Phantom Limb Pain

  • Jens Foell
  • Herta Flor


Chronic phantom limb pain is a common occurrence after the amputation of an extremity, often causing a considerable level of suffering for years or decades after an accidental injury or an operation. Due to its intractable nature and multilayered working mechanisms, it has proven to be a challenge for both practitioners and researchers. Studies have linked this type of chronic pain to alterations in the peripheral nervous system, the spinal cord, the brainstem, the thalamus, and the cortex. Mechanisms that contribute to the elicitation and perpetuation of chronic phantom limb pain may be the formation of neuroma, central sensitization, cortical reorganization, and pain memory. The tendency of developing phantom limb pain after limb amputation seems to be connected to perceptual illusions, such as integrating the mirror image of a limb or a rubber hand into one’s own body representation. These findings have led to novel forms of treatment, such as mirror therapy, imagery training, or the application of virtual reality. Other promising treatments include pharmacological approaches before and after amputation, sensory discrimination, central stimulation, the use of myoelectric prostheses, and the combination of medication and behavioral approaches.


Rubber Hand Phantom Limb Phantom Limb Pain Residual Limb Rubber Hand Illusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Appenzeller, O., & Bicknell, J. M. (1969). Effects of nervous system lesions on phantom experience in amputees. Neurology, 19, 141–146.PubMedCrossRefGoogle Scholar
  2. Armel, K. C., & Ramachandran, V. S. (2003). Projecting sensations to external objects: Evidence from skin conductance response. Proceedings of the Royal Society of London B Biological Sciences, 270, 1499–1506.CrossRefGoogle Scholar
  3. Baillie, J. K., & Power, I. (2006). The mechanism of action of gabapentin in neuropathic pain. Current Opinion in Investigational Drugs, 7, 33–39.PubMedGoogle Scholar
  4. Baron, R., & Maier, C. (1995). Phantom limb pain: are cutaneous nociceptors and spinothalamic neurons involved in the signaling and maintenance of spontaneous and touch-evoked pain? A case report. Pain, 60, 223–228.PubMedCrossRefGoogle Scholar
  5. Birbaumer, N., Lutzenberger, W., Montoya, P., Larbig, W., Unertl, K., Töpfner, S., Grodd, W., Taub, E., & Flor, H. (1997). Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. The Journal of Neuroscience, 17, 5503–5508.PubMedGoogle Scholar
  6. Blankenburg, F., Ruff, C. C., Deichmann, R., Rees, G., & Driver, J. (2006). The cutaneous rabbit illusion affects human primary sensory cortex somatotopically. PLoS Biology, 4, e69. doi: 10.1371/journal.pbio.0040069.PubMedCrossRefGoogle Scholar
  7. Botvinick, M., & Cohen, J. (1998). Rubber hands “feel” touch that eyes see. Nature, 391, 756.PubMedCrossRefGoogle Scholar
  8. Calford, M. B., & Tweedale, R. (1991). C-fibres provide a source of masking inhibition to primary somatosensory cortex. Proceedings of the Biological Sciences, 243, 269–275.CrossRefGoogle Scholar
  9. Chabal, C., Jacobson, L., Russell, L. C., & Burchiel, K. J. (1992). Pain response to peri-neuromal injection of normal saline, epinephrine, and lidocaine in humans. Pain, 49, 9–12.PubMedCrossRefGoogle Scholar
  10. Chan, B. L., Witt, R., Charrow, A. P., Magee, A., Howard, R., Pasquina, P. F., Heilman, K. M., & Tsao, J. W. (2007). Mirror therapy for phantom limb pain. The New England Journal of Medicine, 357, 2206–2207.PubMedCrossRefGoogle Scholar
  11. Chen, L. M., Friedman, R. M., & Roe, A. W. (2003). Optical imaging of a tactile illusion in area 3b of the primary somatosensory cortex. Science, 302, 881–885.PubMedCrossRefGoogle Scholar
  12. Chen, Y., Michaelis, M., Jänig, W., & Devor, M. (1996). Adrenoreceptor subtype mediating sympathetic sensory coupling in injured sensory neurons. Journal of Neurophysiology, 76, 3721–3730.PubMedGoogle Scholar
  13. Churchill, J. D., Muja, N., Myers, W. A., Besheer, J., & Garraghty, P. E. (1998). Somatotopic consolidation: a third phase of reorganization after peripheral nerve injury in adult squirrel monkeys. Experimental Brain Research, 118, 189–196.CrossRefGoogle Scholar
  14. Cole, J., Crowle, S., Austwick, G., & Slater, D. H. (2009). Exploratory findings with virtual reality for phantom limb pain; from stump motion to agency and analgesia. Disability and Rehabilitation, 31, 846–854.PubMedCrossRefGoogle Scholar
  15. Coull, J. A., Beggs, S., Boudreau, D., Boivin, D., Tsuda, M., Inoue, K., Gravel, C., Salter, M. W., & De Koninck, Y. (2005). BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature, 438, 1017–1021.PubMedCrossRefGoogle Scholar
  16. Davis, K. D., Kiss, Z. H., Luo, L., Tasker, R. R., Lozano, A. M., & Dostrovsky, J. O. (1998). Phantom sensations generated by thalamic microstimulation. Nature, 391, 385–387.PubMedCrossRefGoogle Scholar
  17. Devor, M. (2005a). In M. Koltzenburg & S. B. McMahon (Eds.). Response of nerres to injury in relation to neuropathic pain. Wall and Melzack’s textbook of pain (pp. 905–927). Amsterdam: Elsevier.Google Scholar
  18. Devor, M. (2005b). Sodium channels and mechanisms of neuropathic pain. Pain, 7, 3–12.Google Scholar
  19. Devor, M. (2006). Sodium channels and mechanisms of neuropathic pain. J. pain, 7, S3–S12.PubMedCrossRefGoogle Scholar
  20. Devor, M., & Wall, P. D. (1978). Reorganisation of spinal cord sensory map after peripheral nerve injury. Nature, 276, 75–76.PubMedCrossRefGoogle Scholar
  21. Doetsch, G. S. (1998). Perceptual significance of somatosensory cortical reorganization following peripheral denervation. Neuroreport, 9, 29–35.CrossRefGoogle Scholar
  22. Donovan, K. A., Thompson, L. M. A., & Jacobsen, P. B. (2011). Pain, depression and anxiety in cancer. In R. J. Moore (Ed.), Handbook of pain and palliative care: Biobehavioral approaches for the life course. New York: Springer.Google Scholar
  23. Ehrsson, H. H., Holmes, N. P., & Passingham, R. E. (2005). Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. The Journal of Neuroscience, 25, 10564–10573.PubMedCrossRefGoogle Scholar
  24. Ehrsson, H. H., Spence, C., & Passingham, R. E. (2004). That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science, 305, 875–877.PubMedCrossRefGoogle Scholar
  25. Eichenberger, U., Neff, F., Sveticic, G., Björgo, S., Petersen-Felix, S., Arendt-Nielsen, L., & Curatolo, M. (2008). Chronic phantom limb pain: the effects of calcitonin, ketamine, and their combination on pain and sensory thresholds. Anesthesia and Analgesia, 106, 1265–1273.PubMedCrossRefGoogle Scholar
  26. Elbert, T., Sterr, A., Flor, H., Rockstroh, B., Knecht, S., Pantev, C., Wienbruch, C., & Taub, E. (1997). Input-increase and input-decrease types of cortical reorganization after upper extremity amputation in humans. Experimental Brain Research, 117, 161–164.CrossRefGoogle Scholar
  27. Ephraim, P. L., Wegener, S. T., MacKenzie, E. J., Dillingham, T. R., & Pezzin, L. E. (2005). Phantom pain, residual limb pain, and back pain in amputees: results of a national survey. Archives of Physical Medicine and Rehabilitation, 86, 1910–1919.PubMedCrossRefGoogle Scholar
  28. Ergenzinger, E. R., Glasier, M. M., Hahm, J. O., & Pons, T. P. (1998). Cortically induced thalamic plasticity in the primate somatosensory system. Nature Neuroscience, 1, 226–229.PubMedCrossRefGoogle Scholar
  29. Finnerup, N. B., Norrbrink, C., Fuglsang-Frederiksen, A., Terkelsen, A. J., Hojlund, A. P., & Jensen, T. S. (2010). Pain, referred sensations, and involuntary muscle movements in brachial plexus injury. Acta Neurologica Scandinavica, 121, 320–327.PubMedCrossRefGoogle Scholar
  30. Finnerup, N. B., Otto, M., Jensen, T. S., & Sindrup, S. H. (2007). An evidence-based algorithm for the treatment of neuropathic pain. Medscape General Medicine, 9, 36.PubMedGoogle Scholar
  31. Flor, H. (2008). Maladaptive plasticity, memory for pain and phantom limb pain: review and suggestions for new therapies. Expert Review of Neurotherapeutics, 8, 809–818.PubMedCrossRefGoogle Scholar
  32. Flor, H., Braun, C., Elbert, T., & Birbaumer, N. (1997). Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neuroscience Letters, 224, 5–8.PubMedCrossRefGoogle Scholar
  33. Flor, H., Denke, C., Schaefer, M., & Grüsser, S. (2001). Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. The Lancet, 357, 1763–1764.CrossRefGoogle Scholar
  34. Flor, H., Devor, M., & Jensen, T. (2003). Phantom limb pain: Causes and cures. In J. Dostrovsky, M. Koltzenburg, & D. Carr (Eds.), Proceedings of the 10th world congress on pain (pp. 725–738). Seattle: IASP Press.Google Scholar
  35. Flor, H., & Diers, M. (2007). Limitations of pharmacotherapy: behavioral approaches to chronic pain. Handbook of Experimental Pharmacology, 177, 415–427.PubMedCrossRefGoogle Scholar
  36. Flor, H., Elbert, T., Wienbruch, C., Pantev, C., Knecht, S., Birbaumer, N., Larbig, W., & Taub, E. (1995). Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature, 375, 482–484.PubMedCrossRefGoogle Scholar
  37. Flor, H., Mühlnickel, W., Karl, A., Denke, C., Grüsser, S., Kurth, R., & Taub, E. (2000). A neural substrate for nonpainful phantom limb phenomena. Neuroreport, 11, 1407–1411.PubMedCrossRefGoogle Scholar
  38. Florence, S. L., Taub, H. B., & Kaas, J. H. (1998). Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science, 282, 1117–1121.PubMedCrossRefGoogle Scholar
  39. Fregni, F., Boggio, P. S., Lima, M. C., Ferreira, M. J. L., Wagner, T., Rigonatti, S. P., Castro, A. W., Souza, D. R., Riberto, M., Freedman, S. D., Nitsche, M. A., & Pascual-Leone, A. (2006). A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain, 122, 197–209.PubMedCrossRefGoogle Scholar
  40. Fregni, F., Freedman, S., & Pascual-Leone, A. (2007). Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques. Lancet Neurology, 6, 188–191.PubMedCrossRefGoogle Scholar
  41. Fried, K., Govrin-Lippman, R., Rosenthal, F., Ellisman, M. H., & Devor, M. (1991). Ultrastructure of afferent axon endings in a neuroma. Journal of Neurocytology, 20, 682–701.PubMedCrossRefGoogle Scholar
  42. Giraux, P., & Sirigu, A. (2003). Illusory movements of the paralyzed limb restore motor cortex activity. NeuroImage, 20, 107–111.CrossRefGoogle Scholar
  43. Gorodetskaya, N., Constantin, C., & Jänig, W. (2003). Ectopic activity in cutaneous regenerating afferent nerve fibers following nerve lesion in the rat. The European Journal of Neuroscience, 18, 2487–2497.PubMedCrossRefGoogle Scholar
  44. Grüsser, S. M., Mühlnickel, W., Schaefer, M., Villringer, K., Christmann, C., Koeppe, C., & Flor, H. (2004). Remote activation of referred phantom sensation and cortical reorganization in human upper extremity amputees. Experimental Brain Research, 154, 97–102.CrossRefGoogle Scholar
  45. Grüsser, S. M., Winter, C., Mühlnickel, W., Denke, C., Karl, A., Villringer, K., & Flor, H. (2001). The relationship of perceptual phenomena and cortical reorganization in upper extremity amputees. Neurosciences, 102, 263–272.CrossRefGoogle Scholar
  46. Halligan, P. W., Marshall, J. C., & Wade, D. T. (1994). Sensory disorganization and perceptual plasticity after limb amputation: a follow-up study. Neuroreport, 27, 1341–1345.Google Scholar
  47. Hanley, M. A., Jensen, M. P., Smith, D. G., Ehde, D. M., Edwards, W. T., & Robinson, L. R. (2007). Preamputation pain and acute pain predict chronic pain after lower extremity amputation. The Journal of Pain, 8, 102–109.PubMedCrossRefGoogle Scholar
  48. Head, H., & Holmes, G. (1911). Sensory disturbances from cerebral lesions. Brain, 34, 102–254.CrossRefGoogle Scholar
  49. Hunter, J. P., Katz, J., & Davis, K. D. (2003). The effect of tactile and visual sensory inputs on phantom limb awareness. Brain, 126, 579–589.PubMedCrossRefGoogle Scholar
  50. Hunter, J. P., Katz, J., & Davis, K. D. (2008). Stability of phantom limb phenomena after upper limb amputation: A longitudinal study. Neurosciences, 156, 939–949.CrossRefGoogle Scholar
  51. Huse, E., Larbig, W., Flor, H., & Birbaumer, N. (2008). The effects of opioids on phantom limb pain and cortical reorganization. Pain, 90, 47–55.CrossRefGoogle Scholar
  52. Jain, N., Qi, H., Collins, C. E., & Kaas, J. H. (2008). Large-scale reorganization in the somatosensory cortex and thalamus after sensory loss in macaque monkeys. The Journal of Neuroscience, 28, 11042–11060.PubMedCrossRefGoogle Scholar
  53. Kaas, J. H., & Florence, S. L. (1997). Mechanisms of reorganization in sensory systems of primates after peripheral nerve injury. Advances in Neurology, 73, 147–158.PubMedGoogle Scholar
  54. Karl, A., Diers, M., & Flor, H. (2004). P300-amplitudes in upper limb amputees with and without phantom limb pain in a visual oddball paradigm. Pain, 110, 40–46.PubMedCrossRefGoogle Scholar
  55. Katz, J., & Melzack, R. (1990). Pain “memories” in phantom limbs: review and clinical observations. Pain, 43, 319–336.PubMedCrossRefGoogle Scholar
  56. Keil, G. (1990). So-called initial description of phantom pain by Ambroisé Paré. “Chose digne d’admiration et quasi incredible”: the “douleur ès parties mortes et amputées”. Fortschritte der Medizin, 108, 62–66.PubMedGoogle Scholar
  57. Knotkova, H., & Cruciani, R. A. (2010). Non-invasive transcranial direct current stimulation for the study and treatment of neuropathic pain. Methods in Molecular Biology, 617, 505–515.PubMedCrossRefGoogle Scholar
  58. Lotze, M., Grodd, W., Birbaumer, N., Erb, M., Huse, E., & Flor, H. (1999). Does use of a myoelectric prosthesis reduce cortical reorganization and phantom limb pain? Nature Neuroscience, 2, 501–502.PubMedCrossRefGoogle Scholar
  59. MacIver, K., Lloyd, D. M., Kelly, S., Roberts, N., & Nurmikko, T. (2008). Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain, 131, 2181–2191.PubMedCrossRefGoogle Scholar
  60. Maier, C., Dertwinkel, R., Mansourian, N., Hosbach, I., Schwenkreis, P., Senne, I., Skipka, G., Zenz, M., & Tegenthoff, M. (2003). Efficacy of the NMDA-receptor antagonist memantine in patients with chronic phantom limb pain – results of a randomized double-blinded, placebo-controlled trial. Pain, 103, 277–283.PubMedCrossRefGoogle Scholar
  61. Marbach, J. J., & Raphael, K. G. (2000). Phantom tooth pain: A new look at an old dilemma. Pain Medicine, 1, 68–77.PubMedCrossRefGoogle Scholar
  62. McCabe, C. S., Haigh, R. C., Halligan, P. W., & Blake, D. R. (2005). Simulating sensory-motor incongruence in healthy volunteers: implications for a cortical model of pain. Rheumatology, 44, 509–516.PubMedCrossRefGoogle Scholar
  63. Melzack, R., & Loeser, J. D. (1978). Phantom body pain in paraplegics: evidence for a “central pattern generating mechanism” for pain. Pain, 4, 195–210.PubMedCrossRefGoogle Scholar
  64. Merzenich, M. M., Nelson, R. J., Stryker, M. P., Cynader, M. S., Schoppmann, A., & Zook, J. M. (1984). Somatosensory cortical map changes following digit amputation in adult monkeys. The Journal of Comparative Neurology, 224, 591–605.PubMedCrossRefGoogle Scholar
  65. Montoya, P., Ritter, K., Huse, E., Larbig, W., Braun, C., Töpfner, S., Lutzenberger, W., Grodd, W., Flor, H., & Birbaumer, N. (1998). The cortical somatotopic map and phantom phenomena in subjects with congenital limb atrophy and traumatic amputees with phantom limb pain. The European Journal of Neuroscience, 10, 1095–1102.PubMedCrossRefGoogle Scholar
  66. Murray, C. D., Pettifer, S., Howard, T., Patchick, E. L., Caillette, F., Kulkarni, J., & Bamford, C. (2007). The treatment of phantom limb pain using immersive virtual reality: three case studies. Disability and Rehabilitation, 29, 1465–1469.PubMedCrossRefGoogle Scholar
  67. Nguyen, J. P., Lefaucheur, J. P., Le Guerinel, C., Fontaine, D., Nakano, N., Sakka, L., Eizenbaum, J. F., Pollin, B., & Keravel, Y. (2000). Treatment of central and neuropathic facial pain by chronic stimulation of the motor cortex: value of neuronavigation guidance systems for the localization of the motor cortex. Neurochirurgie, 46, 483–491.PubMedGoogle Scholar
  68. Nikolajsen, L., Ilkjaer, S., & Jensen, T. S. (2000). Relationship between mechanical sensitivity and postamputation pain: a prospective study. European Journal of Pain, 4, 327–334.PubMedCrossRefGoogle Scholar
  69. Nikolajsen, L., Ilkjaer, S., Kroner, K., Christensen, J. H., & Jensen, T. S. (1997). The influence of preamputation pain on postamputation stump and phantom pain. Pain, 72, 393–405.PubMedCrossRefGoogle Scholar
  70. Nikolajsen, L. J., Finnerup, N. B., Kramp, S., Vimtrup, A. S., Keller, J., & Jensen, T. S. (2006). A randomized study of the effects of gabapentin on postamputation pain. Anesthesiology, 105, 1008–1015.PubMedCrossRefGoogle Scholar
  71. Nikolajsen, L. J., & Jensen, T. S. (2005). In M. Koltzenburg & S. B. McMahon (Eds.). Phanton limb. Wall and Melzack’s textbook of pain (pp. 961–971). Amsterdam: Elsevier.Google Scholar
  72. Pons, T. P., Garraghty, P. E., Ommaya, A. K., Kaas, J. H., Taub, E., & Mishkin, M. (1991). Massive cortical reorganization after sensory deafferentation in adult macaques. Science, 252, 1857–1860.PubMedCrossRefGoogle Scholar
  73. Price, E. H. (2006). A critical review of congenital phantom limb cases and a developmental theory for the basis of body image. Consciousness and Cognition, 15, 310–322.PubMedCrossRefGoogle Scholar
  74. Raichle, K. A., Hanley, M. A., Molton, I., Kadel, N. J., Campbell, K., Phelps, E., Ehde, D., & Smith, D. G. (2008). Prosthesis use in persons with lower- and upper-limb amputation. Journal of Rehabilitation Research and Development, 45, 961–972.PubMedCrossRefGoogle Scholar
  75. Ramachandran, V. S., & Rogers-Ramachandran, D. (1996). Synesthesia in phantom limbs induced with mirrors. Proceedings of the Royal Society of London B Biological Sciences, 263, 377–386.CrossRefGoogle Scholar
  76. Ramachandran, V. S., Stewart, M., & Rogers-Ramachandran, D. C. (1992). Perceptual correlates of massive cortical reorganization. Neuroreport, 3, 583–586.PubMedCrossRefGoogle Scholar
  77. Rossini, P. M., Micera, S., Benvenuto, A., Carpaneto, J., Cavallo, G., Citi, L., Cipriani, C., Denaro, L., Denaro, V., Di Pino, G., Ferreri, F., Guglielmelli, E., Hoffmann, K. P., Raspopovic, S., Rigosa, J., Rossini, L., Tombini, M., & Dario, P. (2010). Double nerve intraneural interface implant on a human amputee for robotic hand control. Clinical Neurophysiology, 121, 777–783.PubMedCrossRefGoogle Scholar
  78. Rothemund, Y., Grüsser, S. M., Liebeskind, U., Schlag, P. M., & Flor, H. (2004). Phantom phenomena in mastectomized patients and their relation to chronic and acute pre-mastectomy pain. Pain, 107, 140–146.PubMedCrossRefGoogle Scholar
  79. Schley, M., Topfner, S., Wiech, K., Schaller, H. E., Konrad, C. J., Schmelz, M., & Birbaumer, N. (2007). Continuous brachial plexus blockade in combination with the NMDA receptor antagonist memantine prevents phantom pain in acute traumatic upper limb amputees. European Journal of Pain, 11, 299–308.PubMedCrossRefGoogle Scholar
  80. Schmidt, A. P., Takahashi, M. E., & de Paula Posso, I. (2005). Phantom limb pain induced by spinal anesthesia. Clinics, 60, 263–264.PubMedCrossRefGoogle Scholar
  81. Sherman, R. A., Davis, G. D., & Wong, M. F. (1997). Behavioral treatment of exercise-induced urinary incontinence among female soldiers. Military Medicine, 162, 690–694.PubMedGoogle Scholar
  82. Sherman, R. A., Sherman, C. J., & Gall, N. G. (1980). A survey of current phantom limb pain treatment in the United States. Pain, 8, 85–99.PubMedCrossRefGoogle Scholar
  83. Spiegel, D. R., Lappinen, E., & Gottlieb, M. (2010). A presumed case of phantom limb pain treated successfully with duloxetine and pregabalin. General Hospital Psychiatry, 32, 228.PubMedGoogle Scholar
  84. Torsney, C., & MacDermott, A. B. (2006). Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. The Journal of Neuroscience, 26, 1833–1843.PubMedCrossRefGoogle Scholar
  85. Tsakiris, M. (2010). My body in the brain: A neurocognitive model of body-ownership. Neuropsychologia, 48, 703–712.PubMedCrossRefGoogle Scholar
  86. Ueda, H. (2006). Molecular mechanisms of neuropathic painphenotypic switch and initiation mechanisms. Pharmacology and Therapeutics, 109, 57–77.PubMedCrossRefGoogle Scholar
  87. Wang, S., Lim, G., Yang, L., Zeng, Q., Sung, B., Jeevendra Martyn, J. A., & Mao, J. (2005). A rat model of unilateral hindpaw burn injury: slowly developing rightwards shift of the morphine dose-response curve. Pain, 116, 87–95.PubMedCrossRefGoogle Scholar
  88. Weiss, T., Miltner, W. H. R., Adler, T., Bruckner, L., & Taub, E. (1999). Decrease in phantom limb pain associated with prosthesis-induced increased use of an amputation stump in humans. Neuroscience Letters, 272, 131–134.PubMedCrossRefGoogle Scholar
  89. Wiech, K., Töpfner, S., Kiefer, T., Preissl, H., Braun, C., Haerle, M., et al. (2001). Prevention of phantom limb pain and cortical reorganization in the early phase after amputation in humans. Society for Neuroscience Abstracts, 28, 163–169.Google Scholar
  90. Wiesenfeld-Hallin, Z., Xu, X. J., & Hökfelt, T. (2002). The role of spinal cholecystokinin in chronic pain states. Pharmacology and Toxicology, 91, 398–403.PubMedCrossRefGoogle Scholar
  91. Wilkins, K. L., McGrath, P. J., Finley, G. A., & Katz, J. (1998). Phantom limb sensations and phantom limb pain in child and adolescent amputees. Pain, 78, 7–12.PubMedCrossRefGoogle Scholar
  92. Woolf, C. J. (2004). Dissecting out mechanisms responsible for peripheral neuropathic pain: implications for diagnosis and therapy. Life Sciences, 74, 2605–2610.PubMedCrossRefGoogle Scholar
  93. Woolf, C. J., & Chong, M. S. (1993). Preemptive analgesia – treating postoperative pain by preventing the establishment of central sensitization. Anesthesia and Analgesia, 77, 362–379.PubMedGoogle Scholar
  94. Woolf, C. J., & Salter, M. W. (2005). In M. Koltzenburg & S. B. McMahon (Eds.). Plasticity and pain: role of the dorsal horn. Wall and Melzack’s textbook of pain (pp. 91–105). Amsterdam: Elsevier.Google Scholar
  95. Zhang, L., Zhang, Y., & Zhao, Z. (2005). Anterior cingulate cortex contributes to the descending facilitatory modulation of pain via dorsal reticular nucleus. The European Journal of Neuroscience, 22, 1141–1148.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of Cognitive and Clinical Neuroscience, Central Institute of Mental HealthUniversity of HeidelbergMannheimGermany

Personalised recommendations