C. (2009). MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. NeuroImage, 47, 1007–1014.PubMedCrossRefGoogle Scholar
  148. Seminowicz, D. A., Wideman, T. H., Naso, L., Hatami-Khoroushahi, Z., Fallatah, S., Ware, M. A., et al. (2010). Treating chronic low back pain reverses structural brain changes. In Montreal, Quebec, Canada.Google Scholar
  149. Sprenger, T., Valet, M., Boecker, H., Henriksen, G., Spilker, M. E., Willoch, F., Wagner, K. J., Wester, H. J., & Tolle, T. R. (2006a). Opioidergic activation in the medial pain system after heat pain. Pain, 122, 63–67.PubMedCrossRefGoogle Scholar
  150. Sprenger, T., Willoch, F., Miederer, M., Schindler, F., Valet, M., Berthele, A., Spilker, M. E., Forderreuther, S., Straube, A., Stangier, I., Wester, H. J., & Tolle, T. R. (2006b). Opioidergic changes in the pineal gland and hypothalamus in cluster headache: A ligand PET study. Neurology, 66, 1108–1110.PubMedCrossRefGoogle Scholar
  151. Starr, C. J., Sawaki, L., Wittenberg, G. F., Burdette, J. H., Oshiro, Y., Quevedo, A. S., & Coghill, R. C. (2009). Roles of the insular cortex in the modulation of pain: Insights from brain lesions. The Journal of Neuroscience, 29, 2684–2694.PubMedCrossRefGoogle Scholar
  152. Stern, J., Jeanmonod, D., & Sarnthein, J. (2006). Persistent EEG overactivation in the cortical pain matrix of neurogenic pain patients. NeuroImage, 31, 721–731.PubMedCrossRefGoogle Scholar
  153. Sundgren, P. C., Petrou, M., Harris, R. E., Fan, X., Foerster, B., Mehrotra, N., Sen, A., Clauw, D. J., & Welsh, R. C. (2007). Diffusion-weighted and diffusion tensor imaging in fibromyalgia patients: A prospective study of whole brain diffusivity, apparent diffusion coefficient, and fraction anisotropy in different regions of the brain and correlation with symptom severity. Academic Radiology, 14, 839–846.PubMedCrossRefGoogle Scholar
  154. Tagliazucchi, E., Balenzuela, P., Fraiman, D., & Chialvo, D. R. (2010). Brain resting state is disrupted in chronic back pain patients. Neuroscience Letters, 485(1), 26–31.PubMedCrossRefGoogle Scholar
  155. Talbot, J., Marrett, S., Evans, A., Meyer, E., Bushnell, M., & Duncan, G. (1991). Multiple representations of pain in human cerebral cortex. Science, 251, 1355–1358.PubMedCrossRefGoogle Scholar
  156. Taylor, K. S., Seminowicz, D. A., & Davis, K. D. (2009). Two systems of resting state connectivity between the insula and cingulate cortex. Human Brain Mapping, 30, 2731–2745.PubMedCrossRefGoogle Scholar
  157. Timmermann, L., Ploner, M., Haucke, K., Schmitz, F., Baltissen, R., & Schnitzler, A. (2001). Differential coding of pain intensity in the human primary and secondary somatosensory cortex. Journal of Neurophysiology, 86, 1499–1503.PubMedGoogle Scholar
  158. Treede, R. D. (2002). Spinothalamic and thalamocortical nociceptive pathways. The Journal of Pain, 3, 109–112.PubMedCrossRefGoogle Scholar
  159. Treede, R., Kenshalo, D., Gracely, R., & Jones, A. (1999). The cortical representation of pain. Pain, 79(2–3), 105–111.PubMedCrossRefGoogle Scholar
  160. van der Graaf, M. (2010). In vivo magnetic resonance spectroscopy: Basic methodology and clinical applications. European Biophysics Journal, 39, 527–540.PubMedCrossRefGoogle Scholar
  161. Vlaeyen, J., Haazen, I., Schuerman, J., Kole-Snijders, A., & van Eek, H. (1995). Behavioural rehabilitation of chronic low back pain: Comparison of an operant treatment, an operant-cognitive treatment and an operant-respondent treatment. British Journal of Clinical Psychology, 34, 95–118.PubMedCrossRefGoogle Scholar
  162. Vogt, B. A. (2005). Pain and emotion interactions in subregions of the cingulate gyrus. Nature Reviews. Neuroscience, 6, 533–544.PubMedCrossRefGoogle Scholar
  163. Wager, T., Rilling, J., Smith, E., Sokolik, A., Casey, K., Davidson, R., Kosslyn, S., Rose, R., & Cohen, J. (2004). Placebo-induced changes in fMRI in the anticipation and experience of pain. Science, 303, 1162–1167.PubMedCrossRefGoogle Scholar
  164. Wager, T. D., Scott, D. J., & Zubieta, J. K. (2007). Placebo effects on human mu-opioid activity during pain. Proceedings of the National Academy of Sciences of the United States of America, 104, 11056–11061.PubMedCrossRefGoogle Scholar
  165. Wagner, K. J., Sprenger, T., Kochs, E. F., Tolle, T. R., Valet, M., & Willoch, F. (2007). Imaging human cerebral pain modulation by dose-dependent opioid analgesia: A positron emission tomography activation study using remifentanil. Anesthesiology, 106, 548–556.PubMedCrossRefGoogle Scholar
  166. Walton, K. D., Dubois, M., & Llinas, R. R. (2010). Abnormal thalamocortical activity in patients with complex regional pain syndrome (CRPS) type I. Pain, 150, 41–51.PubMedCrossRefGoogle Scholar
  167. Watson, A., El-Deredy, W., Iannetti, G. D., Lloyd, D., Tracey, I., Vogt, B. A., Nadeau, V., & Jones, A. K. P. (2009). Placebo conditioning and placebo analgesia modulate a common brain network during pain anticipation and perception. Pain, 145, 24–30.PubMedCrossRefGoogle Scholar
  168. Willis, W. D., Jr., Zhang, X., Honda, C. N., & Giesler, G. J., Jr. (2002). A critical review of the role of the proposed VMpo nucleus in pain. The Journal of Pain, 3, 79–94.PubMedCrossRefGoogle Scholar
  169. Wise, R. G., Lujan, B. J., Schweinhardt, P., Peskett, G. D., Rogers, R., & Tracey, I. (2007). The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI. Magnetic Resonance Imaging, 25, 801–810.PubMedCrossRefGoogle Scholar
  170. Witting, N., Kupers, R. C., Svensson, P., & Jensen, T. S. (2006). A PET activation study of brush-evoked allodynia in patients with nerve injury pain. Pain, 120, 145–154.PubMedCrossRefGoogle Scholar
  171. Wood, P. B., Schweinhardt, P., Jaeger, E., Dagher, A., Hakyemez, H., Rabiner, E. A., Bushnell, M. C., & Chizh, B. A. (2007). Fibromyalgia patients show an abnormal dopamine response to pain. The European Journal of Neuroscience, 25, 3576–3582.PubMedCrossRefGoogle Scholar
  172. Younger, J., Aron, A., Parke, S., Chatterjee, N., & Mackey, S. (2010). Viewing pictures of a romantic partner reduces experimental pain: Involvement of neural reward systems. PloS One, 5, e13309.PubMedCrossRefGoogle Scholar
  173. Zeidan, F., Martucci, K. T., Kraft, R. A., Gordon, N. S., McHaffie, J. G., & Coghill, R. C. (2011). Brain mechanisms supporting the modulation of pain by mindfulness meditation. The Journal of Neuroscience, 31, 5540–5548.PubMedCrossRefGoogle Scholar
  174. Ziv, M., Tomer, R., Defrin, R., & Hendler, T. (2010). Individual sensitivity to pain expectancy is related to differential activation of the hippocampus and amygdala. Human Brain Mapping, 31, 326–338.PubMedGoogle Scholar
  175. Zubieta, J. K., Bueller, J. A., Jackson, L. R., Scott, D. J., Xu, Y., Koeppe, R. A., Nichols, T. E., & Stohler, C. S. (2005). Placebo effects mediated by endogenous opioid activity on {micro}-opioid receptors. The Journal of Neuroscience, 25, 7754.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Magdalena R. Naylor
    • 1
  • David A. Seminowicz
    • 2
  • Tamara J. Somers
    • 3
  • Francis J. Keefe
    • 3
  1. 1.Department of PsychiatryThe University of VermontBurlingtonUSA
  2. 2.Department of Neural and Pain SciencesUniversity of Maryland School of DentistryBaltimoreUSA
  3. 3.Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamUSA

Personalised recommendations