Neuroanatomy of Pain and Pain Pathways



It may not be quite clear when the study of pain pathways began, but it is almost certain that it gained focus with the reflex theory advanced by Descartes (1664) and was rejuvenated time and again by a number of subsequent theories, such as the specificity theory (Schiff 1858), the sensory interaction theory (Noordenbos 1959) and the gate control theory (Melzack and Wall 1965). More recently, pattern and neuromatrix theories have discounted the specific function assigned to anatomic components of the nervous system (e.g., Berkley and Hubscher 1995a; Melzack 1999; Nafe 1934), particularly when it comes to pain processing; but they have been faced with challenges of their own, not the least of which is translating their theoretical framework into clinical applications. One thing we know for sure is that the perception of pain arises when neural signals originating from the terminals of nociceptors are propagated to second-order neurons in the spinal cord or brainstem, whereupon they are transmitted to specific higher-order brain areas (Price 2000). This chapter highlights recent advances in our knowledge of the pain system including our understanding of nociceptors, of the processing of nociceptive information in the spinal cord, brainstem, thalamus, and cerebral cortex and of descending pathways that modulate nociceptive activity. Some of this information might potentially lead to improvements in patient care.


Receptive Field Dorsal Horn Dorsal Column Dorsal Horn Neuron Medial Thalamus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank Ms. Kirsten Garner for assistance with editing the manuscript. This work was supported by NIH Grants DK077733, DK081628.


  1. Aidar, O., Geohegan, W. A., & Ungewitter, L. H. (1952). Splanchnic afferent pathways in the central nervous system. Journal of Neurophysiology, 15, 131–138.PubMedGoogle Scholar
  2. Albe-Fessard, D., Berkley, K. J., Kruger, L., Ralston, H. J., & Willis, W. D. (1985). Diencephalic mechanisms of pain sensation. Brain Research Reviews, 9, 217–296.Google Scholar
  3. Albe-Fessard, D., Levante, A., & Lamour, Y. (1974a). Origin of spinothalamic and spinoreticular pathways in cats and monkeys. Advances in Neurology, 4, 157–166.Google Scholar
  4. Albe-Fessard, D., Levante, A., & Lamour, Y. (1974b). Origin of spino-thalamic tract in monkeys. Brain Research, 65, 503–509.PubMedGoogle Scholar
  5. Al-Chaer, E. D., Feng, Y., & Willis, W. D. (1998a). A role for the dorsal column in nociceptive visceral input into the thalamus of primates. Journal of Neurophysiology, 79, 3143–3150.PubMedGoogle Scholar
  6. Al-Chaer, E. D., Feng, Y., & Willis, W. D. (1998b). Visceral pain: A disturbance in the sensorimotor continuum? Pain Forum, 7(3), 117–125.Google Scholar
  7. Al-Chaer, E. D., Feng, Y., & Willis, W. D. (1999). A comparative study of viscerosomatic input onto postsynaptic dorsal column and spinothalamic tract neurons in the primate. Journal of Neurophysiology, 82(4), 1876–1882.PubMedGoogle Scholar
  8. Al-Chaer, E. D., Kawasaki, M., & Pasricha, P. J. (2000). A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology, 119(5), 1276–1285.PubMedGoogle Scholar
  9. Al-Chaer, E. D., Lawand, N. B., Westlund, K. N., & Willis, W. D. (1996a). Visceral nociceptive input into the ventral posterolateral nucleus of the thalamus: A new function for the dorsal column pathway. Journal of Neurophysiology, 76, 2661–2674.PubMedGoogle Scholar
  10. Al-Chaer, E. D., Lawand, N. B., Westlund, K. N., & Willis, W. D. (1996b). Pelvic visceral input into the nucleus gracilis is largely mediated by the postsynaptic dorsal column pathway. Journal of Neurophysiology, 76, 2675–2690.PubMedGoogle Scholar
  11. Al-Chaer, E. D., & Traub, R. J. (2002). Biological basis of visceral pain: Recent developments. Pain, 96(3), 221–225.PubMedGoogle Scholar
  12. Al-Chaer, E. D., & Willis, W. D. (2007). Neuroanatomy of visceral pain: Pathways and processes. In P. J. Pasricha, W. D. Willis, & G. F. Gebhart (Eds.), Chronic abdominal and visceral pain: Theory and practice. New York: Informa Health Care Inc.Google Scholar
  13. Amassian, V. E. (1951). Fiber groups and spinal pathways of cortically represented visceral afferents. Journal of Neurophysiology, 14, 445–460.PubMedGoogle Scholar
  14. Ammons, W. S. (1989a). Primate spinothalamic cell responses to ureteral occlusion. Brain Research, 496, 124–130.PubMedGoogle Scholar
  15. Ammons, W. S. (1989b). Electrophysiological characteristics of primate spinothalamic neurons with renal and somatic inputs. Journal of Neurophysiology, 60, 1121–1130.Google Scholar
  16. Ammons, W. S., Girardot, M. N., & Foreman, R. D. (1985). T2-T5 spinothalamic neurons projecting to medial thalamus with viscerosomatic input. Journal of Neurophysiology, 54, 73–89.PubMedGoogle Scholar
  17. Angaut-Petit, D. (1975a). The dorsal column system: I. Existence of long ascending postsynaptic fibres in the cat’s fasciculus gracilis. Experimental Brain Research, 22, 457–470.Google Scholar
  18. Angaut-Petit, D. (1975b). The dorsal column system: II. Functional properties and bulbar relay of the postsynaptic fibres of the cat’s fasciculus gracilis. Experimental Brain Research, 22, 471–493.Google Scholar
  19. Apkarian, A. V., Bushnell, M. C., Treede, R. D., et al. (2005). Human brain mechanisms of pain perception and regulation in health and disease. European Journal of Pain, 9(4), 463–484.PubMedGoogle Scholar
  20. Apkarian, A. V., & Hodge, C. J. J. (1989a). The primate spinothalamic pathways: I. A quantitative study of the cells of origin of the spinothalamic pathway. The Journal of Comparative Neurology, 288, 447–473.PubMedGoogle Scholar
  21. Apkarian, A. V., & Hodge, C. J. J. (1989b). The primate spinothalamic pathways: II. The cells of origin of the dorsolateral and ventral spinothalamic pathways. The Journal of Comparative Neurology, 288, 474–492.PubMedGoogle Scholar
  22. Apkarian, A. V., & Hodge, C. J. J. (1989c). Primate spinothalamic pathways: III. Thalamic terminations of the dorsolateral and ventral spinothalamic pathways. The Journal of Comparative Neurology, 288, 493–511.PubMedGoogle Scholar
  23. Apkarian, A. V., & Shi, T. (1994). Squirrel monkey lateral thalamus. I. Somatic nociresponsive neurons and their relation to spinothalamic terminals. The Journal of Neuroscience, 14, 6779–6795.PubMedGoogle Scholar
  24. Applebaum, A. E., Beall, J. E., Foreman, R. D., & Willis, W. D. (1975). Organization and receptive fields of primate spinothalamic tract neurons. Journal of Neurophysiology, 38, 572–586.PubMedGoogle Scholar
  25. Armour, D. (1927). On the surgery of the spinal cord and its membranes. The Lancet, 2, 691–697.Google Scholar
  26. Aziz, Q., Andersson, J. L., Valind, S., Sundin, A., Hamdy, S., Jones, A. K., et al. (1997). Identification of human brain loci processing esophageal sensation using positron emission tomography. Gastroenterology, 113, 50–59.PubMedGoogle Scholar
  27. Baliki, M. N., Chialvo, D. R., Geha, P. Y., Levy, R. M., Harden, R. M., Parrish, T. B., & Apkarian, A. V. (2006). Chronic pain and the emotional brain: Specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. The Journal of Neuroscience, 26(47), 12165–12173.PubMedGoogle Scholar
  28. Bennett, G. J., Nishikawa, N., Lu, G. W., Hoffert, M. J., & Dubner, R. (1984). The morphology of dorsal column postsynaptic (DCPS) spino-medullary neurons in the cat. The Journal of Comparative Neurology, 224, 568–578.PubMedGoogle Scholar
  29. Bennett, G. J., Seltzer, Z., Lu, G. W., Nishikawa, N., & Dubner, R. (1983). The cells of origin of the dorsal column postsynaptic projection in the lumbosacral enlargements of cats and monkeys. Somatosensory Research, 1, 131–149.PubMedGoogle Scholar
  30. Berkley, K. J. (1980). Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon. The Journal of Comparative Neurology, 193, 283–317.PubMedGoogle Scholar
  31. Berkley, K. J., Guilbaud, G., Benoist, J., & Gautron, M. (1993). Responses of neurons in and near the thalamic ­ventrobasal complex of the rat to stimulation of uterus, cervix, vagina, colon, and skin. Journal of Neurophysiology, 69, 557–568.PubMedGoogle Scholar
  32. Berkley, K. J., & Hubscher, C. H. (1995a). Are there separate central nervous system pathways for touch and pain? Nature Medicine, 1(8), 766–773.PubMedGoogle Scholar
  33. Berkley, K. J., & Hubscher, C. H. (1995b). Visceral and somatic sensory tracks through the neuraxis and their relation to pain: Lessons from the rat female reproductive system. In G. F. Gebhart (Ed.), Visceral pain. Seattle: IASP Press.Google Scholar
  34. Besson, J. M., & Chaouch, A. (1987). Peripheral and spinal mechanisms of nociception. Physiological Reviews, 67, 67–186.PubMedGoogle Scholar
  35. Bielefeldt, K., Lamb, K., & Gebhart, G. F. (2006). Convergence of sensory pathways in the development of somatic and visceral hypersensitivity. American Journal of Physiology. Gastrointestinal and Liver Physiology, 291(4), G658–G665.PubMedGoogle Scholar
  36. Bingham, B., Ajit, S. K., Blake, D. R., & Samad, T. A. (2009). The molecular basis of pain and its clinical implications in rheumatology. Nature Clinical Practice Rheumatology, 5(1), 28–37.PubMedGoogle Scholar
  37. Birrell, G. J., McQueen, D. S., Iggo, A., & Grubb, B. D. (1993). Prostanoid-induced potentiation of the excitatory and sensitizing effects of bradykinin on articular mechanonociceptors in the rat ankle joint. Neurosciences, 54, 537–544.Google Scholar
  38. Blair, R. W., Ammons, W. S., & Foreman, R. D. (1984). Responses of thoracic spinothalamic and spinoreticular cells to coronary artery occlusion. Journal of Neurophysiology, 51, 636–648.PubMedGoogle Scholar
  39. Blair, R. W., Wenster, R. N., & Foreman, R. D. (1982). Responses of thoracic spinothalamic neurons to intracardiac injection of bradykinin in the monkey. Circulation Research, 51, 83–94.PubMedGoogle Scholar
  40. Boivie, J. (1979). An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey. The Journal of Comparative Neurology, 186, 343–370.PubMedGoogle Scholar
  41. Boivie, J., Leijon, G., & Johansson, I. (1989). Central post-stroke pain – A study of the mechanisms through analyses of the sensory abnormalities. Pain, 37, 173–185.PubMedGoogle Scholar
  42. Bonica, J. J. (2001). Bonica’s management of pain (3rd ed). J. D. Loeser (Ed.). Philadelphia: Lippincott Williams and Wilkins.Google Scholar
  43. Bossut, D. F., & Perl, E. R. (1995). Effects of nerve injury on sympathetic excitation of A[delta] mechanical nociceptors. Journal of Neurophysiology, 73, 1721–1723.PubMedGoogle Scholar
  44. Brown, A. G., & Franz, D. N. (1969). Responses of spinocervical tract neurons to natural stimulation of identified cutaneous receptors. Experimental Brain Research, 7, 231–249.Google Scholar
  45. Brown, A. G., Fyffe, R. E. W., Noble, R., Rose, P. K., & Snow, P. J. (1980). The density, distribution and topographical organization of spinocervical tract neurons in the cat. The Journal of Physiology, 300, 409–428.PubMedGoogle Scholar
  46. Brown-Sequard, E. (1868). Lectures on the physiology and pathology of the central nervous system and on the treatment of organic nervous affections. The Lancet, 2, 593–823.Google Scholar
  47. Brüggemann, J., Shi, T., & Apkarian, A. V. (1994). Squirrel monkey lateral thalamus. II. Viscerosomatic convergent representation of urinary bladder, colon, and esophagus. The Journal of Neuroscience, 14, 6796–6814.PubMedGoogle Scholar
  48. Bryan, R. N., Coulter, J. D., & Willis, W. D. (1974). Cells of origin of the spinocervical tract in the monkey. Experimental Neurology, 42, 574–586.PubMedGoogle Scholar
  49. Burton, H., & Craig, A. D. (1983). Spinothalamic projections in cat, raccoon and monkey: A study based on anterograde transport of horseradish peroxidase. In G. Macchi, A. Rustioni, & R. Spreafico (Eds.), Somatosensory integration in the thalamus. New York: Elsevier.Google Scholar
  50. Burton, H., & Jones, E. G. (1976). The posterior thalamic region and its cortical projection in New World and Old World monkeys. The Journal of Comparative Neurology, 168, 249–302.PubMedGoogle Scholar
  51. Bushnell, M. C., & Duncan, G. H. (1987). Mechanical response properties of ventroposterior medial thalamic neurons in the alert monkey. Experimental Brain Research, 67, 603–614.Google Scholar
  52. Bushnell, M. C., Duncan, G. H., Hofbauer, R. K., Ha, B., Chen, J. I., & Carrier, B. (1999). Pain perception: Is there a role for primary somatosensory cortex? Proceedings of the National Academy of Sciences of the United States of America, 96(14), 7705–7709.PubMedGoogle Scholar
  53. Bushnell, M. C., Duncan, G. H., & Tremblay, N. (1993). Thalamic VPM nucleus in the behaving monkey. I. Multimodal and discriminative properties of thermosensitive neurons. Journal of Neurophysiology, 69, 739–752.PubMedGoogle Scholar
  54. Campbell, J. N., Meyer, R. A., & Raja, S. N. (1992). Is nociceptor activation by alpha-1 adrenoreceptors the culprit in sympathetically maintained pain? American Society for Pain Journal, 1, 3–11.Google Scholar
  55. Carstens, E., & Trevino, D. L. (1978). Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase. The Journal of Comparative Neurology, 182, 151–166.Google Scholar
  56. Casey, K. L., & Morrow, T. J. (1983). Ventral posterior thalamic neurons differentially responsive to noxious stimulation of the awake monkey. Science, 221, 675–677.PubMedGoogle Scholar
  57. Casey, K. L., & Morrow, T. J. (1987). Nociceptive neurons in the ventral posterior thalamus of the awake squirrel monkey: Observations on identification, modulation, and drug effects. In J. M. Besson, G. Guilbaud, & M. Peschanski (Eds.), Thalamus and pain. Amsterdam: Excerpta Medica.Google Scholar
  58. Cervero, F., Iggo, A., & Molony, V. (1977). Responses of spinocervical tract neurons to noxious stimulation of the skin. The Journal of Physiology, 267, 537–558.PubMedGoogle Scholar
  59. Chandler, M. J., Hobbs, S. F., Fu, Q.-G., Kenshalo, D. R. Jr., Blair R. W., & Foreman, R. D. (1992). Responses of neurons in ventroposterolateral nucleus of primate thalamus to urinary bladder distension. Brain Research, 571, 26–34.PubMedGoogle Scholar
  60. Chaturvedi, S. K. (1987). Prevalence of chronic pain in psychiatric patients. Pain, 29, 231–237.PubMedGoogle Scholar
  61. Christianson, J. A., Bielefeldt, K., Malin, S. A., & Davis, B. M. (2010). Neonatal colon insult alters growth factor expression and TRPA1 responses in adult mice. Pain, 151(2), 540–549.PubMedGoogle Scholar
  62. Chung, J. M., Kenshalo, D. R., Gerhart, K. D., & Willis, W. D. (1979). Excitation of primate spinothalamic neurons by cutaneous C-fiber volleys. Journal of Neurophysiology, 42, 1354–1369.PubMedGoogle Scholar
  63. Chung, J. M., Surmeier, D. J., Lee, K. H., Sorkin, L. S., Honda, C. N., Tsong, Y., et al. (1986). Classification of primate spinothalamic and somatosensory thalamic neurons based on cluster analysis. Journal of Neurophysiology, 56, 308–327.PubMedGoogle Scholar
  64. Cliffer, K. D., & Giesler, G. J., Jr. (1989). Postsynaptic dorsal column pathway of the rat. III. Distribution of ascending afferent fibers. The Journal of Neuroscience, 9, 3146–3168.PubMedGoogle Scholar
  65. Cliffer, K. D., Hasegawa, T., & Willis, W. D. (1992). Responses of neurons in the gracile nucleus of cats to innocuous and noxious stimuli: Basic characterization and antidromic activation from the thalamus. Journal of Neurophysiology, 68, 818–832.PubMedGoogle Scholar
  66. Conti, F., De Biasi, S., Giuffrida, R., & Rustioni, A. (1990). Substance P-containing projections in the dorsal columns of rats and cats. Neurosciences, 34, 607–621.Google Scholar
  67. Cortright, D. N., & Szallasi, A. (2004). Biochemical pharmacology of the vanilloid receptor TRPV1. An update. European Journal of Biochemistry, 271(10), 1814–1819.PubMedGoogle Scholar
  68. Costigan, M., & Woolf, C. J. (2000). Pain: Molecular mechanisms. The Journal of Pain, 1(3 Suppl), 35–44.PubMedGoogle Scholar
  69. Craig, A. D. (1978). Spinal and medullary input to the lateral cervical nucleus. The Journal of Comparative Neurology, 181, 729–744.PubMedGoogle Scholar
  70. Craig, A. D., Bushnell, M. C., Zhang, E. T., & Blomqvist, A. (1994). A thalamic nucleus specific for pain and temperature sensation. Nature, 372, 770–773.PubMedGoogle Scholar
  71. Craig, A. D., & Dostrovsky, J. (2001). Differential projections of thermoreceptive and nociceptive lamina I trigeminothalamic and spinothalamic neurons in the cat. Journal of Neurophysiology, 86, 856–870.PubMedGoogle Scholar
  72. Craig, A. D., Linington, A. J., & Kniffki, K. D. (1989). Cells of origin of spinothalamic projections to medial and/or lateral thalamus in the cat. The Journal of Comparative Neurology, 289, 568–585.PubMedGoogle Scholar
  73. Craig, A. D., & Zhang, E. T. (2006). Retrograde analyses of spinothalamic projections in the macaque monkey: Input to posterolateral thalamus. The Journal of Comparative Neurology, 499(6), 953–964.PubMedGoogle Scholar
  74. Cummins, T. R., Sheets, P. L., & Waxman, S. G. (2007). The roles of sodium channels in nociception: Implications for mechanisms of pain. Pain, 131(3), 243–257.PubMedGoogle Scholar
  75. Dahlström, A., & Fuxe, K. (1964). Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiologica Scandinavica, 62(Suppl 232), 1–55.Google Scholar
  76. Dahlström, A., & Fuxe, K. (1965). Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neurons systems. Acta Physiologica Scandinavica, 64(Suppl 247), 1–36.Google Scholar
  77. Davidoff, R. A. (1989). The dorsal columns. Neurology, 39, 1377–1385.PubMedGoogle Scholar
  78. Davis, K. D., & Dostrovsky, J. O. (1988). Properties of feline thalamic neurons activated by stimulation of the middle meningeal artery and sagittal sinus. Brain Research, 454, 89–100.PubMedGoogle Scholar
  79. Davis, K. D., Meyer, R. A., & Campbell, J. N. (1993). Chemosensitivity and sensitization of nociceptive afferents that innervate the hairy skin of monkey. Journal of Neurophysiology, 69, 1071–1081.PubMedGoogle Scholar
  80. Davis, K. D., Tasker, R. R., Kiss, Z. H. T., Hutchison, W. D., & Dostrovsky, J. O. (1995). Visceral pain evoked by thalamic microstimulation in humans. NeuroReport, 6, 369–374.PubMedGoogle Scholar
  81. Dell, P., & Olson, R. (1951). Projections thalamiques, corticales et cerebelleuses des afferences viscerales vagales. Comptes Rendus Seances Society of Biology Forum, 145, 1084–1088.Google Scholar
  82. Derbyshire, S. W. (2003). A systematic review of neuroimaging data during visceral stimulation. The American Journal of Gastroenterology, 98, 12–20.PubMedGoogle Scholar
  83. Descartes, R. (1664). L’Homme. e. Paris: Angot.Google Scholar
  84. Di Marzo, V., Blumberg, P. M., & Szallasi, A. (2002). Endovanilloid signaling in pain. Current Opinion in Neurobiology, 12(4), 372–379.PubMedGoogle Scholar
  85. Dougherty, P. M., Sluka, K. A., Sorkin, L. S., Westlund, K. N., & Willis, W. D. (1992). Neural changes in acute arthritis in monkeys. I. Parallel enhancement of responses of spinothalamic tract neurons to mechanical stimulation and excitatory amino acids. Brain Research Reviews, 17, 1–13.PubMedGoogle Scholar
  86. Downie, J. W., Ferrington, D. G., Sorkin, L. S., & Willis, W. D. (1988). The primate spinocervicothalamic pathway: Responses of cells of the lateral cervical nucleus and spinocervical tract to innocuous and noxious stimuli. Journal of Neurophysiology, 59, 861–885.PubMedGoogle Scholar
  87. Dray, A., Bettaney, J., Forster, P., & Perkins, N. M. (1988). Bradykinin-induced stimulation of afferent fibres is mediated through protein kinase C. Neuroscience Letters, 91, 301–307.PubMedGoogle Scholar
  88. Dray, A., Urban, L., & Dickenson, A. (1994). Pharmacology of chronic pain. Trends in Pharmacological Sciences, 15(6), 190–197.PubMedGoogle Scholar
  89. Duggan, A. W., Hall, J. G., & Headley, P. M. (1977). Enkephalins and dorsal horn neurons of the cat: Effects on responses to noxious and innocuous skin stimuli. British Journal of Pharmacology, 61, 399–408.PubMedGoogle Scholar
  90. Duggan, A. W., & North, R. A. (1984). Electrophysiology of opioids. Pharmacological Reviews, 35, 219–281.Google Scholar
  91. Duncan, G. H., Bushnell, M. C., Oliveras, J. L., Bastrash, N., & Tremblay, N. (1993). Thalamic VPM nucleus in the behaving monkey. III. Effects of reversible inactivation by lidocaine on thermal and mechanical discrimination. Journal of Neurophysiology, 70, 2086–2096.PubMedGoogle Scholar
  92. Emmers, R. (1966). Separate relays of tactile, pressure, thermal, and gustatory modalities in the cat thalamus. Proceedings of the Society for Experimental Biology and Medicine, 121, 527–531.PubMedGoogle Scholar
  93. Feng, Y., Cui, M., Al-Chaer, E. D., & Willis, W. D. (1998). Epigastric antinociception by cervical dorsal column lesions in rats. Anesthesiology, 89(2), 411–420.PubMedGoogle Scholar
  94. Ferrington, D. G., Downie, J. W., & Willis, W. D. (1988). Primate nucleus gracilis neurons: Responses to innocuous and noxious stimuli. Journal of Neurophysiology, 59, 886–907.PubMedGoogle Scholar
  95. Ferrington, D. G., Sorkin, L. S., & Willis, W. D. (1987). Responses of spinothalamic tract cells in the superficial dorsal horn of the primate lumbar spinal cord. The Journal of Physiology, 388, 681–703.PubMedGoogle Scholar
  96. Fillingim, R. B. (Ed.). (2000). Sex, gender, and pain. Progress in pain research and management (Vol. 17). Seattle: IASP Press.Google Scholar
  97. Foerster, O., & Gagel, O. (1932). Die Vorderseitenstrangdurchschneidung beim Menschen. Eine klinisch-patho-­physiologisch-anatomische Studie. Zeitschrift für die Gesamte Neurology und Psychiatry, 138, 1–92.Google Scholar
  98. Foreman, R. D., Schmidt, R. F., & Willis, W. D. (1979). Effects of mechanical and chemical stimulation of fine muscle afferents upon primate spinothalamic tract cells. The Journal of Physiology, 286, 215–231.PubMedGoogle Scholar
  99. Friedman, D. R., Murray, E. A., O’Neill, J. B., & Mishkin, M. (1986). Cortical connections of the somatosensory fields of the lateral sulcus of macaques: Evidence for a corticolimbic pathway for touch. The Journal of Comparative Neurology, 252, 323–347.PubMedGoogle Scholar
  100. Gaze, R. M., & Gordon, G. (1954). The representation of cutaneous sense in the thalamus of the cat and monkey. Journal of Experiment Physiology, 39, 279–304.Google Scholar
  101. Giesler, G. J., Jr., & Cliffer, K. D. (1985). Postsynaptic dorsal column pathway of the rat. II. Evidence against an important role in nociception. Brain Research, 326(2), 347–356.PubMedGoogle Scholar
  102. Giesler, G. J., Jr., Menétrey, D., & Basbaum, A. I. (1979). Differential origins of spinothalamic tract projections to medial and lateral thalamus in the rat. The Journal of Comparative Neurology, 184, 107–126.PubMedGoogle Scholar
  103. Giesler, G. J., Jr., Menétrey, D., Guilbaud, G., & Besson, J. M. (1976). Lumbar cord neurons at the origin of the spinothalamic tract in the rat. Brain Research, 118, 320–324.PubMedGoogle Scholar
  104. Giesler, G. J., Nahin, R. L., & Madsen, A. M. (1984). Postsynaptic dorsal column pathway of the rat. I. Anatomical studies. Journal of Neurophysiology, 51, 260–275.PubMedGoogle Scholar
  105. Giesler, G. J., Yezierski, R. P., Gerhart, K. D., & Willis, W. D. (1981). Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: Evidence for a physiologically novel population of spinal cord neurons. Journal of Neurophysiology, 46, 1285–1308.PubMedGoogle Scholar
  106. Gildenberg, P. L., & Hirshberg, R. M. (1984). Limited myelotomy for the treatment of intractable cancer pain. Journal of Neurology, Neurosurgery, and Psychiatry, 47, 94–96.PubMedGoogle Scholar
  107. Gingold, S. I., Greenspan, J. D., & Apkarian, A. V. (1991). Anatomic evidence of nociceptive inputs to primary somatosensory cortex: Relationship between spinothalamic terminals and thalamocortical cells in squirrel monkeys. The Journal of Comparative Neurology, 308, 467–490.PubMedGoogle Scholar
  108. Gold, M. S., & Gebhart, G. F. (2010). Nociceptor sensitization in pain pathogenesis. Nature Medicine, 16(11), 1248–1257.PubMedGoogle Scholar
  109. Gowers, W. R. (1878). A case of unilateral gunshot injury to the spinal cord. Transactions of the Clinical Society of London, 11, 24–32.Google Scholar
  110. Grundy, D., Al-Chaer, E. D., Aziz, Q., Collins, S. M., Ke, M., Taché, Y., et al. (2006). Fundamentals of neurogastroenterology: Basic science. Gastroenterology, 130(5), 1391–1411.PubMedGoogle Scholar
  111. Gybels, J. M., & Sweet, W. H. (Eds.). (1989). Neurosurgical treatment of persistent pain. Basel: Karger.Google Scholar
  112. Ha, H. (1971). Cervicothalamic tract in the Rhesus monkey. Experimental Neurology, 33, 205–212.PubMedGoogle Scholar
  113. Häbler, H. J., Jänig, W., & Koltzenburg, M. (1990). Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. The Journal of Physiology, 425, 545–562.PubMedGoogle Scholar
  114. Head, H., & Thompson, T. (1906). The grouping of afferent impulses within the spinal cord. Brain, 29, 537–741.Google Scholar
  115. Hirai, T., & Jones, E. G. (1989). A new parcellation of the human thalamus on the basis of histochemical staining. Brain Research Reviews, 14, 1–34.PubMedGoogle Scholar
  116. Hirshberg, R. M., Al-Chaer, E. D., Lawand, N. B., Westlund, K. N., & Willis, W. D. (1996). Is there a pathway in the posterior funiculus that signals visceral pain? Pain, 67, 291–305.PubMedGoogle Scholar
  117. Hitchcock, E. R. (1970). Stereotactic cervical myelotomy. Journal of Neurology, Neurosurgery, and Psychiatry, 33, 224–230.PubMedGoogle Scholar
  118. Hitchcock, E. R. (1974). Stereotactic myelotomy. Proceedings of the Royal Society of Medicine, 67, 771–772.PubMedGoogle Scholar
  119. Hobday, D. I., Aziz, Q., Thacker, N., Hollander, I., Jackson, A., & Thompson, D. G. (2001). A study of the cortical processing of ano-rectal sensation using functional MRI. Brain, 124, 361–368.PubMedGoogle Scholar
  120. Hodge, C. J., Apkarian, A. V., & Stevens, R. T. (1986). Inhibition of dorsal-horn cell responses by stimulation of the Kölliker-Fuse nucleus. Journal of Neurosurgery, 65, 825–833.PubMedGoogle Scholar
  121. Hylden, J. L., Anton, F., & Nahin, R. L. (1989). Spinal lamina I projection neurons in the rat: Collateral innervation of parabrachial area and thalamus. Neurosciences, 28, 27–37.Google Scholar
  122. Hyndman, O. R., & Van Epps, C. (1939). Possibility of differential section of the spinothalamic tract. Archives of Surgery, 38, 1036–1053.Google Scholar
  123. Jones, E. G. (1985). The thalamus. New York: Plenum.Google Scholar
  124. Joshi, S. K., Su, X., Porreca, F., & Gebhart, G. F. (2000). Kappa-Opioid receptor agonists modulate visceral nociception at a novel, peripheral site of action. The Journal of Neuroscience, 20, 5874–5879.PubMedGoogle Scholar
  125. Kajander, K. C., & Bennett, G. J. (1992). Onset of a painful peripheral neuropathy in rat: A partial and differential deafferentation and spontaneous discharge in A beta and A delta primary afferent neurons. Journal of Neurophysiology, 68(3), 734–744.PubMedGoogle Scholar
  126. Kawakita, K., Sumiya, E., Murase, K., & Okada, K. (1997). Response characteristics of nucleus submedius neurons to colo-rectal distension in the rat. Neuroscience Research, 28(1), 59–66.PubMedGoogle Scholar
  127. Kellenberger, S., & Schild, L. (2002). Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure. Physiological Reviews, 82(3), 735–767.PubMedGoogle Scholar
  128. Kenshalo, D. R., Chudler, E. H., Anton, F., & Dubner, R. (1988). SI nociceptive neurons participate in the encoding process by which monkeys perceive the intensity of noxious thermal stimulation. Brain Research, 454, 378–382.PubMedGoogle Scholar
  129. Kenshalo, D. R., Giesler, G. J., Leonard, R. B., & Willis, W. D. (1980). Responses of neurons in primate ventral posterior lateral nucleus to noxious stimuli. Journal of Neurophysiology, 43, 1594–1614.PubMedGoogle Scholar
  130. Kenshalo, D. R., Leonard, R. B., Chung, J. M., & Willis, W. D. (1979). Responses of primate spinothalamic neurons to graded and to repeated noxious heat stimuli. Journal of Neurophysiology, 42, 1370–1389.PubMedGoogle Scholar
  131. Keogh, E. (2009). Sex differences in pain. In R. J. Moore (Ed.), Biobehavioural approaches to pain. New York: Springer.Google Scholar
  132. Keogh, E. (2011). Sex differences in pain across the life course. In R. J. Moore (Ed.), Handbook of pain and palliative care: Biobehavioral approaches for the life course. New York: Springer.Google Scholar
  133. Kern, M. K., Jaradeh, S., Arndorfer, R. C., Jesmanowicz, A., Hyde, J., & Shaker, R. (2001). Gender differences in cortical representation of rectal distension in healthy humans. American Journal of Physiology. Gastrointestinal and Liver Physiology, 281, G1512–G1523.PubMedGoogle Scholar
  134. Kerr, F. W. L. (1975). The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord. The Journal of Comparative Neurology, 159, 335–356.PubMedGoogle Scholar
  135. Kevetter, G. A., & Willis, W. D. (1982). Spinothalamic cells in the rat lumbar cord with collaterals to the medullary reticular formation. Brain Research, 238, 181–185.PubMedGoogle Scholar
  136. Khakh, B. S., & North, R. A. (2006). P2X receptors as cell-surface ATP sensors in health and disease. Nature, 442(7102), 527–532.PubMedGoogle Scholar
  137. Kim, Y. S., & Kwon, S. J. (2000). High thoracic midline dorsal column myelotomy for severe visceral pain due to advanced stomach cancer. Neurosurgery, 46(1), 85–92.PubMedGoogle Scholar
  138. Kirkup, A. J., Brunsden, A. M., & Grundy, D. (2001). Receptors and transmission in the brain-gut axis: Potential for novel therapies. I. Receptors on visceral afferents. American Journal of Physiology. Gastrointestinal and Liver Physiology, 280, G787–G794.PubMedGoogle Scholar
  139. Klop, E. M., Mouton, L. J., Kuipers, R., & Holstege, G. (2005). Neurons in the lateral sacral cord of the cat project to periaqueductal grey, but not to thalamus. The European Journal of Neuroscience, 21, 2159–2166.PubMedGoogle Scholar
  140. Konietzny, F., Perl, E. R., Trevino, D., Light, A. & Hensel, H. (1981). Sensory experiences in man evoked by intraneural electrical stimulation of intact cutaneous afferent fibers. Experimental Brain Research, 42, 219–222.Google Scholar
  141. Ladabaum, U., Minoshima, S., Hasler, W. L., Cross, D., Chey, W. D., & Owyang, C. (2001). Gastric distention correlates with activation of multiple cortical and subcortical regions. Gastroenterology, 120, 369–376.PubMedGoogle Scholar
  142. LaMotte, R. H., Thalhammer, J. G., & Robinson, C. J. (1983). Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: A comparison of neural events in monkey with sensory judgments in human. Journal of Neurophysiology, 50, 1–26.PubMedGoogle Scholar
  143. LaMotte, R. H., Thalhammer, J. G., Torebjörk, H. E., & Robinson, C. J. (1982). Peripheral neural mechanisms of cutaneous hyperalgesia following mild injury by heat. The Journal of Neuroscience, 2, 765–781.PubMedGoogle Scholar
  144. Le Gros Clark, W. E. (1936). The termination of ascending tracts in the thalamus of the macaque monkey. Journal of Anatomy, 71, 7–40.PubMedGoogle Scholar
  145. Lenz, F. A., Gracely, R. H., Hope, E. J., Baker, F. H., Rowland, L. H., Dougherty,P. M., et al. (1994). The sensation of angina can be evoked by stimulation of the human thalamus. Pain, 59, 119–125.PubMedGoogle Scholar
  146. Light, A. R. (1992). The initial processing of pain and its descending control: Spinal and trigeminal systems. Basel: Karger.Google Scholar
  147. Light, A. R., Sedivec, M., Casale, E., & Jones S. L. (1993). Physiological and morphological characteristics of spinal neurons projecting to the parabrachial region of the cat. Somatosensory & Motor Research, 10, 309–325.Google Scholar
  148. Lynn, B., & Carpenter, S. E. (1982). Primary afferent units from the hairy skin of the rat hind limb. Brain Research, 238(1), 29–43.PubMedGoogle Scholar
  149. Maggi, C. A., & Meli, A. (1988). The sensory-efferent function of capsaicin-sensitive sensory neurons. General Pharmacology, 19, 1–43.PubMedGoogle Scholar
  150. Mantyh, P. W. (1983). The spinothalamic tract in the primate: A re-examination using wheatgerm agglutinin conjugated to horseradish peroxidase. Neurosciences, 9, 847–862.Google Scholar
  151. Marshall, G. E., Shehab, S. A., Spike, R. C., & Todd, A. J. (1996). Neurokinin-1 receptors on lumbar spinothalamic neurons in the rat. Neurosciences, 72, 255–263.Google Scholar
  152. Matre, D., & Tran, T. D. (2009). Imaging modalities for pain. In R. J. Moore (Ed.), Biobehavioural approaches to pain. New York: Springer.Google Scholar
  153. McLeod, J. G. (1958). The representation of the splanchnic afferent pathways in the thalamus of the cat. The Journal of Physiology, 94, 439–452.Google Scholar
  154. McMahon, S. B. (2004). Sensitisation of gastrointestinal tract afferents. Gut, 53, ii13–ii15.PubMedGoogle Scholar
  155. McRoberts, J. A., Coutinho, S. V., Marvizon, J. C., Grady, E. F., Tognetto, M., Sengupta, J. N., et al. (2001). Role of peripheral N-methyl-D-aspartate (NMDA) receptors in visceral nociception in rats. Gastroenterology, 120, 1737–1748.PubMedGoogle Scholar
  156. Mehler, W. R. (1962). The anatomy of the so-called “pain tract” in man: An analysis of the course and distribution of the ascending fibers of the fasciculus anterolateralis. In J. D. French & R. W. Porter (Eds.), Basic research in paraplegia. Springfield: Charles C. Thomas.Google Scholar
  157. Mehler, W. R., Feferman, M. E., & Nauta, W. J. H. (1960). Ascending axon degeneration following anterolateral cordotomy. An experimental study in the monkey. Brain, 83, 718–750.PubMedGoogle Scholar
  158. Melzack, R. (1999). From the gate to the neuromatrix. Pain, 6, S121–S126.PubMedGoogle Scholar
  159. Melzack, R., & Wall, P. D. (1965). Pain mechanisms: A new theory. Science, 150(699), 971–979.PubMedGoogle Scholar
  160. Merskey, H. (1989). Pain and psychological medicine. In P. D. Wall & R. Melzack (Eds.), Textbook of pain (2nd ed.). Edinburgh: Churchill-Livingstone.Google Scholar
  161. Mertz, H., Morgan, V., Tanner, G., Pickens, D., Price, R., Shyr, Y., et al. (2000). Regional cerebral activation in irritable bowel syndrome and control subjects with painful and nonpainful rectal distention. Gastroenterology, 18, 842–848.Google Scholar
  162. Meyer, R. A., & Campbell, J. N. (1981). Myelinated nociceptive afferents account for the hyperalgesia that follows a burn to the hand. Science, 213, 1527–1529.PubMedGoogle Scholar
  163. Milne, R. J., Foreman, R. D., Giesler, G. J., & Willis, W. D. (1981). Convergence of cutaneous and pelvic visceral nociceptive inputs onto primate spinothalamic neurons. Pain, 11, 163–183.PubMedGoogle Scholar
  164. Mizuno, N., Nakano, K., Imaizumi, M., & Okamoto, M. (1967). The lateral cervical nucleus of the Japanese monkey (Macaca fuscata). The Journal of Comparative Neurology, 129, 375–384.PubMedGoogle Scholar
  165. Mogil, J. S., Breese, N. M., Witty, M. F., Ritchie, J., Rainville, M. L., Ase, A., et al. (2005). Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. The Journal of Neuroscience, 25(43), 9893–9901.PubMedGoogle Scholar
  166. Nafe, J. P. (1934). The pressure, pain and temperature senses. In C. A. Murchison (Ed.), Handbook of general experimental psychology. Worcester: Clark University Press.Google Scholar
  167. Nauta, H. J., Hewitt, E., Westlund, K. N., & Willis, W. D. (1997). Surgical interruption of a midline dorsal column visceral pain pathway. Case report and review of the literature. Journal of Neurosurgery, 86(3), 538–542.PubMedGoogle Scholar
  168. Nauta, H. J., Soukup, V. M., Fabian, R. H., Lin, J. T., Grady, J. J., Williams, C. G., et al. (2000). Punctate midline myelotomy for the relief of visceral cancer pain. Journal of Neurosurgery, 92(2 Suppl), 125–130.PubMedGoogle Scholar
  169. Ness, T. J. (2000). Evidence for ascending visceral nociceptive information in the dorsal midline and lateral spinal cord. Pain, 87(1), 83–88.PubMedGoogle Scholar
  170. Nijensohn, D. E., & Kerr, F. W. L. (1975). The ascending projections of the dorsolateral funiculus of the spinal cord in the primate. The Journal of Comparative Neurology, 161, 459–470.PubMedGoogle Scholar
  171. Noble, R., & Riddell, J. S. (1988). Cutaneous excitatory and inhibitory input to neurons of the postsynaptic dorsal column system in the cat. The Journal of Physiology, 396, 497–513.PubMedGoogle Scholar
  172. Noordenbos, W. (1959). Pain. Amsterdam: Elsevier.Google Scholar
  173. Noordenbos, W., & Wall, P. D. (1976). Diverse sensory functions with an almost totally divided spinal cord. A case of spinal cord transection with preservation of part of one anterolateral quadrant. Pain, 2, 185–195.Google Scholar
  174. Ochoa, J., & Torebjörk, E. (1989). Sensations evoked by intraneural microstimulation of C nociceptor fibres in human skin nerves. The Journal of Physiology, 415, 583–599.PubMedGoogle Scholar
  175. Olszewski, J. (1952). The thalamus of Macaca mulatta. New York: Karger.Google Scholar
  176. Patterson, J. T., Coggeshall, R. E., Lee, W. T., & Chung, K. (1990). Long ascending unmyelinated primary afferent axons in the rat dorsal column: Immunohistochemical localizations. Neuroscience Letters, 10, 6–10.Google Scholar
  177. Patterson, J. T., Head, P. A., McNeill, D. L., Chung, K., & Coggeshall, R. E. (1989). Ascending unmyelinated primary afferent fibers in the dorsal funiculus. The Journal of Comparative Neurology, 290, 384–390.PubMedGoogle Scholar
  178. Patton, H. D., & Amassian, V. E. (1951). Thalamic relay of splanchnic afferent fibers. The American Journal of Physiology, 167, 815–816.Google Scholar
  179. Peng, Y. B., Lin, Q., & Willis, W. D. (1995). The role of 5HT3 receptors in periaqueductal gray-induced inhibition of nociceptive dorsal horn neurons in rats. The Journal of Pharmacology and Experimental Therapeutics, 276, 116–124.Google Scholar
  180. Peng, Y. B., Lin, Q., & Willis, W. D. (1996a). Involvement of [alpha]2-adrenoreceptors in the periaqueductal gray-induced inhibition of dorsal horn cell activity in rats. The Journal of Pharmacology and Experimental Therapeutics, 278(1), 125–135.PubMedGoogle Scholar
  181. Peng, Y. B., Lin, Q., & Willis, W. D. (1996b). Effects of GABA and glycine receptor antagonists on the activity and PAG-induced inhibition of rat dorsal horn neurons. Brain Research, 736(1–2), 189–201.PubMedGoogle Scholar
  182. Petit, D. (1972). Postsynaptic fibres in the dorsal columns and their relay in the nucleus gracilis. Brain Research, 48, 380–384.PubMedGoogle Scholar
  183. Peyron, R., Garcia-Larrea, L., Gregoire, M. C., Convers, P., Richard, A., Lavenne, F., et al. (2000). Parietal and ­cingulate processes in central pain. A combined positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain, 84(1), 77–87.PubMedGoogle Scholar
  184. Pollin, B., & Albe-Fessard, D. (1979). Organization of somatic thalamus in monkeys with and without section of dorsal spinal tracts. Brain Research, 173, 431–449.PubMedGoogle Scholar
  185. Price, D. D. (2000). Psychological and neural mechanisms of the affective dimension of pain. Science, 288(5472), 1769–1772.PubMedGoogle Scholar
  186. Price, D. D., Hayes, R. L., Ruda, M. A., & Dubner, R. (1978). Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensation. Journal of Neurophysiology, 41, 933–947.PubMedGoogle Scholar
  187. Price, D. D., & Mayer, D. J. (1975). Neurophysiological characterization of the anterolateral quadrant neurons subserving pain in M. mulatta. Pain, 1, 59–72.PubMedGoogle Scholar
  188. Price, M. P., McIlwrath, S. L., Xie, J., Cheng, C., Qiao, J., Tarr, D. E., et al. (2001). The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron, 32(6), 1071–1083. Erratum in: Neuron, 35(2), 407, 2002.Google Scholar
  189. Proudfit, H. K. (1992). The behavioral pharmacology of the noradrenergic descending system. In J.-M. Besson & G. Guilbaud (Eds.), Towards the use of noradrenergic agonists for the treatment of pain. New York: Elsevier.Google Scholar
  190. Rogers, R. C., Novin, D., & Butcher, L. L. (1979). Hepatic sodium and osmoreceptors activate neurons in the ventrobasal thalamus. Brain Research, 168, 398–403.PubMedGoogle Scholar
  191. Ross, M. H., Romrell, L. J., & Kaye, G. I. (1995). Histology: A text and atlas (3rd ed.). Baltimore: Williams & Wilkins.Google Scholar
  192. Rustioni, A. (1973). Non-primary afferents to the nucleus gracilis from the lumbar cord of the cat. Brain Research, 51, 81–95.PubMedGoogle Scholar
  193. Rustioni, A. (1974). Non-primary afferents to the cuneate nucleus in the brachial dorsal funiculus of the cat. Brain Research, 75, 247–259.PubMedGoogle Scholar
  194. Rustioni, A., Hayes, N. L., & O’Neill, S. (1979). Dorsal column nuclei and ascending spinal afferents in macaques. Brain, 102, 95–125.PubMedGoogle Scholar
  195. Saab, C. Y., Park, Y. C., & Al-Chaer, E. D. (2004). Thalamic modulation of visceral nociceptive processing in adult rats with neonatal colon irritation. Brain Research, 1008(2), 186–192.PubMedGoogle Scholar
  196. Saab, C. Y., Wang, J., Gu, C., Garner, K. N., Al-Chaer, E. D. (2007). Microglia: a newly discovered role in visceral hypersensitivity? Neuron Glia Biology, 2, 271–277.PubMedGoogle Scholar
  197. Sarnoff, S. J., Arrowood, J. G., & Chapman, W. P. (1948). Differential spinal block. IV. The investigation of intestinal dyskinesia, colonic atony, and visceral afferent fibers. Surgery, Gynecology & Obstetrics, 86, 571–581.Google Scholar
  198. Sato, J., & Perl, E. R. (1991). Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. Science, 251, 1608–1610.PubMedGoogle Scholar
  199. Schaible, H. G. (2004). Spinal mechanisms contributing to joint pain. Novartis Foundation Symposium, 260, 4–22; discussion 22–27, 100–104, 277–279, review.Google Scholar
  200. Schaible, H. G., & Schmidt, R. F. (1983). Activation of groups III and IV sensory units in medial articular nerve by local mechanical stimulation of knee joint. Journal of Neurophysiology, 49, 35–44.PubMedGoogle Scholar
  201. Schaible, H. G., & Schmidt, R. F. (1985). Effects of an experimental arthritis on the sensory properties of fine articular afferent units. Journal of Neurophysiology, 54, 1109–1122.PubMedGoogle Scholar
  202. Schaible, H. G., & Schmidt, R. F. (1988). Time course of mechanosensitivity changes in articular afferents during a developing experimental arthritis. Journal of Neurophysiology, 60, 2180–2195.PubMedGoogle Scholar
  203. Schepelmann, K., Messlinger, K., Schaible, H. G., & Schmidt, R. F. (1992). Inflammatory mediators and nociception in the joint: Excitation and sensitization of slowly conducting afferent fibers of cat’s knee by prostaglandin I2. Neurosciences, 50, 237–247.Google Scholar
  204. Schiff, J. M. (1858). Lehrbuch der physiologie des menschen I: Muskel and nervenphysiologie. Lahr: Nabu Press.Google Scholar
  205. Schwarcz, J. R. (1976). Stereotactic extralemniscal myelotomy. Journal of Neurology, Neurosurgery, and Psychiatry, 39, 53–57.Google Scholar
  206. Schwarcz, J. R. (1978). Spinal cord stereotactic techniques, trigeminal nucleotomy and extralemniscal myelotomy. Applied Neurophysiology, 41, 99–112.Google Scholar
  207. Sherrington, C. S. (1906). The integrative action of the nervous system (2nd ed.). Newhaven: Yale University Press.Google Scholar
  208. Silverman, D. H., Munakata, J. A., Ennes, H., Mandelkern, M. A., Hoh, C. K., & Mayer, E. A. (1997). Regional cerebral activity in normal and pathological perception of visceral pain. Gastroenterology, 112, 64–72.PubMedGoogle Scholar
  209. Smith, M. V., & Apkarian, A. V. (1991). Thalamically projecting cells of the lateral cervical nucleus in monkey. Brain Research, 555, 10–18.PubMedGoogle Scholar
  210. Sorkin, L., & Carlton, S. (1997). Spinal anatomy and pharmacology of afferent processing. In T. Yaksh, C. Lynch, W. Zapol, et al. (Eds.), Anesthesia. Biologic foundations. Philadelphia: Lippincott-Raven.Google Scholar
  211. Spiller, W. G. (1905). The occasional clinical resemblance between caries of the vertebrae and lumbothoracic syringomyelia, and the location within the spinal cord of the fibres for the sensations of pain and temperature. University of Pennsylvania Medical Bulletin, 18, 147–154.Google Scholar
  212. Spiller, W. G., & Martin, E. (1912). The treatment of persistent pain of organic origin in the lower part of the body by division of the anterolateral column of the spinal cord. Journal of the American Medical Association, 58, 1489–1490.Google Scholar
  213. Stanley, E. (1840). A case of disease of the posterior columns of the spinal cord. Medico-Chirurgical Transactions, 23, 80–84.PubMedGoogle Scholar
  214. Stein, C. (1994). Peripheral opioid analgesia: Mechanisms and therapeutic applications. In J. M. Besson, G. Guilbaud, & H. Ollat (Eds.), Peripheral neurons in nociception: Physio-pharmacological aspects. Paris: John Libbey Eurotext.Google Scholar
  215. Stepniewska, I., Sakai, S. T., Qi, H. X., & Kaas, J. H. (2003). Somatosensory input to the ventrolateral thalamic region in the macaque monkey: Potential substrate for Parkinsonian tremor. The Journal of Comparative Neurology, 455, 378–395.PubMedGoogle Scholar
  216. Strigo, I. A., Duncan, G. H., Boivin, M., & Bushnell, M. C. (2003). Differentiation of visceral and cutaneous pain in the human brain. Journal of Neurophysiology, 89, 3294–3303.PubMedGoogle Scholar
  217. Su, X., Sengupta, J. N., & Gebhart, G. F. (1997). Effects of kappa opioid receptor-selective agonists on responses of pelvic nerve afferents to noxious colorectal distension. Journal of Neurophysiology, 78, 1003–1012.PubMedGoogle Scholar
  218. Surmeier, D. J., Honda, C. N., & Willis, W. D. (1986a). Responses of primate spinothalamic neurons to noxious thermal stimulation of glabrous and hairy skin. Journal of Neurophysiology, 56, 328–350.PubMedGoogle Scholar
  219. Surmeier, D. J., Honda, C. N., & Willis, W. D. (1986b). Temporal features of the responses of primate spinothalamic neurons to noxious thermal stimulation of hairy and glabrous skin. Journal of Neurophysiology, 56, 351–368.PubMedGoogle Scholar
  220. Todd, A. (2002). Anatomy of primary afferents and projection neurons in the rat spinal dorsal horn with particular emphasis on substance P and the neurokinin 1 receptor. Experimental Physiology, 87, 245–249.PubMedGoogle Scholar
  221. Trevino, D. L., Coulter, J. D., & Willis, W. D. (1973). Locations of cells of origin of spinothalamic tract in lumbar enlargement of the monkey. Journal of Neurophysiology, 36, 750–761.PubMedGoogle Scholar
  222. Trevino, D. L., Maunz, R. A., Bryan, R. N., & Willis, W. D. (1972). Location of cells of origin of the spinothalamic tract in the lumbar enlargement of cat. Experimental Neurology, 34, 64–77.PubMedGoogle Scholar
  223. Truex, R. C., Taylor, M. J., Smythe, M. Q., & Gildenberg, P. L. (1965). The lateral cervical nucleus of cat, dog and man. The Journal of Comparative Neurology, 139, 93–104.Google Scholar
  224. Truitt, W. A., Shipley, M. T., Veening, J. G., & Coolen, L. M. (2003). Activation of a subset of lumbar spinothalamic neurons after copulatory behavior in male but not female rats. The Journal of Neuroscience, 23, 325–331.PubMedGoogle Scholar
  225. Uddenburg, N. (1966). Studies on modality segregation and second-order neurons in the dorsal funiculus. Experientia, 15, 441–442.Google Scholar
  226. Uddenburg, N. (1968). Functional organization of long, second-order afferents in the dorsal funiculus. Experimental Brain Research, 4, 377–382.Google Scholar
  227. Veldhuijzen, D. S., Greenspan, J. D., Kim, J. H., Coghill, R. C., Treede, R. D., Ohara, S., et al. (2007). Imaging central pain syndromes. Current Pain and Headache Reports, 11(3), 183–189.PubMedGoogle Scholar
  228. Vierck, C. J., Greenspan, J. D., & Ritz, L. A. (1990). Long-term changes in purposive and reflexive responses to nociceptive stimulation following anterolateral cordotomy. The Journal of Neuroscience, 10, 2077–2095.PubMedGoogle Scholar
  229. Vierck, C. J., & Luck, M. M. (1979). Loss and recovery of reactivity to noxious stimuli in monkeys with primary spinothalamic cordotomies, followed by secondary and tertiary lesions of other cord sectors. Brain, 102, 233–248.PubMedGoogle Scholar
  230. Walker, A. E. (1940). The spinothalamic tract in man. Archives of Neurology and Psychiatry, 43, 284–298.Google Scholar
  231. Wall, P., Bery, J., & Saade, N. (1988). Effects of lesions to rat spinal cord lamina I cell projection pathways on reactions to acute and chronic noxious stimuli. Pain, 35, 327–339.PubMedGoogle Scholar
  232. Wang, C. C., Willis, W. D., & Westlund, K. N. (1999). Ascending projections from the area around the spinal cord central canal: A Phaseolus vulgaris leucoagglutinin study in rats. The Journal of Comparative Neurology, 415(3), 341–367.PubMedGoogle Scholar
  233. Wang, J., Gu, C., & Al-Chaer, E. D. (2008). Altered behavior and digestive outcomes in adult male rats primed with minimal colon pain as neonates. Behavioral and Brain Functions, 4, 28.PubMedGoogle Scholar
  234. White, J. C. (1943). Sensory innervation of the viscera: Studies on visceral afferent neurons in man based on neurosurgical procedures for the relief of intractable pain. Research Publications – Association for Research in Nervous and Mental Disease, 23, 373–390.Google Scholar
  235. White, J. C., & Sweet, W. H. (1969). Pain and the neurosurgeon. Springfield: Charles C. Thomas.Google Scholar
  236. Willis, W. D. (1982). Control of nociceptive transmission in the spinal cord. In D. Ottoson (Ed.), Progress in sensory physiology 3. Berlin: Springer.Google Scholar
  237. Willis, W. D. (1985). The pain system. Basel: Karger.Google Scholar
  238. Willis, W. D., Al-Chaer, E. D., Quast, M. J., & Westlund, K. N. (1999). A visceral pain pathway in the dorsal column of the spinal cord. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 7675–7679.PubMedGoogle Scholar
  239. Willis, W. D., & Coggeshall, R. E. (2004). Sensory mechanisms of the spinal cord (3rd ed.). New York: Plenum Press.Google Scholar
  240. Willis, W. D., Kenshalo, D. R. J., & Leonard, R. B. (1979). The cells of origin of the primate spinothalamic tract. The Journal of Comparative Neurology, 188, 543–574.PubMedGoogle Scholar
  241. Willis, W. D., Trevino, D. L., Coulter, J. D., & Maunz, R. A. (1974). Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. Journal of Neurophysiology, 37, 358–372.PubMedGoogle Scholar
  242. Willis, W. D., & Westlund, K. N. (1997). Neuroanatomy of the pain system and of the pathways that modulate pain. Journal of Clinical Neurophysiology, 14(1), 2–31.PubMedGoogle Scholar
  243. Woolf, C., & Fitzgerald, M. (1983). The properties of neurons recorded in the superficial dorsal horn of the rat spinal cord. The Journal of Comparative Neurology, 221, 313–328.PubMedGoogle Scholar
  244. Woolf, C. J., & Ma, Q. (2007). Nociceptors–noxious stimulus detectors. Neuron, 55(3), 353–364.PubMedGoogle Scholar
  245. Woolf, C. J., & Salter, M. W. (2000). Neuronal plasticity: Increasing the gain in pain. Science, 288(5472), 1765–1769.PubMedGoogle Scholar
  246. Xie, J., Yoon, Y. W., Yom, S. S., et al. (1995). Norepinephrine rekindles mechanical allodynia in sympathectomized neuropathic rat. Analgesia, 1, 107–113.Google Scholar
  247. Yokota, T., Nishikawa, Y., & Koyama, N. (1988). Distribution of trigeminal nociceptive neurons in nucleus ventralis posteromedialis of primates. In R. Dubner, G. F. Gebhart, & M. R. Bond (Eds.), Pain research and clinical management (Vol. 3). Amsterdam: Elsevier.Google Scholar
  248. Yoss, R. E. (1953). Studies of the spinal cord. Part 3. Pathways for deep pain within the spinal cord and brain. Neurology, 3, 163–175.PubMedGoogle Scholar
  249. Zhuo, M., & Gebhart, G. F. (2002). Facilitation and attenuation of a visceral nociceptive reflex from the rostroventral medulla in the rat. Gastroenterology, 122, 1007–1019.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Center for Pain Research, Departments of Pediatrics, Internal Medicine (Gastroenterology), Neurobiology and Developmental Sciences, College of MedicineUniversity of Arkansas for Medical Sciences, Biomedical Research CenterLittle RockUSA

Personalised recommendations