Pain and the Placebo/Nocebo Effect

  • Antonella Pollo
  • Fabrizio Benedetti


In the last 20 years, placebo and nocebo research has provided scientific ground for a phenomenon once believed to be only patient mystification, or at best a variable to control in clinical trials. Neurochemical, pharmacological and neuroimaging studies are elucidating the mechanisms by which the activation of identifiable neural pathways produces symptom changes following treatments devoid of specific activity.

Placebo analgesia and nocebo hyperalgesia are among the best studied models, and awareness of the possible clinical application of research knowledge can lead to the optimization of the context surrounding the patient, in order to maximize the placebo component and minimize the nocebo component present in any treatment.


Irritable Bowel Syndrome Anterior Cingulate Cortex Placebo Effect Placebo Response Sham Acupuncture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ader, R. (1997). The role of conditioning in pharmacotherapy. In A. Harrington (Ed.), The placebo effect: An interdisciplinary exploration. Cambridge: Harvard University Press.Google Scholar
  2. Amanzio, M., & Benedetti, F. (1999). Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific sub-systems. Journal of Neuroscience, 19, 484–494.PubMedGoogle Scholar
  3. Amanzio, M., Pollo, A., Maggi, G., & Benedetti, F. (2001). Response variability to analgesics: A role for non-specific activation of endogenous opioids. Pain, 90, 205–215.PubMedGoogle Scholar
  4. Andre, J., Zeau, B., Pohl, M., Cesselin, F., Benoliel, J-J., & Becker, C. (2005). Involvement of cholecystokininergic systems in anxiety-induced hyperalgesia in male rats: Behavioural and biochemical studies. Journal of Neuroscience, 25, 7896–7904.PubMedGoogle Scholar
  5. Barrett, B., Muller, D., Rakel, D., Rabago, D., Marchand, L., & Scheder, J. (2006). Placebo, meaning and health. Perspectives in Biology and Medicine, 49, 178–198.PubMedGoogle Scholar
  6. Bausell, R. B., Lao, L., Bergman, S., Lee, W-L., & Berman, B. M. (2005). Is acupuncture analgesia an expectancy effect? Evaluation & the Health Professions, 28, 9–26.Google Scholar
  7. Bencherif, B., Fuchs, P. N., Sheth, R., Dannals, R. F., Campbell, J. N., & Frost, J. J. (2002). Pain activation of human supraspinal opioid pathways as demonstrated by [11C]-carfentanil and positron emission tomography (PET). Pain, 99, 589–598.PubMedGoogle Scholar
  8. Benedetti, F. (2007). Placebo and endogenous mechanisms of analgesia. Handbook of Experimental Pharmacology, 177, 393–413.PubMedGoogle Scholar
  9. Benedetti, F. (2008a). Mechanisms of placebo and placebo-related effects across diseases and treatments. Annual Review of Pharmacology and Toxicology, 48, 33–60.PubMedGoogle Scholar
  10. Benedetti, F. (2008b). Placebo effects: Understanding the mechanisms in health and disease. Oxford: Oxford University Press.Google Scholar
  11. Benedetti, F. (2010). The patient’s brain: The neuroscience behind the doctor-patient relationship. Oxford: Oxford University Press.Google Scholar
  12. Benedetti, F., Amanzio, M., & Maggi, G. (1995). Potentiation of placebo analgesia by proglumide. The Lancet, 346, 1231.Google Scholar
  13. Benedetti, F., Amanzio, M., Casadio, C., Oliaro, A., & Maggi, G. (1997). Blockade of nocebo hyperalgesia by the cholecystokinin antagonist proglumide. Pain, 71, 135–140.PubMedGoogle Scholar
  14. Benedetti, F., Amanzio, M., Baldi, S., Casadio, C., & Maggi, G. (1999). Inducing placebo respiratory depressant responses in humans via opioid receptors. European Journal of Neuroscience, 11, 625–631.PubMedGoogle Scholar
  15. Benedetti, F., Pollo, A., Lopiano, L., Lanotte, M., Vighetti, S., & Rainero, I. (2003). Conscious expectation and unconscious conditioning in analgesic, motor and hormonal placebo/nocebo responses. Journal of Neuroscience, 23, 4315–4323.PubMedGoogle Scholar
  16. Benedetti, F., Arduino, C., Costa, S., Vighetti, S., Tarenzi, L., Rainero, I., et al. (2006a). Loss of expectation-related mechanisms in Alzheimer’s disease makes analgesic therapies less effective. Pain, 121, 133–144.PubMedGoogle Scholar
  17. Benedetti, F., Amanzio, M., Vighetti, S., Asteggiano, G. (2006b). The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. Journal of Neuroscience, 26, 12014–12022.PubMedGoogle Scholar
  18. Benedetti, F., Lanotte, M., Lopiano, L., Colloca, L. (2007). When words are painful: Unraveling the mechanisms of the nocebo effect. Neuroscience, 147, 260–271.PubMedGoogle Scholar
  19. Benedetti, F., Carlino, E., & Pollo, A. (2011a). How placebos change the patient’s brain. Neuropsychopharmacology, 36, 339–354. doi:10.1038/npp 2010.81.PubMedGoogle Scholar
  20. Benedetti, F., Amanzio, M., & Thoen, W. (2011b). Disruption of opioid-induced placebo responses by activation of cholecystokinin type-2 receptors. Psychopharmacology, 213, 791–797. doi: 10.1007/s00213-010-2037-y.PubMedGoogle Scholar
  21. Bingel, U., Lorenz, J., Schoell, E., Weiller, C., & Büchel, C. (2006). Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain, 120, 8–15.PubMedGoogle Scholar
  22. Charron, J., Rainville, P., & Marchand, S. (2006). Direct comparison of placebo effects on clinical and experimental pain. The Clinical Journal of Pain, 22, 204–211.PubMedGoogle Scholar
  23. Chua, P., Krams, M., Toni, I., Passingham, R. & Dolan, R. (1999). A functional anatomy of anticipatory anxiety. NeuroImage, 9, 563–571.PubMedGoogle Scholar
  24. Colloca, L., & Benedetti, F. (2005). Placebos and painkillers: Is mind as real as matter? Nature Reviews. Neuroscience, 6, 545–552.PubMedGoogle Scholar
  25. Colloca, L., & Benedetti, F. (2006). How prior experience shapes placebo analgesia. Pain, 124, 126–133.PubMedGoogle Scholar
  26. Colloca, L., & Benedetti, F. (2007). Nocebo hyperalgesia: How anxiety is turned into pain. Current Opinion in Anaesthesiology, 20, 435–439.PubMedGoogle Scholar
  27. Colloca, L., & Benedetti, F. (2009). Placebo analgesia induced by social observational learning. Pain, 144, 28–34.PubMedGoogle Scholar
  28. Colloca, L., Lopiano, L., Lanotte, M., & Benedetti, F. (2004). Overt versus covert treatment for pain, anxiety, and Parkinson’s disease. Lancet Neurology, 3, 679–684.PubMedGoogle Scholar
  29. Colloca, L., Benedetti, F., & Porro, C. A. (2008a). Experimental designs and brain mapping approaches for studying the placebo analgesic effect. European Journal of Applied Physiology, 102, 371–380.PubMedGoogle Scholar
  30. Colloca, L., Sigaudo, M., & Benedetti, F. (2008b). The role of learning in nocebo and placebo effects. Pain, 136, 211–218.PubMedGoogle Scholar
  31. Colloca, L., Tinazzi, M., Recchia, S., Le Pera, D., Fiaschi, A., Benedetti, F., et al. (2009). Learning potentiates neurophysiological and behavioral placebo analgesic responses. Pain, 139, 306–314.PubMedGoogle Scholar
  32. de la Fuente-Fernández, R. (2010). The placebo-reward hypothesis: Dopamine and the placebo effect. Parkinsonism & Related Disorders, 15(S3), S72–S74.Google Scholar
  33. de la Fuente-Fernández, R., & Stoessl, A. J. (2002). The placebo effect in Parkinson’s disease. Trends in Neurosciences, 6, 302–306.Google Scholar
  34. de la Fuente-Fernández, R., Ruth, T. J., Sossi, V., Schulzer, M., Calne, D. B., & Stoessl, A. J. (2001). Expectation and dopamine release: Mechanism of the placebo effect in Parkinson’s disease. Science, 293, 1164–1166.PubMedGoogle Scholar
  35. de la Fuente-Fernández, R., Phillips, A. G., Zamburlini, M., Sossi, V., Calne, D. B., Ruth, T. J. et al. (2002). Dopamine release in human ventral striatum and expectation of reward. Behavioural Brain Research, 136, 359–363.PubMedGoogle Scholar
  36. Eippert, F., Finsterbusch, J., Bingel, U., & Büchel, C. (2009a). Direct evidence for spinal cord involvement in placebo analgesia. Science, 326, 404.PubMedGoogle Scholar
  37. Eippert, F., Bingel, U., Schoell, E. D., Yacubian, J., Klinger, R., Lorenz, J., et al. (2009b). Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron, 63, 533–543.PubMedGoogle Scholar
  38. Enck, P., Benedetti, F., & Schedlowski, M. (2008). New insights into the placebo and nocebo responses. Neuron, 59, 195–206.PubMedGoogle Scholar
  39. Giang, D. W., Goodman, A. D., Schiffer, R. B., Mattson, D. H., Petrie, M., Cohen, N., et al. (1996). Conditioning of cyclophosphamide-induced leukopenia in humans. The Journal of Neuropsychiatry and Clinical Neurosciences, 8, 194–201.PubMedGoogle Scholar
  40. Goebel, M. U., Trebst, A. E., Steiner, J., Xie, Y. F., Exton, M. S., Frede, S., et al. (2002). Behavioral conditioning of immunosuppression is possible in humans. The FASEB Journal, 16, 1869–1873.Google Scholar
  41. Goffaux, P., Redmond, W. J., Rainville, P., & Marchand, S. (2007). Descending analgesia – When the spine echoes what the brain expects. Pain, 130, 137–143.PubMedGoogle Scholar
  42. Gospic, K., Gunnarsson, T., Fransson, P., Ingvar, M., Lindefors, N., & Petrovic, P. (2008). Emotional perception modulated by an opioid and a cholecystokinin agonist. Psychopharmacology, 197, 295–307.PubMedGoogle Scholar
  43. Gracely, R. H., Dubner, R., Wolskee, P. J., & Deeter, W. R. (1983). Placebo and naloxone can alter post-surgical pain by separate mechanisms. Nature, 306, 264–265.PubMedGoogle Scholar
  44. Gracely, R. H., Dubner, R., Deeter, W. D., & Wolskee, P. J. (1985). Clinician’s expectations influence placebo analgesia. The Lancet, 5, 43.Google Scholar
  45. Grevert, P., Albert, L. H., & Goldstein, A. (1983). Partial antagonism of placebo analgesia by naloxone. Pain, 16, 129–143.PubMedGoogle Scholar
  46. Hebb, A. L. O., Poulin, J. F., Roach, S. P., Zacharko, R. M., & Drolet, G. (2005). Cholecystokinin and endogenous opioid peptides: interactive influence on pain, cognition and emotion. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 29, 1225–1238.Google Scholar
  47. Hsieh, J. C., Stone-Elander, S., & Ingvar, M. (1999). Anticipatory coping of pain expressed in the human anterior cingulate cortex: A positron emission tomography study. Neuroscience Letters, 262, 61–64.PubMedGoogle Scholar
  48. Keltner, J. R., Furst, A., Fan, C., Redfern, R., Inglis, B., & Fields, H. L. (2006). Isolating the modulatory effect of expectation on pain transmission: A functional magnetic imaging study. Journal of Neuroscience, 26, 4437–4443.PubMedGoogle Scholar
  49. Kong, J., Gollub, R. L., Rosman, I. S., Webb, J. M., Vangel, M. G., Kirsch, I., et al. (2006). Brain activity associated with expectancy-enhanced placebo analgesia as measured by functional magnetic resonance imaging. Journal of Neuroscience, 26, 381–388.PubMedGoogle Scholar
  50. Kong, J., Kaptchuk, T. J., Polich, G., Kirsch, I., & Gollub, R. L. (2007). Placebo analgesia: Findings from brain imaging studies and emerging hypothesis. Reviews in the Neurosciences, 18, 173–190.PubMedGoogle Scholar
  51. Kong, J., Gollub, R. L., Polich, G., Kirsch, I., LaViolette, P., Vangel, M., et al. (2008). A functional magnetic resonance imaging study on the neural mechanisms of hyperalgesic nocebo effect. Journal of Neuroscience, 28, 13354–13362.PubMedGoogle Scholar
  52. Koyama, T., Tanaka, Y. Z., & Mikami, A. (1998). Nociceptive neurons in the macaque anterior cingulated activate during anticipation of pain. NeuroReport, 9, 2663–2667.PubMedGoogle Scholar
  53. Koyama, T., McHaffi e, J. G., Laurienti, P. J., & Coghill, R. C. (2005). The subjective experience of pain: Where expectations become reality. Proceedings of National Academy of Sciences, 102, 12950–12955.Google Scholar
  54. Krummenacher, P., Candia, V., Folkers, G., Schedlowsky, M., & Schönbächler, G. (2010). Prefrontal cortex modulates placebo analgesia. Pain, 148, 368–374.PubMedGoogle Scholar
  55. Lang, E. V., Hatsiopoulou, O., Koch, T., Berbaum, K., Lutgendorf, S., Kettenmann, E., et al. (2005). Can words hurt? Patient-provider interactions during invasive procedures. Pain, 114, 303–309.PubMedGoogle Scholar
  56. Levine, J. D., Gordon, N. C., & Fields, H. L. (1978). The mechanisms of placebo analgesia. The Lancet, 2, 654–657.Google Scholar
  57. Lichtenberg, P., Heresco-Levy, U., & Nitzan, U. (2004). The ethics of the placebo in clinical practice. Journal of Medical Ethics, 30, 551–554.PubMedGoogle Scholar
  58. Lidstone, S. C., & Stoessl, A. J. (2007). Understanding the placebo effect: Contributions from neuroimaging. Molecular Imaging and Biology, 9, 176–185.PubMedGoogle Scholar
  59. Lieberman, M. D., Jarcho, J. M., Berman, S., Naliboff, B. D., Suyenobu, B. J., Mandelkern, M., et al. (2004). The neural correlates of placebo effects: A disruption account. NeuroImage, 22, 447–455.PubMedGoogle Scholar
  60. Linde, K., Witt, C. M., Streng, A., Weidenhammer, W., Wagenpfeil, S., Brinkhaus, B., et al. (2007). The impact of patient expectations on outcomes in four randomized controlled trials of acupuncture in patients with chronic pain. Pain, 128, 264–271.PubMedGoogle Scholar
  61. Lipman, J. J., Miller, B. E., Mays, K. S., Miller, M. N., North, W. C., & Birne W. L. (1990). Peak B endorphin concentration in cerebrospinal fluid: Reduced in chronic pain patients and increased during the placebo response. Psychopharmacology, 102, 112–116.PubMedGoogle Scholar
  62. Lorenz, J., Hauch, M., Paur, R. C., Nakamura, Y., Zimmermann, R., Bromm, B., et al. (2005). Cortical correlates of false expectations during pain intensity judgments – A possible manifestation of placebo/nocebo cognitions. Brain, Behavior, and Immunity, 19, 283–295.PubMedGoogle Scholar
  63. Lui, C., Colloca, L., Duzzi, D., Anchisi, D., Benedetti, F., & Porro., C. A. (2010). Neural bases of conditioned placebo analgesia. Pain, 151, 816–824. doi: 10.1016/j.pain.2010.09.021.PubMedGoogle Scholar
  64. Lydiard, R. B. (1994). Neuropeptides and anxiety: Focus on cholecystokinin. Clinical Chemistry, 40, 315–318.PubMedGoogle Scholar
  65. Matre, D., Casey, K. L., & Knardahl, S. (2006). Placebo-induced changes in spinal cord pain processing. Journal of Neuroscience, 26, 559–563.PubMedGoogle Scholar
  66. Millan, M. J. (2002). Descending control of pain. Progress in Neurobiology, 66, 355–474.PubMedGoogle Scholar
  67. Miller, F. G., & Colloca, L. (2009a). The legitimacy of placebo treatments in clinical practice: Evidence and ethics. American Journal of Bioethics, 9, 39–47.PubMedGoogle Scholar
  68. Miller, F. G., & Colloca, L. (2009b). The placebo effect. Illness and interpersonal healing. Perspectives in Biology and Medicine, 52, 518–539.PubMedGoogle Scholar
  69. Moerman, D. E. (2002). Meaning, medicine and the placebo effect. Cambridge: Cambridge University Press.Google Scholar
  70. Nitzan, U., & Lichtenberg, P. (2008). Questionnaire survey on use of placebo. British Medical Journal, 329, 944–946.Google Scholar
  71. Pacheco-López, G., Niemi, M. B., Kou, W., Harting, M., Fandrey, J., & Schedlowski, M. (2005). Neural substrates for behaviourally conditioned immunosuppression in the rat. Journal of Neuroscience, 25, 2330–2337.PubMedGoogle Scholar
  72. Pacheco-López, G., Engler, H., Niemi, M. B., & Schedlowski, M. (2006). Expectations and associations that heal: Immunomodulatory placebo effects and its neurobiology. Brain, Behavior, and Immunity, 20, 430–446.PubMedGoogle Scholar
  73. Pacheco-López, G., Riether, C., Doenlen, R., Engler, H., Niemi, M. B., Engler, A., et al. (2008). Calcineurin inhibition in splenocytes induced by Pavlovian conditioning. The FASEB Journal, 23, 1161–1167.Google Scholar
  74. Pariente, J., White, P., Frackowiak, R. S. J., & Lewith, G. (2005). Expectancy and belief modulate the neuronal substrates of pain treated by acupuncture. NeuroImage, 25, 1161–1167.PubMedGoogle Scholar
  75. Petrovic, P., Kalso, E., Petersson, K. M., & Ingvar, M. (2002). Placebo and opioid analgesia-Imaging a shared neuronal ­network. Science, 295, 1737–1740.PubMedGoogle Scholar
  76. Ploghaus, A., Tracey, I., Gati, J. S., Clare, S., Menon, R. S., Matthews, P. M., et al. (1999). Dissociating pain from its anticipation in the human brain. Science, 64, 1979–1981.Google Scholar
  77. Ploghaus, A., Narain, C., Beckmann, C. F., Clare, S., Bantick, S., Wise, R., et al. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. Journal of Neuroscience, 21, 9896–9903.PubMedGoogle Scholar
  78. Pogge, R. C. (1963). The toxic placebo. Part I. Side and toxic effects reported during the administration of placebo medicine. Medical Times, 91, 773–778.PubMedGoogle Scholar
  79. Pollo, A., Amanzio, M., Arslanian, A., Casadio, C., Maggi, G., & Benedetti, F. (2001). Response expectancies in placebo analgesia and their clinical relevance. Pain, 93, 77–83.PubMedGoogle Scholar
  80. Pollo, A., Vighetti, S., Rainero, I., & Benedetti, F. (2003). Placebo analgesia and the heart. Pain, 102, 125–133.PubMedGoogle Scholar
  81. Porro, C. A., Baraldi, P., Pagnoni, G., Serafini, M., Facchin, P., Maieron, M., et al. (2002). Does anticipation of pain affect cortical nociceptive systems? Journal of Neuroscience, 22, 3206–3214.PubMedGoogle Scholar
  82. Porro, C. A., Cettolo, V., Francescato, M. P., & Baraldi, P. (2003). Functional activity mapping of the mesial hemispheric wall during anticipation of pain. NeuroImage, 19, 1738–1747.PubMedGoogle Scholar
  83. Price, D. D., Milling, L. S., Kirsch, I., Duff, A., Montgomery, G. H., & Nicholls, S. (1999). An analysis of factors that contribute to the magnitude of placebo analgesia in an experimental paradigm. Pain, 83, 147–156.PubMedGoogle Scholar
  84. Price, D. D., Craggs, J., Verne, G. N., Perlstein, W. M., & Robinson, M. E. (2007). Placebo analgesia is accompanied by large reductions in pain-related brain activity in irritable bowel syndrome patients. Pain, 127, 63–72.PubMedGoogle Scholar
  85. Price, D. D., Finniss, D. G., & Benedetti, F. (2008). A comprehensive review of the placebo effects: Recent advances and current thought. Annual Review of Psychology, 59, 565–590.PubMedGoogle Scholar
  86. Price, D. D., Craggs, J. G., Zhou, Q. Q., Verne, G. N., Perlstein, W. M., & Robinson, M. E. (2009). Widespread hyperalgesia in irritable Bowel syndrome is dynamically maintained by tonic visceral impulse input and placebo/nocebo factors: Evidence from human psychophysics, animal models, and neuroimaging. NeuroImage, 47, 995–1001.PubMedGoogle Scholar
  87. Rainville, P., & Duncan, G. H. (2006). Functional brain imaging of placebo analgesia: Methodological challenges and recommendations. Pain, 121, 177–180.PubMedGoogle Scholar
  88. Sawamoto, N., Honda, M., Okada, T., Hanakawa, T., Kanda, M., Fukuyama, H., et al. (2000). Expectation of pain enhances responses to non-painful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: An event-related functional magnetic resonance imaging study. Journal of Neuroscience, 20, 7438–7445.PubMedGoogle Scholar
  89. Schedlowski, M., & Pacheco-López, G. (2010). The learned immune response: Pavlov and beyond. Brain, Behavior, and Immunity, 24, 176–185.PubMedGoogle Scholar
  90. Schenk, P. W. (2008). “Just breathe normally”: Word choices that trigger nocebo responses in patients. American Journal of Nursing, 108, 52–57.PubMedGoogle Scholar
  91. Scott, D. J., Stoher, C. S., Egnatuk, C. M., Wang, H., Koeppe, R. A., & Zubieta J. K. (2007). Individual differences in reward responding explains placebo-induced expectations and effects. Neuron, 55, 325–336.PubMedGoogle Scholar
  92. Scott, D. J., Stoher, C. S., Egnatuk, C. M., Wang, H., Koeppe, R. A., & Zubieta J. K. (2008). Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Archives of General Psychiatry, 65, 220–231.PubMedGoogle Scholar
  93. Sherman, R., & Hickner, J. (2007). Academic physicians use placebos in clinical practice and believe in the mind-body connection. Journal of General Internal Medicine, 23, 7–10.PubMedGoogle Scholar
  94. Siegel, S. (2002). Explanatory mechanisms for placebo effects: Pavlovian conditioning. In H. A. Guess, A. Kleinman, J. W. Kusek, & L. W. Engel (Eds.), The science of the placebo: Toward an interdisciplinary research agenda. London: BMJ Books.Google Scholar
  95. Thompson, J. J., Ritenbaugh, C., & Nichter, M. (2009). Reconsidering the placebo response from a broad anthropological perspective. Culture, Medicine and Psychiatry, 33, 112–152.PubMedGoogle Scholar
  96. Tracey, K. J. (2009). Reflex control of immunity. Nature Reviews. Immunology, 9, 419–428.Google Scholar
  97. Tuohy, V. K. (2005). The neocortical-immune axis. Journal of Neuroimmunology, 158, 1–2.PubMedGoogle Scholar
  98. Vase, L., Robinson, M. E., Verne, G. N., & Price D. D. (2005). Increased placebo analgesia over time in irritable bowel syndrome (IBS) patients is associated with desire and expectation but not endogenous opioid mechanisms. Pain, 115, 338–347.PubMedGoogle Scholar
  99. Voudouris, N. J., Peck, C. L., & Coleman, G. (1990). The role of conditioning and verbal expectancy in the placebo response. Pain, 43, 121–128.PubMedGoogle Scholar
  100. Wager, T. D., Rilling, J. K., Smith, E. E., Sokolik, A., Casey, K. L., Davidson, R. J. et al. (2004). Placebo-induced changes in fMRI in the anticipation and experience of pain. Science, 303, 1162–1166.PubMedGoogle Scholar
  101. Wager, T. D., Matre, D., & Casey, K. L. (2006). Placebo effects in laser-evoked pain potentials. Brain, Behavior, and Immunity, 20, 219–230.PubMedGoogle Scholar
  102. Wager, T. D., Scott, D. J., & Zubieta, J. K. (2007). Placebo effects on human μ-opioid activity during pain. PNAS, 104, 11056–11061.PubMedGoogle Scholar
  103. Watson, A., El-Dereby, W., Vogt, B. A., & Jones, A. K. P. (2007). Placebo analgesia is not due to compliance or habituation: EEG and behavioural evidence. NeuroReport, 18, 771–775.PubMedGoogle Scholar
  104. Watson, A., El-Deredy, W., Iannetti, G. D., Lloyd, D., Tracey, I., Vogt, B. A., et al. (2009). Placebo conditioning and placebo analgesia modulate a common brain network during pain anticipation and perception. Pain, 145, 24–30.PubMedGoogle Scholar
  105. Wikramasekera, I. (1985). A conditioned response model of the placebo effect: Predictions of the model. In L. White, B. Tursky, & G. E. Schwartz (Eds.), Placebo: Theory, research and mechanisms. New York: Guilford Press.Google Scholar
  106. Zhang, W., Gardell, S., Zhang, D., Xie, J. Y., Agnes, R. S., Badghisi, H., et al. (2009). Neuropathic pain is maintained by brainstem neurons co-expressing opioid and cholecystokinin receptors. Brain, 132, 778–787.PubMedGoogle Scholar
  107. Zubieta, J. K., Bueller, J. A., Jackson, L. R., Scott, D. J., Xu, Y., Koeppe, R. A., et al. (2005). Placebo effects mediated by endogenous opioid activity on μ-opioid receptors. Journal of Neuroscience, 25, 7754–7762.PubMedGoogle Scholar
  108. Zubieta, J. K., & Stohler, C. S. (2009). Neurobiological mechanisms of placebo responses. Annals of the New York Academy of Sciences, 1156, 198–210.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of NeuroscienceUniversity of Turin Faculty of PharmacyTurinItaly
  2. 2.National Institute of NeuroscienceTurinItaly
  3. 3.Department of NeuroscienceUniversity of Turin Medical SchoolTurinItaly

Personalised recommendations