Modeling, Characterization, and Properties of Transparent Conducting Oxides

  • Timothy J. Coutts
  • David L. Young
  • Timothy A. Gessert


Other authors in this book have discussed at length the applications and synthesis of transparent conducting oxides (TCOs). Our purpose in this chapter is to discuss some elementary aspects of TCO properties, which can be explained surprisingly well using the Drude free-electron theory [1]. Although this theory explains the electrical properties and fits the optical data so well, many have questioned whether any fundamental understanding of TCOs can be gained from its use. We believe that much can be learned about the properties of the conduction electrons in some, but not all, TCOs. The conduction electrons are important because they dominate the optical properties of the materials in the visible and near-infrared (NIR) wavelengths. The functional form of the free-electron theory often accounts for measurable properties of TCOs such as transmittance and reflectance, and their relationship to extrinsically controllable properties (e.g., carrier concentration and relaxation time) and intrinsic, uncontrollable, properties (e.g., crystal lattice and effective mass,).


Carrier Concentration Effective Mass Seebeck Coefficient Plasma Wavelength Drude Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was performed under U.S. Department of Energy contract number DE-AC36-GO9910337. The authors would like to express their thanks for the input given by Yuki Yoshida (now of Sanyo) and Viktor Kaydanov (formerly of the Colorado School of Mines).


  1. 1.
    P. Drude, Annalen der Physik 1, 3, 566, 369 (1900).Google Scholar
  2. 2.
    B. O’Neill, in Indium: Markets, Applications and Alternatives, Lisbon, Portugal (2005).Google Scholar
  3. 3.
    T. J. Coutts, X. Li, T. M. Barnes, B. M. Keyes, C. L. Perkins, S. E. Asher, S. B. Zhang, S. H. Wei, and S. Limpijumnong, in Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications, edited by C. Jagadish and S. J. Pearton (Elsevier, Amsterdam, 2006), pp. 43–84.CrossRefGoogle Scholar
  4. 4.
    S. Ghosh, A. Sarkar, S. Chaudhuri, and A. K. Pal, Thin Solid Films 205, 64–68 (1991).CrossRefGoogle Scholar
  5. 5.
    H. Kim, C. M. Gilmore, J. S. Horwitz, A. Pique, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, Applied Physics Letters 76, 259–261 (2000).CrossRefGoogle Scholar
  6. 6.
    M. W. J. Prins, D.-O. Grosse-Holz, J. F. M. Cillessen, and L. F. Feiner, Journal of Applied Physics 83, 888–893 (1998).CrossRefGoogle Scholar
  7. 7.
    W. P. Mulligan, Ph.D. Thesis, Colorado School of Mines (1997).Google Scholar
  8. 8.
    T. J. Coutts, D. L. Young, X. Li, W. P. Mulligan, and X. Wu, Journal of Vacuum Science and Technology A 18, 2646–2660 (2000).CrossRefGoogle Scholar
  9. 9.
    V. Kaydanov, Thesis, Colorado School of Mines (1999).Google Scholar
  10. 10.
    D. H. Zhang and H. L. Ma, Applied Physics A 62, 487–492 (1996).CrossRefGoogle Scholar
  11. 11.
    J. R. Bellingham, Thesis, Emmanuel College (1989).Google Scholar
  12. 12.
    X. Li, T. A. Gessert, and T. J. Coutts, Applied Surface Science 223, 138–143 (2004).CrossRefGoogle Scholar
  13. 13.
    M. P. Taylor, Ph.D. Thesis, Colorado School of Mines (2005).Google Scholar
  14. 14.
    R. H. Williams, R. R. Varma, and V. V. Montgomery, Journal of Vacuum Science and Technology 16, 1418 (1979).CrossRefGoogle Scholar
  15. 15.
    J. Y. W. Seto, Journal of Applied Physics 46, 5247–5254 (1975).CrossRefGoogle Scholar
  16. 16.
    M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction (Cambridge University Press, New York, NY, 1999).Google Scholar
  17. 17.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt Brace College Publishers, Fort Worth, TX, 1976).Google Scholar
  18. 18.
    L. Scheff, M. Dressel, M. Jourdan, and H. Adrian, Nature 438, 1135 (2005).CrossRefGoogle Scholar
  19. 19.
    A. K. Azad, Applied Physics Letters 88, 021103-1–021103-3 (2006).CrossRefGoogle Scholar
  20. 20.
  21. 21.
    J. I. Pankove, Optical Processes in Semiconductors (Dover Publications, New York, NY, 1971).Google Scholar
  22. 22.
    P. A. Iles and S. I. Soclof, in Design Factors for Transparent Conducting Layers in Solar Cells, Baton Rouge, LA, (1976) (IEEE), pp. 978–987.Google Scholar
  23. 23.
    M. P. Taylor, D. W. Readey, C. W. Teplin, M. F. A. M. van Hest, J. L. Alleman, M. S. Dabney, L. M. Gedvilas, B. M. Keyes, J. D. Perkins, and D. S. Ginley, Measurement Science and Technology 16, 90–94 (2005).CrossRefGoogle Scholar
  24. 24.
    V. I. Kaidanov and I. A. Chernik, Soviet Physics – Semiconductors 1, 1159–1163 (1967).Google Scholar
  25. 25.
    K. J. Button, C. G. Fonstad, and W. Dreybrodt, Physical Review B 4, 4539–4542 (1971).CrossRefGoogle Scholar
  26. 26.
    T. Wang, J. Bai, and S. Sakai, Applied Physics Letters 76, 2737–2739 (2000).CrossRefGoogle Scholar
  27. 27.
    J. A. Marley and R. C. Dockerty, Physical Review 140, A304–A310 (1965).CrossRefGoogle Scholar
  28. 28.
    P. Wagner and R. Helbig, The Journal of Physics and Chemistry of Solids 35, 327–335 (1972).CrossRefGoogle Scholar
  29. 29.
    E. H. Hall, American Journal of Mathematics 2, 287 (1879).MathSciNetCrossRefGoogle Scholar
  30. 30.
    L. L. Campbell, Galvanomagnetic and Thermomagnetic Effects the Hall and Allied Phenomena (Longmans, Green and Co, New York, NY, 1923).Google Scholar
  31. 31.
    A. V. Ettingshausen, Anzeiger der Akademie der Wissenshaften in Wien 16 (1887).Google Scholar
  32. 32.
    L. Boltzmann, Anzeiger der Akademie der Wissenshaften in Wien 24, 217 (1886).Google Scholar
  33. 33.
    A. V. Ettingshausen and W. Nernst, Anzeiger der Akademie der Wissenshaften in Wien 23, 114 (1886).Google Scholar
  34. 34.
    E. Putley, The Hall Effect and Related Phenomena (Butterworths, London, 1960).Google Scholar
  35. 35.
    W. Gerlach, Handbuch der Physik, Vol. 13 (Springer, Berlin, 1928).Google Scholar
  36. 36.
    F. Seitz, Physical Review 73, 549–564 (1948).CrossRefGoogle Scholar
  37. 37.
    R. Barrie, Proceedings of the Physical Society B 69, 553–561 (1956).MATHCrossRefGoogle Scholar
  38. 38.
    E. O. Kane, The Journal of Physics and Chemistry of Solids 1, 249–261 (1957).CrossRefGoogle Scholar
  39. 39.
    W. Zawadzki and J. Kolodziejczak, Physica Status Solidi 6, 419–428 (1964).CrossRefGoogle Scholar
  40. 40.
    N. V. Kolomoets, Soviet Physics – Solid State 8, 799–803 (1966).Google Scholar
  41. 41.
    W. F. Leonard and J. T. L. Martin, Electronic Structure and Transport Properties of Crystals, First ed. (Robert E. Krieger Publishing Company, Malabar, FL, 1987).Google Scholar
  42. 42.
    S. S. Li, Semiconductor Physical Electronics (Plenum, New York, NY, 1993).CrossRefGoogle Scholar
  43. 43.
    B. M. Askerov, Electron Transport Phenomena in Semiconductors (World Scientific, Singapore, 1994).CrossRefGoogle Scholar
  44. 44.
    R. H. Bube, Electrons in Solids, an Introductory Survey, 3 ed. (Academic Press, San Diego, CA, 1992).Google Scholar
  45. 45.
    J. Kolodziejczak and S. Zukotynski, Physica Status Solidi 5, 145–158 (1964).CrossRefGoogle Scholar
  46. 46.
    S. Zukotynski and J. Kolodziejczak, Physica Status Solidi 3, 990–1000 (1963).CrossRefGoogle Scholar
  47. 47.
    L. Onsager, Physical Review 37, 405–426 (1931).CrossRefGoogle Scholar
  48. 48.
    L. Onsager, Physical Review 38, 2265–2279 (1931).MATHCrossRefGoogle Scholar
  49. 49.
    J. Kolodziejczak, Acta Physica Polonica XX, 289–302 (1961).Google Scholar
  50. 50.
    J. Kolodziejczak and L. Sosnowski, Acta Physica Polonica 21, 399 (1962).MATHGoogle Scholar
  51. 51.
    S. Zukotynski and J. Kolodziejczak, Physica Status Solidi 19, k51–k54 (1967).CrossRefGoogle Scholar
  52. 52.
    I. N. Dubrovskaya and Y. I. Ravich, Soviet Physics – Solid State 8, 1160–1164 (1966).Google Scholar
  53. 53.
    M. K. Zhitinskaya, V. I. Kaidanov, and I. A. Chernik, Soviet Physics – Solid State 8, 295–297 (1966).Google Scholar
  54. 54.
    I. A. Chernik, V. I. Kaidanov, N. V. Kolomoets, and M. I. Vinogradova, Soviet Physics – Semiconductors 2, 645–651 (1968).Google Scholar
  55. 55.
    D. L. Young, T. J. Coutts, V. I. Kaydanov, A. S. Gilmore, and W. P. Mulligan, Journal of Vacuum Science and Technology A 18, 2978–2985 (2000).CrossRefGoogle Scholar
  56. 56.
    D. L. Young, T. J. Coutts, and V. I. Kaydanov, Review of Scientific Instruments 71, 462–466 (2000).CrossRefGoogle Scholar
  57. 57.
    W. Jiang, S. N. Mao, X. X. Xi, X. Jiang, J. L. Peng, T. Venkatesan, C. J. Lobb, and R. L. Greene, Physical Review Letters 73, 1291–1294 (1994).CrossRefGoogle Scholar
  58. 58.
    ASTM, in Annual Book of ASTM Standards (American Society of Testing and Materials, West Conshohocken, 1996).Google Scholar
  59. 59.
    V. I. Kaidanov and I. S. Lisker, Zavodskaya Laboratoriya 32, 1091–1095 (1966).Google Scholar
  60. 60.
    S. Brehme, F. Fenske, W. Fuhs, E. Nebauer, M. Poschenrieder, B. Selle, and I. Sieber, Thin Solid Films 342, 167–173 (1999).CrossRefGoogle Scholar
  61. 61.
    Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology: Semiconductors; Vol. 17, edited by K. H. Hellwege (Springer, Berlin, 1982)Google Scholar
  62. 62.
    S. Bloom and I. Ortenburger, Physica Status Solidi (b) 58, 561–566 (1973).CrossRefGoogle Scholar
  63. 63.
    X. Yang, C. Xu, and N. Giles, in Role of Neutral Impurity Scattering in the Analysis of Hall Data from ZnO, Denver, CO (2007).Google Scholar
  64. 64.
    S. Lany and A. Zunger, Physical Review Letters 98, 045501-1–045501-4 (2007).CrossRefGoogle Scholar
  65. 65.
    H. Ohta, M. Orita, and M. Hirano, Journal of Applied Physics 91, 3547 (2002).CrossRefGoogle Scholar
  66. 66.
    Y. Yoshida, D. M. Wood, T. A. Gessert, and T. J. Coutts, Applied Physics Letters 84, 2097–2099 (2004).CrossRefGoogle Scholar
  67. 67.
    X. Wu, T. J. Coutts, and W. P. Mulligan, Journal of Vacuum Science and Technology A 15, 1057–1062 (1997).CrossRefGoogle Scholar
  68. 68.
    T. J. Coutts, D. L. Young, and X. Li, MRS Bulletin 25, 58–65 (2000).CrossRefGoogle Scholar
  69. 69.
    Y. Yoshida, T. A. Gessert, C. L. Perkins, and T. J. Coutts, Journal of Vacuum Science and Technology A 21, 1092–1097 (2003).CrossRefGoogle Scholar
  70. 70.
    T. A. Gessert, Y. Yoshida, and T. J. Coutts (USA, 2004).Google Scholar
  71. 71.
    J. Zhou, X. Wu, T. A. Gessert, Y. Yan, G. Teeter, and H. R. Moutinho, Materials Research Society Proceedings 865, 387–392 (2005).CrossRefGoogle Scholar
  72. 72.
    T.-H. Chen, Y. Liou, T. J. Wu, and J. Y. Chen, Applied Physics Letters 85, 2092–2094 (2004).CrossRefGoogle Scholar
  73. 73.
    Y.-J. Lin, C.-W. Hsu, Y.-M. Chen, and Y.-C. Wang, Journal of Electronic Materials 34, L9–L11 (2005).CrossRefGoogle Scholar
  74. 74.
    H. Kim, J. S. Horwitz, W. H. Kim, S. B. Qadri, and Z. H. Kafafi, Applied Physics Letters 83, 3809–3811 (2003).CrossRefGoogle Scholar
  75. 75.
    G. D. Wilk, R. M. Wallace, and J. M. Anthony, Applied Physics Letters 89, 5243–5275 (2001).Google Scholar
  76. 76.
    G. Lucovsky and G. B. Rayner, Applied Physics Letters 77, 2912–2914 (2000).CrossRefGoogle Scholar
  77. 77.
    R. Groth, Physica Status Solidi 14, 69–75 (1966).CrossRefGoogle Scholar
  78. 78.
    T. Koida and M. Mondo, Applied Physics Letters, 082104-1–082104-3 (2006).Google Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  • Timothy J. Coutts
    • 1
  • David L. Young
  • Timothy A. Gessert
  1. 1.National Renewable Energy LaboratoryGoldenUSA

Personalised recommendations