Skip to main content

Characterization of TCO Materials

  • Chapter
  • First Online:
Handbook of Transparent Conductors

Abstract

The full array of microstructural, optical, and electrical materials characterization tools are used in the development of materials and processes for TCO applications. Most of these characterization tools are well described in other sources and are widely applied in the semiconductor and oxide fields of research. In this chapter, discussion is limited to a few of the methods used for characterizing the relationship between microstructure and electrical transport properties in transparent conducting materials particularly those that are based on the amorphous and crystalline oxides of In2O3, SnO2, and ZnO. These materials are currently of greatest practical importance for passive transparent electrode applications and they form the basis for the emerging field of oxide thin film transistor electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Utsuno, F, et al., Structural study of amorphous In 2 O 3 film by GIXS with synchrotron radiation. Thin Solid Films, 2006. 496: p. 95–98

    Article  Google Scholar 

  2. Yaglioglu, B., Electrical and structural characterization of IZO thin films for device applications. Brown University PhD Thesis, 2007.

    Google Scholar 

  3. Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004. 432: p. 488–491.

    Article  Google Scholar 

  4. Ellmer, K., Vollweiler, G., Electrical transport parameters of heavily-doped zinc oxide and zinc magnesium oxide single and multilayer films heteroepitaxially grown on oxide single crystals. Thin Solid Films, 2006. 496: p. 104–111.

    Article  Google Scholar 

  5. van der Pauw, L.J., Philips Tech Rev, 1958. 20: p. 220

    Google Scholar 

  6. Yaglioglu, B., Yeom, H.Y., Beresford, R., and Paine, D.C., High-mobility amorphous In2O3-10 wt% ZnO thin film transistors. Appl Phys Letts, 2006. 89: p. 062103.

    Article  Google Scholar 

  7. Sze, S.M., Physics of semiconductor devices. 2nd ed., 1981, New York: Wiley. xii, 868.

    Google Scholar 

  8. Luan, S.W., and Neudeck, G.W., An experimental-study of the source drain parasitic resistance effects in amorphous-silicon thin-film transistors. J Appl Phys, 1992. 72(2): p. 766–772.

    Article  Google Scholar 

  9. Horowitz, G., et al., Extracting parameters from the current-voltage characteristics of field-effect transistors. Adv Funct Mater, 2004. 14(11): p. 1069–1074.

    Article  MathSciNet  Google Scholar 

  10. Yi, W., et al., Ballistic electron microscopy and spectroscopy of metal and semiconductor nanostructures. Surf Sci Rep, 2009. 64 (5): p. 169–190

    Article  Google Scholar 

  11. Frank, G., and Kostlin H., Electrical-properties and defect model of tin-doped indium oxide layers. Appl Phys A: Mater Sci Process, 1982. 27(4): p. 197–206.

    Article  Google Scholar 

  12. Baikie, I.D., Mackenzie, S., Estrup, P.J.Z., Meyer J.A., Noise and the Kelvin method, Rev Sci Instrum, 1991. 62(5): p. 1326.

    Article  Google Scholar 

  13. Paine, D.C., Whitson, T., Janiac, D., Beresford, R., Yang, C.O., and Lewis, B., A study of low temperature crystallization of amorphous thin film indium-tin-oxide. J Appl Phys, 1999. 85(12): p. 8445–8450.

    Article  Google Scholar 

  14. Moriga, T., Hiruta, K., Fujiwara, A., Nakabayash, I., and Tominaga, K., Structures and physical properties of films deposited by simultaneous DC sputtering of ZnO and In2O3 or ITO targets. J Solid State Chem, 2000. 155: p. 312–319.

    Article  Google Scholar 

  15. Moriga, T., Edwards, D.D., Mason, T.O., Poeppelmeier, K.R., Kannewurf, C.R., Nakabayash, I., Phase relationships and physical properties of homologous compounds in the zinc oxide-indium oxide system. J Am Ceram Soc, 1998. 81(5): p. 1310–1316.

    Article  Google Scholar 

  16. Kasper, V.H., Z Anorg Allg Chem, 1967. 349: p. 113.

    Article  Google Scholar 

  17. Yaglioglu, B., Yeom, H.Y., and Paine, D.C., Crystallization of amorphous In 2 O 3 -10 wt% ZnO thin films annealed in air. Appl Phys Letts, 2005. 86(26): p. Art. No. 261908.

    Article  Google Scholar 

  18. Prewitt, C.T., Shannon, R.D., Rogers, D.B., Sleight, A.W., Inorg Chem, 1969. 8(9): p. 1985.

    Article  Google Scholar 

  19. Yaglioglu, B, Electrical and structural characterization of IZO thin films for device applications, Brown University PhD Thesis, May 2007.

    Google Scholar 

  20. Warren, B.E., X-ray diffraction. 1969, Reading, MA: Addison-Wesley Pub. Co. vii, p. 381.

    Google Scholar 

  21. Elliott, S.R., Physics of amorphous materials. 1983, London, New York: Longman. xiii, p. 386

    Google Scholar 

  22. Moine, P., Pelton, A.R., and Sinclair, R., Structural determination of small amorphous volumes by electron-diffraction. J Non-Crystalline Solids, 1988. 101(2–3): p. 213–222.

    Article  Google Scholar 

  23. Ankele, J., et al., Structure factor of amorphous-germanium by quantitative electron-diffraction. J Non-Crystalline Solids, 1995. 193: p. 679–682.

    Article  Google Scholar 

  24. Cockayne, D.J.H., and Mckenzie, D.R., Electron-diffraction analysis of polycrystalline and amorphous thin-films. Acta Crystallogr Sect A, 1988. 44: p. 870–878.

    Article  Google Scholar 

  25. Sigle, W., et al., Advances in energy-filtering transmission electron microscopy. J Electron Microsc, 2001. 50(6): p. 509–515.

    Article  Google Scholar 

  26. Fujime, S., Jpn J Appl Phys., 1966. 5(9): p. 764.

    Article  Google Scholar 

  27. Floro, J.A., et al., Real-time stress evolution during Si1-xGex heteroepitaxy: Dislocations, islanding, and segregation. J Electronic Mater, 1997. 26(9): p. 969–979.

    Article  Google Scholar 

  28. Vink, T.J., et al., On the homogeneity of sputter-deposited ITO films.1. Stress and microstructure. Thin Solid Films, 1995. 266(2): p. 145–151.

    Article  Google Scholar 

  29. Chason, E., Floro, J.A., Measurements of stress evolution during thin film deposition. Mat Res Soc Symp Proc, 1996. 428: p. 499–504.

    Article  Google Scholar 

  30. Yeom, H.Y., Popovich, N., Chason, E., and Paine, D.C., A study of the effect of process oxygen on stress evolution in d.c. magnetron-deposited tin-doped indium oxide. Thin Solid Films, 2002. 411(1): p. 17–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Paine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer US

About this chapter

Cite this chapter

Paine, D.C., Yaglioglu, B., Berry, J. (2011). Characterization of TCO Materials. In: Ginley, D. (eds) Handbook of Transparent Conductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1638-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1638-9_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1637-2

  • Online ISBN: 978-1-4419-1638-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics