Advertisement

Constraint Programming and Local Search Hybrids

  • Paul Shaw
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 45)

Abstract

Constraint programming and local search are two different optimization paradigms which, over the last two decades or so, have been successfully combined to form hybrid optimization techniques. This chapter describes and compares a number of these works, with the goal of giving a clear picture of research in this domain.We close with some open topics for the future.

Keywords

Local Search Search Tree Travel Salesman Problem Constraint Programming Local Search Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aarts E, Lenstra JK (eds) (1997) Local search in combinatorial optimization. Princeton University Press, PrincetonMATHGoogle Scholar
  2. 2.
    Adorf HM, Johnston MD (1990) A discrete stochastic neural network algorithm for constraint satisfaction problems. In: Proceedings of the international joint conference on neural networksGoogle Scholar
  3. 3.
    Applegate D, Cook W (1991) A computational study of the job-shop scheduling problem. ORSA J Comput 3(2):149–156MATHGoogle Scholar
  4. 4.
    Audemard G, Simon L (2007) GUNSAT: a greedy local search for unsatisfiability. In: Proceedings of IJCAI-07, pp 2256–2261Google Scholar
  5. 5.
    De Backer B, Furnon V, Shaw P, Kilby P, Prosser P (2000) Solving vehicle routing problems using constraint programming and metaheuristics. J Heuristics 6(4):501–523MATHCrossRefGoogle Scholar
  6. 6.
    Beck JC, Perron L (2000) Discrepancy-bounded depth first search. In: Proceedings of CP-AI-OR 2000Google Scholar
  7. 7.
    Benoist T, Bourreau E (2003) Improving global constraints support by local search. In: The CP 2003 workshop on cooperative solvers in constraint programmingGoogle Scholar
  8. 8.
    Bent R, Van Hentenryck P (2004) A two-stage hybrid local search for the vehicle routing problem with time windows. Transporatation Sci 38(4):515–530CrossRefGoogle Scholar
  9. 9.
    Bent R, Van Hentenryck P (2006) A two-stage hybrid algorithm for pickup and delivery vehicle routing problems with time windows. Comput Oper Res 33(4):875–893MATHCrossRefGoogle Scholar
  10. 10.
    Bent R, Van Hentenryck P (2007) Randomized adaptive spatial decoupling for large-scale vehicle routing with time windows. In: Proceedings of AAAI-07, pp 173–178Google Scholar
  11. 11.
    Brailsford SC, Hubbard PM, Smith B, Williams HP (1996) The progressive party problem: a difficult problem of combinatorial optimisation. Comput Oper Res 23:845–856MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Brelaz D (1979) New methods to color the vertices of a graph. Commun ACM 22(4):251–256MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Carchrae T, Beck JC (2005) Cost-based large neighborhood search. In: Workshop on the combination of metaheuristic and local search with constraint programming techniquesGoogle Scholar
  14. 14.
    Carchrae T, Beck JC (2008) Principles for the design of large neighborhood search. J Math Model Algorithm 8(3):245–270CrossRefMathSciNetGoogle Scholar
  15. 15.
    Caseau Y (2006) Combining constraint propagation and meta-heuristics for searching a maximum weight hamiltonian chain. Oper Res 40:77–95MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Caseau Y, Laburthe F (1995) Disjuntive scheduling with task intervals. Technical Report 95–25, Laboratoire d’Informatique de l’École Normale Superieure, Departement de Mathématiques et d’InformatiqueGoogle Scholar
  17. 17.
    Caseau Y, Laburthe F, Le Pape C, Rottembourg B (2001) Combining local and global search in a constraint programming environment. Knowl Eng Rev 16:41–68MATHCrossRefGoogle Scholar
  18. 18.
    Caseau Y, Silverstein G, Laburthe F (2001) Learning hybrid algorithms for vehicle routing problems. Theor Pract Logic Program 1(6):779–806MATHMathSciNetGoogle Scholar
  19. 19.
    Caseau Y, Laburthe F (1999) Heuristics for large constrained vehicle routing problems. J Heuristics 5:281–303MATHCrossRefGoogle Scholar
  20. 20.
    Chabrier A, Danna E, Le Pape C, Perron L (2004) Solving a network design problem. Ann Oper Res 130:217–239MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Codognet P, Diaz D (2001) Yet another local search method for constraint solving. In: Proceedings of the international symposium on stochastic algorithms: foundations and applications, pp 73–90Google Scholar
  22. 22.
    Crawford JM (1993) Solving satisfiability problems using a combination of systematic and local search. In: Second DIMACS challenge: cliques, coloring, and satisfiabilityGoogle Scholar
  23. 23.
    Danna E, Perron L (2003) Structured vs. unstructured large neighborhood search: a case study on job-shop scheduling problems with earliness and tardiness costs. In: Proceedings of CP 2003, pp 817–821Google Scholar
  24. 24.
    Davenport A, Tsang E, Wang C, Zhu K (1994) GENET: a connectionist architecture for solving constraint satisfaction problems by iterative improvement. In: Proceedings of AAAI-94Google Scholar
  25. 25.
    David P (1997) A constraint-based approach for examination timetabling using local repair techniques. In: Selected papers from the second international conference on practice and theory of automated timetabling, pp 169–186Google Scholar
  26. 26.
    Fahle T, Schamberger S, Sellmann M (2001) Symmetry breaking. In: Proceedings of CP 2001, pp 93–107Google Scholar
  27. 27.
    Fang H, Ruml W (2004) Complete local search for propositional satisfiability. In: Proceedings of AAAI-04, pp 161–166Google Scholar
  28. 28.
    Focacci F, Laburthe F, Lodi A (2001) Local search and constraint programming. In: Proceedings of the metaheuristics international conference (MIC ’01), pp 451–454Google Scholar
  29. 29.
    Focacci F, Milano M (2001) Global cut framework for removing symmetries. In: Proceedings of CP 2001, pp 77–92MathSciNetGoogle Scholar
  30. 30.
    Focacci F, Shaw P (2002) Pruning sub-optimal search branches using local search. In: Proceedings of CP-AI-OR 2002, pp 181–189Google Scholar
  31. 31.
    Fukunaga AS, Korf RE (2005) Bin-completion algorithms for multicontainer packing and covering problems. In: Proceedings of IJCAI-05, pp 117–124Google Scholar
  32. 32.
    Galinier P, Hao J-K (2004) A general approach for constraint solving by local search. J Math Model Algorithm 3(1):78–88MathSciNetGoogle Scholar
  33. 33.
    Galinier P, Hertz A, Paroz S, Pesant G (2008) Using local search to speed up filtering algorithms for some NP-hard constraints. In: Proceedings of CP-AI-OR 2008, pp 298–302Google Scholar
  34. 34.
    Geelen PA (1992) Dual viewpoint heuristics for binary constraint satisfaction problems. In: Proceedings of ECAI-92, pp 31–35Google Scholar
  35. 35.
    Gendreau M, Hertz A, Laporte G, Stan M (1998) A generalized insertion heuristic for the traveling salesman problem with time windows. Oper Res 46(3):330–335MATHCrossRefGoogle Scholar
  36. 36.
    Gent I, Hoos H, Rowley A, Smyth K (2003) Using stochastic local search to solve quantified boolean formulae. In: Proceedings of CP 2003, pp 348–362Google Scholar
  37. 37.
    Gent IP, MacIntyre E, Prosser P, Walsh T (1996) The constrainedness of search. In: Proceedings of AAAI-96, pp 246–252Google Scholar
  38. 38.
    Gent IP (2002) Arc consistency in SAT. In: Proceedings of ECAI – 02, pp 121–125Google Scholar
  39. 39.
    Ginsberg M, McAllester DA (1994) GSAT and dynamic backtracking. In: International conference on the principles of knowledge representation (KR94), pp 226–237Google Scholar
  40. 40.
    Glover F, Laguna M (1997) Tabu Search. Kluwer, BostonMATHGoogle Scholar
  41. 41.
    Godard D, Laborie P, Nuijten W (2005) Randomized large neighborhood search for cumulative scheduling. In: Proceedings of ICAPS, pp 81–89Google Scholar
  42. 42.
    Gomes C, Sellmann M (2004) Streamlined constraint reasoning. In: Proceedings of CP 2004, pp 274–289Google Scholar
  43. 43.
    Gomes C, Selman B (1997) Algorithm portfolio design: theory vs. practice. In: Proceedings of UAI-97, pp 190–197Google Scholar
  44. 44.
    Harvey W, Ginsberg M (1995) Limited discrepancy search. In: Proceedings of IJCAI-95, pp 607–615Google Scholar
  45. 45.
    Hoos H, Tsang E (2006) Chapter 5. Local search methods. In: Handbook of constraint programming. Elsevier, AmsterdamGoogle Scholar
  46. 46.
    Huang J (2008) Universal booleanization of constraint models. In: Proceedings of CP 2008, pp 144–158Google Scholar
  47. 47.
    Joslin DE, Clements DP (1999) “Squeaky wheel” optimization. J Artif Intell Res 10:353–373MATHMathSciNetGoogle Scholar
  48. 48.
    Bayardo RJ Jr, Schrag RC (1997) Using CSP look-back techniques to solve real-world SAT instances. In: Proceedings of AAAI-97, pp 203–208Google Scholar
  49. 49.
    Jussien N, Lhomme O (2002) Local search with constraint propagation and conflict-based heuristics. Artif Intell 139(1):21–45MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Kamarainen O, El Sakkout H (2002) Local probing applied to network routing. In: Proceedings of CP-AI-OR 2004, pp 173–189Google Scholar
  51. 51.
    Kamarainen O, El Sakkout H (2002) Local probing applied to scheduling. In: Proceedings of CP 2002, pp 155–171Google Scholar
  52. 52.
    Kautz H, Horvitz E, Ruan Y, Gomes C, Selman B (2002) Dynamic restart policies. In: Proceedings of AAAI-02, pp 674–682Google Scholar
  53. 53.
    Kilby P, Prosser P, Shaw P (2000) A comparison of traditional and constraint-based heuristic methods on vehicle routing problems with side constraints. Constraints 5(4):389–414MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc 7(1):48–50MathSciNetGoogle Scholar
  55. 55.
    Laborie P, Godard D (2007) Self-adapting large neighborhood search: application to single-mode scheduling problems. In: Proceedings of MISTA-07, pp 276–284Google Scholar
  56. 56.
    Langley P (1992) Systematic and nonsystematic search strategies. In: Proceedings of the first international conference on artificial intelligence planning systems, pp 145–152Google Scholar
  57. 57.
    Lever J (2005) A local search/constraint propagation hybrid for a network routing problem. Int J Artif Intell Tool 14(1):43–60CrossRefGoogle Scholar
  58. 58.
    Lhomme O (2002) Amortized random backtracking. In: Proceedings of CP-AI-OR 2002, pp 21–32MathSciNetGoogle Scholar
  59. 59.
    Lin S (1965) Computer solutions of the traveling salesman problem. Bell Syst Tech J 44:2245–2269MATHGoogle Scholar
  60. 60.
    Mautor T, Michelon P (1997) Mimausa : a new hybrid method combining exact solution and local search. In: Second international conference on meta-heuristicsGoogle Scholar
  61. 61.
    Mazure B, Saïs L, Grégoire É (1998) Boosting complete techniques thanks to local search methods. Ann Math Artif Intell 22:319–331MATHCrossRefGoogle Scholar
  62. 62.
    Michel L, van Hentenryck P (1999) Localizer: a modeling language for local search. INFORMS J Comput 11(1):1–14MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Michel L, van Hentenryck P (2000) Localizer. Constraints 5:43–84MATHCrossRefGoogle Scholar
  64. 64.
    Minton S, Johnston MD, Philips AB, Laird P (1992) Minimizing conflicts: a heuristic repair method for constraint-satisfaction and scheduling problems. Artif Intell 58(1):161–205MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Mladenovic N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11): 1097–1100MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Morris P (1993) The breakout method for escaping from local minima. In: Proceedings of AAAI-93, pp 40–45Google Scholar
  67. 67.
    Nareyek A (2001) Using global constraints for local search. In: Constraint programming and large scale discrete optimization. DIMACS, Vol 57, pp 9–28Google Scholar
  68. 68.
    Palpant M, Artigues C, Michelon P (2004) LSSPER: Solving the resource-constrained project scheduling problem with large neighborhood search. Ann Oper Res 131:237–257MATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Perron L (2002) Parallel and random solving of a network design problem. In: AAAI workshop on probabilistic approaches in search, pp 35–39Google Scholar
  70. 70.
    Perron L (2003) Fast restart policies and large neighborhood search. In: Proceedings of CP-AI-OR 2003Google Scholar
  71. 71.
    Perron L, Shaw P (2004) Combing forces to solve the car sequencing problem. In: Proceedings of CP-AI-OR 2004, pp 225–239Google Scholar
  72. 72.
    Perron L, Shaw P, Furnon V (2004) Propagation guided large neighborhood search. In: Proceedings of CP 2004, pp 468–481Google Scholar
  73. 73.
    Pesant G, Gendreau M (1996) A view of local search in constraint programming. In: In Proceedings of CP ’96, pp 353–366Google Scholar
  74. 74.
    Pesant G, Gendreau M (1999) A constraint programming framework for local search methods. J Heuristics 5(3):255–279MATHCrossRefGoogle Scholar
  75. 75.
    Pesant G, Gendreau M, Rousseau J-M (1997) GENIUS-CP: A generic single-vehicle routing algorithm. In: Proceedings of CP ’97, pp 420–433Google Scholar
  76. 76.
    Pisinger D, Røpke S (2007) A general heuristic for vehicle routing problems. Comput Oper Res 34(8):2403–2435MATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    Røpke S, Pisinger D (2006) An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transportation Sci 40:455–472CrossRefGoogle Scholar
  78. 78.
    Røpke S, Pisinger D (2006) A unified heuristic for a large class of vehicle routing problems with backhauls. Eur J Oper Res 171(3):750–775MATHCrossRefGoogle Scholar
  79. 79.
    Prescott-Gagnon E, Desaulniers G, Rousseau L-M (2010) A branch-and-price-based large neighborhood search algorithm for the vehicle routing problem with time windows. Networks.Google Scholar
  80. 80.
    Prestwich S (2000) A hybrid search architecture applied to hard random 3-SAT and low-autocorrelation binary sequences. In: Proceedings of CP 2000, pp 337–352Google Scholar
  81. 81.
    Prestwich S (2001) Local search and backtracking vs non-systematic backtracking. In: AAAI 2001 Fall symposium on using uncertainty within computation, pp 109–115Google Scholar
  82. 82.
    Prestwich S (2001) Trading completeness for scalability: hybrid search for cliques and rulers. In: Proceedings of CP-AI-OR 2001, pp 159–174Google Scholar
  83. 83.
    Prestwich S (2002) Combining the scalability of local search with the pruning techniques of systematic search. Ann Oper Res 115:51–72MATHCrossRefMathSciNetGoogle Scholar
  84. 84.
    Prestwich S, Lynce I (2006) Local search for unsatisfiability. In: Proceedings of SAT 2006, pp 283–296MathSciNetGoogle Scholar
  85. 85.
    Årgen M, Flener P, Pearson J (2005) Incremental algorithms for local search from existential second-order logic. In: Proceedings of CP 2005, pp 47–61Google Scholar
  86. 86.
    Årgen M, Flener P, Pearson J (2005) Set variables and local search. In: Proceedings of CP-AI-OR 2005, pp 19–33Google Scholar
  87. 87.
    Refalo P (2004) Impact-based search strategies for constraint programming. In: Proceedings of CP 2004, pp 557–571Google Scholar
  88. 88.
    Régin JC (1994) An filtering algorithm for constraints of difference in CSPs. In: Proceedsings of AAAI-94, pp 362–367Google Scholar
  89. 89.
    Richards ET, Richards B (1998) Non-systematic search and learning: an empirical study. In: Proceedings of CP-98, pp 370–384Google Scholar
  90. 90.
    Richter Y, Freund A, Naveh Y (2006) Generalizing AllDifferent: the SomeDifferent constraint. In: Proceedings of CP 2006, pp 468–483Google Scholar
  91. 91.
    Rousseau L-M, Gendreau M, Pesant G (2002) Using constraint-based operators to solve the vehicle routing problem with time windows. J Heuristics 8(1):43–58MATHCrossRefGoogle Scholar
  92. 92.
    Savelsbergh MWP (1985) Local search in routing problems with time windows. Ann Oper Res 4:285–305CrossRefMathSciNetGoogle Scholar
  93. 93.
    Schaerf A (1997) Combining local search and look-ahead for scheduling and constraint satisfaction problems. In: Proceedings of IJCAI-97, pp 1254–1259Google Scholar
  94. 94.
    Schrimpf G, Schneider J, Stamm-Wilbrandt H, Dueck G (2000) Record breaking optimization results using the ruin and recreate principle. J Comput Phys 159:139–171MATHCrossRefMathSciNetGoogle Scholar
  95. 95.
    Sellmann M, Ansótegui C (2006) Disco-Novo-GoGo: integrating local search and complete search with restarts. In: Proceedings of AAAI-06, pp 1051–1056Google Scholar
  96. 96.
    Sellmann M, Harvey W (2002) Heuristic constraint propagation – using local search for incomplete pruning and domain filtering of redundant constraints for the social golfer problem. In: Proceedings of CP-AI-OR 2002, pp 191–204Google Scholar
  97. 97.
    Selman B, Kautz HA, Cohen B (1994) Noise strategies for improving local search. In: Proceeedings of AAAI-94, pp 337–343Google Scholar
  98. 98.
    Selman B, Levesque H, Mitchell D (1992) A new method for solving hard satisfiability problems. In: Proceedings of AAAI-92, pp 440–446Google Scholar
  99. 99.
    Shaw P (1998) Using constraint programming and local search methods to solve vehicle routing problems. In: Proceedings of CP ’98, pp 417–431Google Scholar
  100. 100.
    Shaw P, De Backer B, Furnon V (2002) Improved local search for CP toolkits. Ann Oper Res 115:31–50MATHCrossRefMathSciNetGoogle Scholar
  101. 101.
    Solnon C (2002) Ants can solve constraint satisfaction problems. IEEE transactions on evolutionary computation 6(4):347–357CrossRefGoogle Scholar
  102. 102.
    Stuckey PJ, De La Banda MG, Maher M, Marriott K, Slaney J, Somogyi Z, Wallace M, Walsh T (2005) The G12 project: mapping solver independent models to efficient solutions. In: Proceedings of the 21st international conference on logic programming. Lecture notes in computer science, vol 3668. Springer, Heidelberg, pp 9–13Google Scholar
  103. 103.
    Taillard E (2003) Heuristic methods for large centroid clustering problems. J Heuristics 9(1):51–73MATHCrossRefGoogle Scholar
  104. 104.
    Taillard ED, Voss S (2001) POPMUSIC: Partial optimization metaheuristic under special intensification conditions. In: Hansen P, Ribeiro C (eds) Essays and surveys in metaheuristics. Kluwer, pp 613–629Google Scholar
  105. 105.
    Tamura N, Banbara M (2008) Sugar: A CSP to SAT translator based on order encoding. In: Second international CSP solver competition, pp 65–69Google Scholar
  106. 106.
    Tamura N, Taga A, Kitagawa S, Banbara M (2006) Compiling finite linear CSP into SAT. In: Proceedings of CP 2006, pp 590–603Google Scholar
  107. 107.
    van Hentenryck P, Michel L (2003) Control abstractions for local search. In: Proceedings of CP 2003, pp 65–80Google Scholar
  108. 108.
    van Hentenryck P, Michel L (2005) Constraint-based local search. MIT Press, CambridgeGoogle Scholar
  109. 109.
    van Hentenryck P, Michel L, Liu L (2004) Constraint-based combinators for local search. In: Proceedings of CP 2006, pp 47–61Google Scholar
  110. 110.
    Voudouris C, Tsang E (1999) Guided local search and its application to the travelling salesman problem. Eur J Oper Res 113:469–499MATHCrossRefGoogle Scholar
  111. 111.
    Walser JP (1997) Solving linear pseudo-boolean constraint problems with local search. In: Proceedings of AAAI-97, pp 269–274Google Scholar
  112. 112.
    Walsh T (2000) SAT v CSP. In: Proceedings of CP 2000, pp 441–456Google Scholar
  113. 113.
    Yagiura M, Ibaraki T, Glover F (2004) An ejection chain approach for the generalized assignment problem. INFORMS J Comput 16(2):133–151CrossRefMathSciNetGoogle Scholar
  114. 114.
    Yokoo M (1994) Weak-commitment search for solving constraint satisfaction problems. In: Proceedings of AAAI-94, pp 313–318Google Scholar
  115. 115.
    Yugami N, Ohta Y, Hara H (1994) Improving repair-based constraint satisfaction methods by value propagation. In: Proceedings of AAAI-94, pp 344–349Google Scholar
  116. 116.
    Zhang J, Zhang H (1996) Combining local search and backtracking technqiues for constraint satisfaction. In: Proceedings of AAAI-96, pp 369–374Google Scholar

Copyright information

© Springer Science+Business Media LLC 2011

Authors and Affiliations

  1. 1.IBMValbonneFrance

Personalised recommendations