Abstract
This chapter reviews multistage financial planning models, with a focus on practical approaches for optimizing investors´ performance over time. We discuss two major frameworks for constructing financial planning models: (1) policy rule simulation and optimization and (2) multistage stochastic programming. We advocate an integrated approach, in which a stylized stochastic program helps the investor discover robust decision/policy rules. In the second stage, the policy optimizer compares policy rules as well as provides additional information about future investment performance. To illustrate benefits, we apply the dual strategy to the defined benefit pension plans in the USA
Keywords
- Stochastic Program
- Policy Rule
- Momentum Strategy
- Investment Performance
- Dual Strategy
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options






Notes
- 1.
The advantages of the equal weighted S&P 500 index is partially due to rebalancing gains and partially due to the higher performance of midsize companies over the discussed period.
References
Arbeleche, S., Dempster, M.A.H., Medova, E.A., Thompson, G.W.P., Villaverde, M.: Portfolio Management for Pension Funds, vol. 2690. Springer, Berlin (2003)
Bertsekas, D., Tsitsiklis, J.: Neuro-Dynamic Programming. Athena Scientific, Belmont, MA (1996)
Boender, G.C.E., van Aalst, P.C., Heemskerk F.: Modelling and management of assets and liabilities of pension plans in the Netherlands, in w. In: Ziemba, T., Mulvey, J.M. (eds.) Worldwide Asset and Liability Modeling, pp. 561–580. Cambridge University Press, UK (1998)
Campbell, J.Y., Viceira, L.M.: Strategic Asset Allocation. Oxford University Press, New York, NY (2002)
Cariño, D.R., Kent, T., Myers, D.H., Stacy, C., Sylvanus, M., Turner, A., Watanabe, K., Ziemba, W.: The Russell-Yasuda Kasai model: An asset/liability model for a Japanese insurance company using multistage stochastic programming. Interfaces 24(29), 29–49 (1994)
Chan, L.K.C., Jegadeesh, N., Lakonishok, J.: Momentum strategies. J. Finance 51(5), 1681–1713 (1996)
Cleary, S., Inglis, M.: Momentum in Canadian stock returns. Revue Canadienne Des Sciences De L’Administration 15(3), 279–291 (1998)
Consigli, G., Dempster, M.A.H.: Dynamic stochastic programming for asset-liability management. Ann. Oper. Res. 81, 131–162 (1998)
Dantzig, G.B., Infanger, G.: Multi-stage stochastic linear programs for portfolio optimization. Ann. Oper. Res. 45, 59–76 (1993)
De Bondt, W.F.M., Thaler, R.: Does stock market overreact? J. Finance 40(3), 793–805 (1985)
De Bondt, W.F.M., Thaler, R.: Further evidence on investor overreaction and stock market seasonality. J. Finance 42(3), 557–581 (1987)
Demir, I., Muthuswamy, J., Walter, T.: Momentum returns in Australian equities: The influences of size, risk, liquidity and return computation. Pac.-Basin Finance J. 12, 143–158 (2004)
Dempster, M.A.H., Germano, M., Medova, E.A., Rietbergen, M.I., Sandrini, F., Scrowston, M.: Managing guarantees. J. Portfolio Manage. 32, 51–61 (2006)
Dert, C.L.: Asset liability management for pension funds. PhD thesis, Erasmus University, Rotterdam, Netherlands (1995)
Fabozzi, F.J., Focardi, S., Jonas, C.: Can modeling help deal with the pension funding crisis? Working paper, The Intertek Group (2004)
Fernholz, R.: Stochastic Portfolio Theory. Springer, New York, NY (2002)
Fernholz, R., Shay, B.: Stochastic portfolio theory and stock market equilibrium. J. Finance 37(2), 615–624 (1982)
George, T.J., Hwang, C.: The 52-week high and momentum investing. J. Finance 59(5), 2145–2176 (2004)
Geyer, A., Herold, W., Kontriner, K., Ziemba, W.T.: The innovest Austrian pension fund financial planning model innoALM. Working paper, University of British Columbia, Vancouver, BC, Canada (2005)
Hilli, P., Koivu, M., Pennanen T., Ranne, A.: A stochastic programming model for asset liability management of a Finnish pension company. Annals of Operations Research 152(1), 115–139 (2007)
Infanger, G.: Planning Under Uncertainty - Solving Large-Scale Stochastic Linear Programs. The Scientific Press Series, Boyd & Fraser San Francisco, CA (1994)
Jegadeesh, N.: Evidence of predictable behavior of security returns. J. Finance 45(3), 881–898 (1990)
Jegadeesh, N., Titman, S.: Returns to buying winners and selling losers: Implications for stock market efficiency. J. Finance 48(1), 65–91 (1993)
Kang, J., Liu, M., Ni, S.X.: Contrarian and momentum strategies in the china stock market: 1993–2000. Pac.-Basin Finance J. 10, 243–265 (2002)
Kouwenberg, R., Zenios, S.A.: Stochastic programming models for asset liability management. Working Paper 01-01, HERMES Center on Computational Finance, & Economics, University of Cyprus, Nicosia, Cyprus (2001)
Lehmann, B.N.: Fads, martingales, and market efficiency. Quart. J. Econ. 105(1), 1–28 (1990)
Luenberger, D.: Investment Science. Oxford University Press, New York, NY (1998)
Merton, R.C.: Lifetime portfolio selection under uncertainty: The continuous-time case. Rev. Econ. Stat. 51(3), 247–257 (1969)
Merton, R.C.: An intertemporal capital asset pricing model. Econometrica 41(5), 867–887 (1973)
Mulvey, J.M.: Multi-period stochastic optimization models for long-term investors. In: Avellaneda, M., (ed.) Quantitative Analysis in Financial Markets, vol. 3. World Scientific, Singapore (2000)
Mulvey, J.M.: Essential portfolio theory. A rydex investment white paper, Princeton University, Princeton, NJ (2005)
Mulvey, J.M., Kim, W.C.: Constructing a portfolio of industry-level momentum strategies across global equity markets. Princeton university report, Department of OR and Financial Engineering, Princeton University, Princeton, NJ (2007)
Mulvey, J.M., Kim, W.C.: The role of alternative assets for optimal portfolio construction. Wiley, New York, NY (2008) referenced 2007 but appeared in 2008
Mulvey, J.M., Simsek, K.D.: Rebalancing strategies for long-term investors. In: Rustem, B., Kontoghiorghes, E.J., Siokos, S. (eds.) Computational Methods in Decision Making, Economics and Finance: Optimization Models. Kluwer, Netherlands (2002)
Mulvey, J.M., Ziemba, W.T.: Asset and liability management systems for long-term investors. In: Ziemba, W.T., Mulvey, J.M. (eds.) Worldwide Asset and Liability Modeling. Cambridge University Press, Cambridge (1998)
Mulvey, J.M., Gould, G., Morgan, C.: An asset and liability management system for towers perrin-tillinghast. Interfaces 30, 96–114 (2000)
Mulvey, J.M., Pauling, B., Madey, R.E.: Advantages of multiperiod portfolio models. J. Portfolio Manage. 29, 35–45 (2003a)
Mulvey, J.M., Simsek, K.D., Pauling, B.: A stochastic network approach for integrated pension and corporate financial planning. In: Nagurney, A. (ed.) Innovations in Financial and Economic Networks. Edward Elgar, UK (2003b)
Mulvey, J.M., Kaul, S.S.N., Simsek, K.D.: Evaluating a trend-following commodity index for multi-period asset allocation. J. Alter. Invest. 7(1), 54–69 (2004a)
Mulvey, J.M., Simsek, K.D., Zhang, Z., Holmer, M.: Preliminary analysis of defined-benefit pension plans. Princeton university report, Department of OR and Financial Engineering, Princeton University, Princeton, NJ (2004b)
Mulvey, J.M., Ural, C., Zhang, Z.: Optimizing performance for long-term investors: Wide diversification and overlay strategies. Princeton university report, Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ (2006)
Peskin, M.W.: Asset allocation and funding policy for corporate-sponsored defined-benefit pension plans. J. Portfolio Manage. 23(2), 66–73 (1997)
Pflug, G.C., Swietanowski, A.: Asset-Liability Optimization for Pension Fund Management. Operations Research Proceedings, Springer Verlag pp. 124–135 (2000)
Pflug, G.C., Dockner, E., Swietanowski, A., Moritsch, H.: The aurora financial management system: Model and parallel implementation design. Ann. Oper. Res. 99, 189–206 (2000)
Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley, Hoboken, NJ (2006)
Rouwenhorst, K.G.: International momentum strategies. J. Finance 53(1), 267–284 (1998)
Rudolf, M., Ziemba, W.T.: Intertemporal asset-liability management. J. Econ. Dynam. Control 28(4), 975–990 (2004)
Samuelson, P.A.: Lifetime portfolio selection by dynamic stochastic programming. Rev. Econ. Stat. 51(3), 239–246 (1969)
Sutton, R., Barto, A.: Reinforcement Learning. The MIT Press, Cambridge, MA (1998)
White, D.A., Sofge, D.A. (eds.) Handbook of Intelligent Control. Von Nostrand Reinhold, New York, NY (1992)
Zenios, S.A., Ziemba, W.T. (eds.) Handbook of Asset and Liability Management. Handbooks in Finance vol. 1. Elsevier, Amsterdam (2006)
Zenios, S.A., Ziemba, W.T. (eds.) Handbook of Asset and Liability Management. Handbooks in Finance vol. 2. Elsevier, Amsterdam (2007)
Zhang, Z.: Stochastic optimization for enterprise risk management. PhD thesis, Princeton, NJ (2006)
Ziemba, W.T., Mulvey, J.M. (eds.) Worldwide Asset and Liability Modeling. Cambridge University Press, Cambridge (1998)
Ziemba, W.T.: The Stochastic Programming Approach to Asset-Liability and Wealth Management. AIMR-Blackwell Charlottesville, VA (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
Performance of dynamic diversification portfolio. Dynamic diversification portfolio is an equally weighted fixed mix portfolio of 30 momentum strategies—five regions, six settings. Each number next to a point on the line represents leverage; 3-month US T-bill is used. The sample period is 1980 through 2006
Rights and permissions
Copyright information
© 2010 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Mulvey, J.M., Kim, W.C. (2010). Multistage Financial Planning Models: Integrating Stochastic Programs and Policy Simulators. In: Infanger, G. (eds) Stochastic Programming. International Series in Operations Research & Management Science, vol 150. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1642-6_12
Download citation
DOI: https://doi.org/10.1007/978-1-4419-1642-6_12
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-1641-9
Online ISBN: 978-1-4419-1642-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)