Skip to main content

Decomposition Techniques for Hybrid MILP/CP Models applied to Scheduling and Routing Problems

  • Chapter
  • First Online:
Book cover Hybrid Optimization

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 45))

  • 1487 Accesses

Abstract

This chapter provides a review of decomposition algorithms for models that are formulated as hybrid mixed-integer linear/constraint programming problems, such as logic Bender Decomposition and Constraint Programming-Based Column Generation. We first focus the decomposition techniques on single stage scheduling problems with parallel machines where the hybrid model provides a natural representation as the decisions decompose into assignment and sequencing decisions. We describe a general decomposition algorithm for the hybrid MILP/CP model in terms of a Benders decomposition scheme, as well as in terms of a branch and cut framework. We then consider Vehicle Routing and Crew Rostering applications to illustrate how Hybrid Branch-and-Price method can be applied, and we discuss the different models that have been proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artigues C, Gendreau M, Rousseau L-M, Vergnaud A (2009) Solving an integrated employee timetabling and jobshop scheduling problem via hybrid branch-and-bound. Comput Oper Res 36(8):2330–2340

    MATH  Google Scholar 

  2. Adams J, Balas E, Zawack D (1988) The shifting bottleneck procedure for job shop scheduling. Manage Sci 34(3):391–401

    MathSciNet  MATH  Google Scholar 

  3. Applegate D, Cook B (1991) A computational study of the job shop scheduling problem. Oper Res Soc Am 3:149–156

    MATH  Google Scholar 

  4. Balas E (1975) Facets of the knapsack polytope. Math Program 8(2), 146–164

    MathSciNet  MATH  Google Scholar 

  5. Balas E, Vazacopoulos A (1998) Guided local search with shifting bottleneck for job shop scheduling. Manage Sci 44(2):262–275

    MATH  Google Scholar 

  6. Barnhart C, Johnson L, Nemhauser G, Savelsbergh M, Vance P (1998) Branch-and-Price: column generation for solving huge integer programs. Oper Res 46:316–329

    MathSciNet  MATH  Google Scholar 

  7. Benders, J.F., 1962. Partitioning procedures for solving mixed-variables programming problems. Numer Math 4:238–252

    MathSciNet  MATH  Google Scholar 

  8. Bockmayr A, Kasper T (1998) Branch-and-infer: a unifying framework for integer and finite domain constraint programming. INFORMS J Comput 287–300

    MathSciNet  MATH  Google Scholar 

  9. Bockmayr A, Pisaruk N (2003) Detecting infeasibility and generating cuts for mixed integer programming using constraint programming. In: Proceedings CPAIOR’03. p24

    Google Scholar 

  10. Capone A, Carello G, Filippini I, Gualandi S, Malucelli F (2010) Solving a resource allocation problem in wireless mesh networks: a comparison between a CP-based and a classical column generation. Networks

    Google Scholar 

  11. Carlier J, Pinson E (1989) An algorithm for solving the job-shop problem. Manage Sci 35:164–176

    MathSciNet  MATH  Google Scholar 

  12. Carpaneto G, Martello S, Toth P (1994) Algorithm and codes for the assignment problems. Ann Oper Res 78:146–161

    Google Scholar 

  13. Caseau Y, Laburthe F (1994). Improving clp scheduling with task intervals. In: Hentenryck PV (ed) Logic programming: proceedings of the11th International Conference. MIT, Cambridge, pp 369–383

    Google Scholar 

  14. Caseau Y, Laburthe F (1996) Cumulative scheduling with task intervals. In: Maher M (ed) Logic programming: proceedings of the1996 Joint International Conference and Symposium. MIT, Cambridge, pp 363–377

    Google Scholar 

  15. Castro PA, Grossmann IE (2006) An efficient MILP model for the short-term scheduling of single stage batch plants. Comput Chem Eng 30(6–7):1003–1018

    Google Scholar 

  16. Castro PM, Grossmann IE, Novais AQ (2006) Two new continuous-time models for the scheduling of multistage batch plants with sequence dependent changeovers. Ind Eng Chem Res 45(18):6210–6226

    Google Scholar 

  17. Chabrier A (2000) Using constraint programming search goals to define column generation search procedures. In: Integration of AI and OR techniques in constraint programming for combinatorial optimisation problems, pp 19–27

    Google Scholar 

  18. Chandru V, Hooker J (1999) Optimization methods for logical inference. Wiley, New York

    MATH  Google Scholar 

  19. Chvátal V (1983) Linear programming. Freeman, New York

    MATH  Google Scholar 

  20. Correa AI, Langevin A, Rousseau L-M (2007) Scheduling and routing of automated guided vehicles: a hybrid approach. Comput Oper Res 34(6):1688–1707

    MATH  Google Scholar 

  21. Dantzig GB, Wolfe P (1960) Decomposition principles for linear programs. Oper Res 8: 101–111

    MATH  Google Scholar 

  22. Darby-Dowman K, Little J (1998) Properties of some combinatorial optimization problems and their effect on the performance of integer programming and constraint logic programming. INFORMS J Comput 10:276–286

    MathSciNet  MATH  Google Scholar 

  23. Darby-Dowman K, Little J, Mitra G, Zaffalon M (1997) Constraint logic programming and integer programming approaches and their collaboration in solving an assignment scheduling problem. Constraints 1:245–264

    MathSciNet  MATH  Google Scholar 

  24. Dell’Amico M, Maffioli F, Varbrand P (1995) On prize-collecting tours and the asymmetric travelling salesman problem. Int Trans Oper Res 2(3):297–308

    MATH  Google Scholar 

  25. Demassey S, Pesant G, Rousseau L-M (2006) A cost-regular based hybrid column generation approach. Constraints 11(4): 315–333

    MathSciNet  MATH  Google Scholar 

  26. Desrochers M, Desrosiers J, Solomon MM (1992) A new optimisation algorithm for the vehicle routing problem with time windows. Oper Res 40:342–354

    MathSciNet  MATH  Google Scholar 

  27. Desrosiers J, Dumas Y, Solomon MM, Soumis F (1995) Time constrained routing and scheduling. In: Ball MO, Magnanti TL, Monma CL, Nemhauser GL (eds) Network Routing, vol8 of Handbooks in operations research and management science. North-Holland, Amsterdam, pp 35–139

    MATH  Google Scholar 

  28. Desrosiers J, Solomon MM, Soumis F (1993) Time constrained routing and scheduling. Handbooks of operations research and management science, vol 8. North-Holland, Amsterdam, pp 35–139

    Google Scholar 

  29. Easton K, Nemhauser GL, Trick MA (2002) Solving the travelling tournament problem: a combined inte- ger programming and constraint programming approach. In: Proceedings of practice and theory of automated timetabling. Lecture notes in computer science, vol 2740. Springer, Berlin, pp 100–112

    Google Scholar 

  30. El Hachemi N, Gendreau M, Rousseau L-M A hybrid constraint programming approach to the log-truck scheduling problem, forthecoming in Ann Oper Res

    Google Scholar 

  31. Fahle T, Sellmann M (2002). Constraint programming based column generation with knapsack subproblems. Ann Oper Res 115:73–94

    MathSciNet  MATH  Google Scholar 

  32. Fahle T, Junker U, Karisch SE, Kohl N, Sellmann M, Vaaben B (2002) Constraint programming based column generation for crew assignment. J Heuristics 8(1):59–81

    MATH  Google Scholar 

  33. Feillet D, Dejax P, Gendreau M, Gueguen C (2004) An exact algorithm for the elementary shortest path problem with resource constraints: application to some vehicle routing problems. Networks 44(3):216–229

    MathSciNet  MATH  Google Scholar 

  34. Focacci F, Lodi A, Milano M (1999) Solving TSP through the Integration of OR and CP techniques. Electron Notes Discrete Math 1

    MathSciNet  MATH  Google Scholar 

  35. Focacci F, Milano M (2001) Connections and integrations of dynamic programming and constraint programming. In: Proceedings of the third workshop on integration of AI and OR techniques in constraint programming for combinatorial optimization problems. Ashford, Kent, UK, pp 125–138

    Google Scholar 

  36. Gaudin E (1997) Contribution de la programmation par contraintes au transport: définition et résolution d’un modèle complexe de gestion de flotte. PhD thesis, Université Paris 7

    Google Scholar 

  37. Gualandi S (2008) Enhancing constraint programming-based column generation for integer programs. PhD thesis, Politecnico di Milano

    Google Scholar 

  38. Gualandi S, Malucelli F (2009) Constraint programming-based column generation. 4OR A Q J Oper Res 7(2):113–137

    MathSciNet  MATH  Google Scholar 

  39. Grönkvist M (2004) A constraint programming model for tail assignment. In: Proceedings of integration of AI and OR techniques in CP for combinatorial optimization. Lecture notes in computer science, vol 3011. Springer, Berlin, pp 142–156

    MATH  Google Scholar 

  40. Grönkvist M (2006) Accelerating column generation for aircraft scheduling using constraint propagation. Comput OR 33(10):2918–2934

    MATH  Google Scholar 

  41. Gabteni S, Grönkvist M (2006) A hybrid column generation and constraint programming optimizer for the tail assignment problem. In: Proceedings of integration of AI and OR techniques in CP for combinatorial optimization. Lecture notes in computer science, vol 3990. Springer, Berlin, pp 89–103

    MATH  Google Scholar 

  42. Gendron B, Lebbah H, Pesant G (2005) Improving the cooperation between the master problem and the subproblem in constraint programming based column generation. In: Proceedings of 2th International Conference on Integration of AI and OR techniques in Constraint Programming for Combinatorial Optimization Problems – CPAIOR’05. LNCS, vol 3524. Springer, Berlin, 217–227

    MATH  Google Scholar 

  43. Hansen J, Liden T (2005) Group construction for airline cabin crew: comparing constraint programming with branch and price In: Proceedings of integration of AI and OR techniques in CP for combinatorial optimization. Lecture notes in computer science, vol 3524. Springer, Berlin, pp 228–242

    MATH  Google Scholar 

  44. Harjunkoski I, Grossmann I (2002) Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods. Comput Chem Eng 26(11):1533–1552

    Google Scholar 

  45. Heipcke S (1999). Comparing constraint programming and mathematical programming approaches to discrete optimisation – the change problem. J Oper Res Soc 50(6):581–595

    MATH  Google Scholar 

  46. Heipcke S (1999) An example of integrating constraint programming and mathematical programming. In: Electron Notes Discrete Math 1

    Google Scholar 

  47. Hooker J, Ottosson G (2003) Logic-based Benders decomposition. Math Program 96(1):33–60

    MathSciNet  MATH  Google Scholar 

  48. Hooker JN (2000) Logic-based methods for optimization: combining optimization and constraint satisfaction. Wiley, New York

    MATH  Google Scholar 

  49. Hooker JN (2002) Logic, optimization, and constraint programming. INFORMS J Comput 14(4):295–321

    MathSciNet  MATH  Google Scholar 

  50. Hooker JN (2007). Integrated methods for optimization. Springer, New York

    MATH  Google Scholar 

  51. Hooker JN (2007). Planning and scheduling by logic-based benders decomposition. Oper Res 55(3):588–602

    MathSciNet  MATH  Google Scholar 

  52. Hooker JN, Osorio MA (1999) Mixed logic/linear programming. Discrete Appl Math 96–97 (395–442)

    MathSciNet  MATH  Google Scholar 

  53. Hooker JN, Ottosson G, Thorsteinsson ES, Kim HJ (1999) On integrating constraint propagation and linear programming for combinatorial optimization. In: Proceedings of the sixteenth national conference on artificial intelligence (AAAI-99), AAAI. The AAAI/MIT, Cambridge, pp 136–141

    Google Scholar 

  54. Jain V, Grossmann IE (2001) Algorithms for hybrid MILPCP models for a class of optimization problems. INFORMS J Comp 13(4):258–276

    MATH  Google Scholar 

  55. Junker U, Karisch SE, Kohl N, Vaaben B, Fahle T, Sellmann M (1999) A framework for constraint programming based column generation. In: Principles and practice of constraint programming, Lecture notes in computer science, pp 261–274

    MATH  Google Scholar 

  56. Kohl N, Madsen OBG (1997) An optimization algorithm for the vehicle routing problem with time windows based on lagrangian relaxation. Oper Res 45(3):395–407

    MathSciNet  MATH  Google Scholar 

  57. LePape C (1994) Implementation of resource constraints in ILOG schedule: a library for the development of constraintbased scheduling systems. Intell Sys Eng 3:55–66

    Google Scholar 

  58. Lübbecke ME (2005) Dual variable based fathoming in dynamic programs for column generation. Eur J Oper Res 162(1):122–125

    MathSciNet  MATH  Google Scholar 

  59. Maravelias CT (2006) A decomposition framework for the scheduling of single- and multi-stage processes. Comput Chem Eng 30(3):407–420

    Google Scholar 

  60. Maravelias CT, Grossmann IE (2004). A hybrid MILPCP decomposition approach for the continuous time scheduling of multipurpose batch plants. Comput Chem Eng 28(10):1921–1949

    Google Scholar 

  61. Maravelias CT, Grossmann IE (2004). Using MILP and CP for the scheduling of batch chemical processes. In: Proceedings CPAIOR’04. pp 1–20

    Google Scholar 

  62. Marriott K, Stuckey PJ (1998). Programming with constraints. MIT, Cambridge

    MATH  Google Scholar 

  63. Nemhauser GL, Wolsey LA (1988). Integer and combinatorial optimization. Wiley, New York

    MATH  Google Scholar 

  64. OREAS GmbH (1999) ABACUS: a Branch-And-CUt system, Ver. 2.3. User’s Guide and Reference Manual.

    Google Scholar 

  65. Ottosson G, Thorsteinsson ES, Hooker J (2002) Mixed global constraints and inference in hybrid CLP-IP solvers. Ann Math Artif Intell 34(4):271–290

    MathSciNet  MATH  Google Scholar 

  66. Pantelides CC (1994). Unified frameworks for the optimal process planning and scheduling. In: Second conference on foundations of computer aided operations. Cache Publications, NewYork, p 253

    Google Scholar 

  67. Pesant G, Gendreau M, Potvin J-Y, Rousseau J-M (1998) An exact constraint logic programming algorithm for the traveling salesman problem with time windows. Transp Sci 32:12–29

    MATH  Google Scholar 

  68. Pesant G, Gendreau M, Potvin J-Y, Rousseau J-M (1999) On the flexibility of constraint programming models: from single to multiple time windows for the traveling salesman problem. Eur J Oper Res 117:253–263

    MATH  Google Scholar 

  69. Pisinger D, Sigurd M (2007) Using decomposition techniques and constraint programming for solving the two-dimensional bin-packing problem. J Comput 19(1):36–51

    MathSciNet  MATH  Google Scholar 

  70. Proll L, Smith B (1998) Integer linear programming and constraint logic programming approaches to a template design problem. INFORMS J Comput 10:265–275

    MathSciNet  MATH  Google Scholar 

  71. Quesada I, Grossmann IE (1992) An LP/NLP based branch-andbound algorithm for convex MINLP optimization problems. Comput Chem Eng 16:937–947

    Google Scholar 

  72. Raman R, Grossmann IE (1993) Symbolic integration of logic in MILP branch and bound techniques for the synthesisof process networks. Ann Oper Res 42:169–191

    MATH  Google Scholar 

  73. Raman R, Grossmann IE (1994) Modelling and computational techniques for logic based integer programming. Comput Chem Eng 18: 563–578

    Google Scholar 

  74. Rasmussen RV, Trick MA (2007) A Benders approach for the constrained minimum break problem. Eur J Oper Res 177(1):198–213

    MathSciNet  MATH  Google Scholar 

  75. Régin J-C (1994). A filtering algorithm for constraints of difference in CSPs. In: Proceedings of the twelfth national conference on artificial intelligence (AAAI-94), pp 362–367

    Google Scholar 

  76. Rodosek R, Wallace M, Hajian M (1999) A new approach to integrating mixed integer programming and constraint logic programming. Ann Oper Res 86:63–87

    MathSciNet  MATH  Google Scholar 

  77. Rousseau L-M (2004) Stabilization issues for constraint programming based column generation. In: Proceedings of integration of AI and OR techniques in CP for combinatorial optimization. Lecture notes in computer science, vol 3011. Springer, Berlin, pp 402–408

    Google Scholar 

  78. Rousseau L-M, Gendreau M, Pesant G, Focacci F (2004) Solving VRPTWs with constraint programming based column generation. Ann Oper Res 130(1):199–216

    MathSciNet  MATH  Google Scholar 

  79. Sadykov R (2008). A branch-and-check algorithm for minimizing the weighted number of late jobs on a single machine with release dates. Eur J Oper Res 189(3):1284–1304

    MathSciNet  MATH  Google Scholar 

  80. Sadykov R, Wolsey L (2006) Integer programming and constraint programming in solving a multimachine assignment scheduling problem with deadlines and release dates. INFORMS J Comput 18(2):209–217

    MathSciNet  MATH  Google Scholar 

  81. Sellmann M, Zervoudakis K, Stamatopoulos P, Fahle T (2002) Crew assignment via constraint programming: integrating column generation and heuristic tree search. Ann Oper Res 115(1):207–225

    MathSciNet  MATH  Google Scholar 

  82. Smith BM, Brailsford SC, Hubbard PM, Williams HP (1996) The progressive party problem: Integer linear programming and constraint programming compared. Constraints 1(1/2): 119–138

    MathSciNet  Google Scholar 

  83. Timpe C (2002) Solving planning and scheduling problems with combined integer and constraint programming. OR Spectr 24(4):431–448

    MATH  Google Scholar 

  84. van Hentenryck P (1999) The OPL optimization programming language. MIT, Cambridge

    Google Scholar 

  85. van Hentenryck P (2002). Constraint and integer programming in OPL. INFORMS J Comput 14(4):345–372

    MathSciNet  MATH  Google Scholar 

  86. Wolsey LA (1975) Faces for a linear inequality in 0-1 variables. Math Program 8(2):165–178

    MathSciNet  MATH  Google Scholar 

  87. Yunes TH, Moura AV, de Souza CC (2009) Solving very large crew scheduling problems to optimality. In: Proceedings of ACM symposium on applied computing, vol 1. ACM, NewYork, pp 446–451

    Google Scholar 

  88. Yunes TH, Mour AV, de Souza CC (2005) Hybrid column generation approaches for urban transit crew management problems. Transp Sci 39(2):273–288

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Castro, P.M., Grossmann, I.E., Rousseau, LM. (2011). Decomposition Techniques for Hybrid MILP/CP Models applied to Scheduling and Routing Problems. In: van Hentenryck, P., Milano, M. (eds) Hybrid Optimization. Springer Optimization and Its Applications, vol 45. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1644-0_4

Download citation

Publish with us

Policies and ethics